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agents who cheat, the larger the cost of cheating suffered by those who cheat.

Depending on the parameter values, the model can have a unique equilibrium level
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high and the other with low trust. Thus, differences in trust levels across societies can
reflect different fundamentals or, for the same fundamentals, a switch across multiple
equilibria. Surprisingly, we find that these two possibilities are partially identifiable
from an empirical point of view.

Our model can also be reinterpreted as one with standard selfish preferences and
an enforcement agency with limited resources that are used to catch and fine a subset
of those who cheat. Lastly, we carry out a robustness exercise in which agents learn
in a simple way from experience about how many agents cheat in society. Our results
indicate that when there are multiple equilibria the high trust equilibrium is less robust
than the low trust one.
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1. Introduction

1.1. Motivation and Overview

Not many transactions are carried out using rotating security trays with money on one

side and the purchased good on the other. Yet, without these devices or some equivalent

arrangement the standard selfish agents that populate modern economic models would be

unable to trade, barring repeated interaction or binding contracts. It is instead self-evident

that trade among agents flourishes way beyond what this hypothetical world would look like.

The lubricant that makes so many transactions take place is trust. This is the belief that

economic agents hold that the other side of the transaction will not behave in a completely

opportunistic way, thus impeding mutually advantageous exchange.1

Our purpose here is to build a simple model of trust as an equilibrium phenomenon. The

agents’ beliefs about the probability of not being cheated — their level of trust as we just

defined it — should be endogenously determined in equilibrium, and hence correct. The

reason we focus on beliefs is simple. There is a basic tension between “trusting beliefs,”

and consequent “trusting behavior,” and the incentives to cheat of other agents in society.

Trusting beliefs can be exploited. However, a trustful agent should not be cheated often; if

she is, she should change her belief and start trusting less. This tension seems to warrant a

close examination of what an equilibrium model of trust can generate.

To model trust we place a “cost of cheating” in the agents’ utility function (this is our

sole departure from the standard purely-selfish agents paradigm). The cost of cheating has

two components. One which is an exogenous characteristic of each agent, and another which

is socially determined by the behavior of others. The less common cheating behavior is in

society, the higher is the cost of cheating for individual agents. This feedback component

of the cost of cheating is a central ingredient of our analysis, and we return to it at length

below.

While we insist that trust should emerge as an equilibrium phenomenon in our model, we

do not intend to dismiss “behavioral traits” and non-equilibrium factors in the explanation of

trust as a belief. Rather, by investigating whether a successful model of trust in a society can

be built along standard lines we hope to shed light on whether, and if so which, departures

from the standard paradigm in the agents’ belief formation are needed to address the issue

1A large literature exists on the sources and effects of the presence of trust. For ease of exposition, we
postpone any discussion of it until Subsection 1.2 below.
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of trust. This may eventually lead to an understanding of how important the new behavioral

traits are in interpreting reality.

Our model is deliberately kept simple in the extreme. In particular, our model is not

dynamic. Although repeated interactions have been used very successfully to generate “co-

operative behavior” of many kinds, our initial motivation as above is to have a model of trust

that applies to situations that would seem to call for “swivel-tray trading” if trust were not

present. Hence, we stay deliberately clear of reputational issues and more generally of re-

peated interaction ingredients in our set up. As well as making our analysis more transparent,

this way of proceeding makes our results immune from the price that many dynamic models

have to pay. Multiplicity of equilibria (although it features prominently in our analysis) is

not an issue for us. While dynamic models are often plagued by a staggering multiplicity of

equilibria that dramatically curtails their predictive ability, we are able to proceed with only

a very mild simplifying assumption in this respect.

In spite of its extreme simplicity, our set up provides a rich enough framework to address,

in an interesting and novel way, the well documented diversity of levels of trust in different

societies.2 Indeed, depending on the configuration of preference and other parameters, our

model either generates a unique equilibrium (with a single equilibrium level of trust), or two

equilibria, one with a higher and another with a lower level of trust. Moreover, by varying the

parameters of the model, higher or lower levels of equilibrium trust can be obtained without

switching across different equilibria. Given this rich set of possible equilibrium outcomes, the

model allows us to frame in a natural way an important question on the observed diversity

of levels of trust in different societies. Are two societies, one with a high level of trust and

another with a lower one, different because their fundamental parameters differ, or because,

given same fundamental parameters, they happen to be in different equilibria? Obviously

these two possibilities have different policy implications, as it is likely easier to shift from one

equilibrium to another for given fundamentals than it is to induce a change in the fundamental

parameters.

A key insight from our model is that the two cases are in fact partially identifiable in terms

of the outcomes they generate. A stark prediction of our analysis is that if different levels of

trust result from multiple equilibria, then the level of trust must be negatively correlated with

the size of individual transactions. A positive correlation can only emerge if different levels

2As opposed to heterogeneity of behavior within a society, which is not our direct focus of attention,
although not in contrast with our results.
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of trust were to result from differences in the parameters of the model.3 To our knowledge,

the possibility to empirically disentangle multiple vs. unique equilibrium regimes is new.

A second set of results concerns the relationship between levels of trust and measures of

economic performance. While the level of trust correlates positively with a measure of overall

activity in the economy, the link between level of trust and welfare (inclusive of the perceived

costs associated with cheating) is ambiguous. Though our model is much too simple to

take welfare measures as other than qualitative, we find this difference interesting and worth

exploring in more detailed models.

A third batch of results concerns the fact that the social feedback on the cost of cheating

outlined above can be re-interpreted as resulting from an enforcement technology whose

effectiveness depends on the average behavior. We find that, in the multiple equilibria regime,

an infinitesimal increase in the resources devoted to enforcement can yield a discontinuous

increase in the level of total activity in the economy (the effect on welfare is ambiguous, due

to our third result). In the single equilibrium regime, instead, the level of activity changes

continuously with the resources spent in the enforcement technology.

A fourth batch of results that emerges from our analysis is that, in the multiple equilibria

regime, the low-trust equilibrium is more robust than the high-trust one in a well specified

sense. Roughly, small deviations from the high-trust equilibrium are much more likely to

destroy it. High-trust is thus “more difficult to sustain.”

1.2. Related Literature

We are certainly not the first to point out that without security swivel-trays an element of

trust is needed for most transactions to take place. Arrow (1972, p. 357) notes that “Virtually

every commercial transaction has within itself an element of trust, certainly any transaction

conducted over a period of time.” In the absence of “instantaneous exchange,” an element of

trust is required.

Arrow (1972) goes on to comment on the path-breaking study by Banfield (1958) of the

devastating effects of the lack of trust on a “backwards” small community in southern Italy.

3Since the term “partial identification” has been used before (Phillips, 1989), it is useful to be precise as
to the meaning we give it here. The identification is partial in the sense that we cannot rule out that two
equilibria corresponding to two sets of parameters entail a negative correlation between trust levels and size
of individual transactions. Therefore, while a positive correlation excludes the possibility of a switch across
multiple equilibria with unchanged parameters, the observation of a negative correlation is inconclusive.
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Following Banfield (1958) a large literature has blossomed on the roots and effects of the lack,

or presence, of trust.

The literature is way too large and varied to attempt even a reasoned outline here, let alone

a survey. We confine ourselves to recalling how Putnam (1993) documents the heterogeneous

levels of “social capital” in different regions of Italy and its role in fostering growth. A couple

of years later, Fukuyama (1995) published an influential monograph concerning the positive

role of trust in large firms and hence economic growth.4

We also selectively recall the contributions by Knack and Keefer (1997), La Porta, Lopez-

de-Silanes, Shleifer, and Vishny (1997), and more recently Guiso, Sapienza, and Zingales

(2004), Sapienza, Toldra, and Zingales (2007) and Butler, Giuliano, and Guiso (2009).5 These

studies all document in a variety of ways how the presence of trust is correlated with desirable

economic outcomes.

The departure from standard preferences that we postulate here can also be traced back

a long way. Vernon Smith (1998), citing experimental evidence draws out the distinction

that goes back to Adam Smith (1759, 1776) between “moral” and “selfish” preferences. It is

interesting to go back this far since in this reading of Smith (1759), “moral sentiments” seem

to fit well the idea of an “extra entry” in agents’ utilities that capture their regard for the

“fortune of others.” In essence, we take the same approach here. Arrow (1972) contains an

illuminating discussion of the different ways in which non-selfish motives can enter agents’

preferences.

Much more recently Feddersen and Sandroni (2006) explore the effects of “ethical” social

feed-back mechanisms not unlike the one we consider here, and their effects on the equilibria

of voting models.6 Horst and Scheinkman (2006) are concerned with the general theoretical

problems of models with social feed-back variables, particularly with the (far from trivial)

issues that arise in proving the existence of equilibrium in general in this class of models.

Dixit (2003) and Tabellini (2008) are both theoretical contributions to the literature on

4It is important to note at this point that the literature documenting the positive impact of “social capital”
or “trust” on income, wealth and growth rates also includes some notable skeptics. To our knowledge, the
most prominent one is Solow (1995), who in turn cites evidence from Kim and Lau (1994) and Young (1994).
For a survey of much of the literature on trust and social capital we cite here, including an account of the
debate we have just mentioned, see Sobel (2002).

5Glaeser, Laibson, Scheinkman, and Soutter (2000), Irlenbusch (2006) and Butler, Giuliano, and Guiso
(2009) focus on experimental set-ups.

6Blume (2004) investigates the effect of “stigma” in a dynamic model.
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trust. Their main focus is on the differential effects of distance and society’s size on the

sustainability of trust. In both cases the possibility of equilibrium phenomena that address

the issue of trust is due to the dynamic, repeated nature of the interaction between agents.

In our model, play only takes place once, and trusting and trustworthy equilibrium behavior

can be traced directly back to our non-standard preferences generating the social feed-back

we have described above.

Finally, the theoretical literature on repeated interactions, from which we purposedly stay

away, is also vast. We simply refer the interested reader to the recent monograph by Mailath

and Samuelson (2006) which also has a comprehensive and up-to-date list of references.

1.3. Plan of the Paper

The rest of the paper is structured as follows. In Section 2, we describe the basic model

in detail and make precise what constitutes an equilibrium in our set up. In Section 3 we

characterize the set of possible equilibria of the model. In Section 4 we highlight how high

and low trust equilibria may arise from either differences in the fundamental parameters of

the model, or a switch across multiple equilibria supported by the same set of parameter

values. In this section, we also spell out the identifiable characteristics of high and low trust

equilibria in these two cases, and we proceed to characterize transaction volumes and welfare

properties of the different equilibria. Section 5 provides a re-interpretation of the socially

generated component of cheating costs as stemming from an enforcement technology with

limited resources available. In Section 6 we carry out a robustness analysis of low and high

trust equilibria in the multiple equilibria regime. Finally, Section 7 briefly concludes.

For ease of exposition, all proofs have been relegated to an Appendix.

2. Set-Up

2.1. The Model

There is a continuum of risk-neutral players of mass 2 uniformly distributed on [0, 2]. All

players i ∈ [0, 2] face equal and independent chances of playing on the offer side, and on the

receiver side. We refer to the former as O agents and the latter as R agents. So there is a

unit mass of both i ∈ O and i ∈ R agents after the realization of this first draw.

The O and R agents are then randomly matched to form a unit mass of pairs. The only

thing that is of consequence here is that an O agent should not know the “cost of cheating”
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(to be defined very shortly) of the agent she is matched with.7

Each agent O makes an offer x ∈ [0, 1] to the R agent in her match. The offer generates

a total surplus of 2x to be split equally between O and R if the transaction goes through

without “cheating” on the part of R.8 So, if R does not cheat, an offer of x generates a payoff

of x for both O and R.

It is the R agent in the match who decides whether to cheat or not. After receiving an

offer x from the O agent in the match, R may decide to cheat and grab the entire surplus 2x

instead of abiding by what the splitting procedure suggests. However, if she cheats, R will

also suffer a cost c.9 Therefore, R will cheat if 2x− c > x or equivalently x > c, and will not

cheat otherwise.10

The total cost of cheating c has two components. One depends on the exogenously given

“type” of the R agent and the other is determined by the behavior of other agents in the

model.

For simplicity, we assume that there are just two types of R agents, “high” (H) and “low”

(L).11 The exogenous component of the cost of cheating is tL ∈ (0, 1) for type L and tH ∈
(0, 1) for type H, with tL < tH . The proportion of type H is denoted by p ∈ (0, 1) throughout.

The component of c that is “socially determined” is the same for all players.12 Let s be

the proportion of R agents who do not cheat. We simply set the social component of the

cheating cost to equal s and we take the two components of the cheating cost to combine in

7Since we do not consider repeated interaction, the other details of the matching process are completely
inessential. It should also be noted that, given the simplicity of our set up, it is easy to model our matching
process in an effective way avoiding all the well known technical problems that can arise in the random
drawing and matching of continuous populations of players. We omit the details. For a recent contribution
and a substantial set of references see Duffie and Sun (2007)

8The fact that the surplus is split equally simplifies our calculations, but is completely inessential.
9Note that we are assuming that R has the choice of whether to cheat or not even when x = 0. If she

cheats after an offer equal to zero, her payoff will therefore be −c. However, when x = 0, there is, so to
speak, nothing to grab. Hence, an alternative would be to assume that R does not have a choice of whether
to cheat or not when x = 0. Proceeding as we do simplifies the analysis but does not impact the results.

10Our implicit assumption that when R is indifferent she will necessarily not cheat simplifies the analysis
but is in fact without loss of generality. In equilibrium, the cheating set defined here and in (2) below must
be open even if it were allowed in principle to be closed. The reason is that if it were not, then the optimal
offer of O agents could not be defined because the acceptance set would have to be open.

11The overall flavor of our results easily generalizes to an world with any finite number of types. Many of
our results also have analogues in a world with a continuum of types. We proceed in this way since one of
our main aims is to keep the set up as simple as we possibly can.

12Again, this is the simplest way of proceeding. One could imagine heterogeneous cost “sensitivities” to
the behavior of others, and this could easily be accommodated in our set up.
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a linear way.13 For an R agent of type τ ∈ {L,H}, the total cost of cheating if a proportion

s of transactions go through without cheating is given by

c(τ, s, α) = α tτ + (1− α) s (1)

with α ∈ (0, 1) a parameter that measures (inversely) the social sensitivity of the agents’ cost

of cheating.

As we have already remarked, the social component s of c is a critical ingredient of our

model. We think of it as embodying the influence of social norms on individual behavior.

When fewer people in society cheat, those who do are in some sense further away from the

social norm, and this has a “moral cost.”

The effect of s on c can also be re-interpreted as a cost stemming from an enforcement

technology. As fewer people cheat, for given resources devoted to enforcement, the probability

that a cheater is “caught” increases, thus increasing the expected cost of cheating. We pursue

this interpretation more formally in Section 5 below.

2.2. Equilibrium Definition

An equilibrium in our model is just a Nash equilibrium of the game we have described: a

strategy profile σ∗ describing for every player which offer she makes in her O role, and which

offers she cheats and does not cheat on when she is in her R role, and such that no player

has an incentive to unilaterally deviate.

A strategy profile σ assigns (in a measurable way) two numbers to every player i ∈ [0, 2]:

the offer x(i) ∈ [0, 1] that i will make if she is chosen to be an O agent, and a cheating cut-off

value z(i) ∈ [0, 1] indicating that she will cheat if and only if she receives an offer strictly

above z(i) when she is chosen to be an R agent.14 Notice that once a profile σ is given, a

value of s is also given since the expected proportion of transactions that will not involve

cheating is determined directly by σ.15

We begin the analysis of the players’ maximization problem on the R side. Fix a σ, which,

13As with our other modeling choices, this is just the simplest way of proceeding.
14In principle, the players’ cheating responses could be based on more than simple cut-off value. However,

it is easy to show that we can restrict strategy spaces in this way without loss of generality using a standard
weak-dominance argument.

15For each i ∈ O the distribution z(·) of cut-off values across R agents and x(i) determine the probability
that i will be cheated by her partner. This is then averaged out across all O agents, to yield s.
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as we noted, also fixes a value of s. Consider an R agent of type τ ∈ {L,H}. She will cheat

if and only if the offer x she receives satisfies

x > c(τ, s, α) = αtτ + (1− α)s (2)

For given σ, and hence s, using (2) we can compute the mass of agents R who will not

cheat on any given offer x ∈ [0, 1]. Let this be denoted by P (x, s). Notice that we have

P (x, s) =


0 if x ∈ (c(H, s, α), 1]

p if x ∈ (c(L, s, α), c(H, s, α)]

1 if x ∈ [0, c(L, s, α)]

(3)

For given σ, we can therefore write the expected payoff of an O agent offering x as

xP (x, s) (recall that offering x, she gets a payoff of x whenever she is not cheated). Hence

she will choose an x that solves

max
x∈[0,1]

xP (x, s) (4)

The solution to (4) is immediate to characterize. Since c(L, s, α) < c(H, s, α) < 1, the

solution to (4) depends on the comparison between

c(L, s, α) and p c(H, s, α) (5)

If c(L, s, α) > pc(H, s, α) then it is uniquely optimal to set x = c(L, s, α) — the largest level

that ensures that no R agents cheat. If instead c(L, s, α) < p c(H, s, α) the unique solution

is to set x = c(H, s, α) — the largest level that ensures that only R agents of type L cheat.

Finally if c(L, s, α) = p c(H, s, α), then an O agent is indifferent between making an offer of

c(L, s, α) and an offer of c(H, s, α), and hence both values solve the maximization problem

(4).

Intuitively, increasing x increases (in jumps, because of the discrete nature of the types)

the probability that the offer will be cheated on. The trade off between increased payoff

conditional on not being cheated on and the increase in the probability of cheating is what

determines the optimal behavior of O agents.

Before proceeding further, we introduce a simplifying assumption on the behavior of O
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agents.

Assumption 1. Tie Break: Whenever c(L, s, α) = p c(H, s, α), all O agents make an offer

of c(L, s, α) which is not cheated on with probability one, rather than an offer of c(H, s, α)

which is cheated on by all R agents of type L.

For ease of exposition, form now on, when we say that “x solves (4)” we will mean a

solution that complies with the tie-breaking rule posited here.

Assumption 1 makes the behavior of all O agents uniquely determined for any parameter

values and any level of s, substantially simplifying the analysis.

Note that the behavior that Assumption 1 postulates can be interpreted as the result of

“lexicographic” risk-aversion of the O agents (added to their basic risk-neutrality). Whenever

expected values are equal (and only then), random variables with a lower risk are preferred.

In particular, when c(L, s, α) = p c(H, s, α), the sure payoff of c(L, s, α) will be preferred to

a random payoff equal to 0 with probability 1− p and to c(H, s, α) with probability p.

Assumption 1 simplifies our analysis since it rules out, for parameter configurations sup-

porting multiple equilibria, a mixed equilibrium that is “intermediate” between the two that

we will focus on. This equilibrium is “between” the two remaining ones, and its presence

would not affect our qualitative conclusions in any way.16 We will remark again informally

on how the intermediate equilibrium would change some of the details as we go along.

We can now provide a working definition of what constitutes an equilibrium in our model.

Note that, using Assumption 1, the equilibrium behavior of all O agents is summarized by

a single number x ∈ [0, 1] — the solution to (4), which is the offer they all make to the R
agent they are each matched with. Of course, in equilibrium it must also be the case that

the value of s that appears in (4) is the correct one, as determined by the behavior of the R
agents given x. This justifies the following definition of equilibrium, which we will work with

throughout the rest of the paper.

Definition 1. Equilibrium: An equilibrium is a pair (x, s) such that x solves (4) given s and

such that

P (x, s) = s (6)

16Details are available from the authors on request.
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Given what we know about the behavior of O agents, it is also easy to check that only

two possibilities are open for the value of s in any equilibrium. Setting an x such that both

types of R agent cheat is clearly never optimal. Hence in equilibrium it must be that either

s = 1 (and no cheating at all takes place), or s = p (and all R agents of type L cheat, and

all those of type H do not).

It follows easily that, in equilibrium, if s = 1 then x = c(L, 1, α) = αtL + 1 − α, and

similarly if s = p then x = c(H, p, α) = αtH + (1− α)p.

At this point, it is useful to crystallize some terminology for future use.

Definition 2. NC and LC Equilibria: An equilibrium (x, s) with s = 1 and x = c(L, 1, α)

— in which no R agents cheat — is called a No Cheating (NC) Equilibrium. An equilibrium

(x, s) with s = p and x = c(H, p, α) — in which R agents of type L cheat — is called a Low

Cheating (LC) Equilibrium.

3. Equilibrium Characterization

3.1. NC Equilibrium

We can now work out the conditions under which the model has an NC equilibrium.

By definition in this case the equilibrium value of s is 1 — the probability of cheating is

in fact 0. Therefore

c(L, 1, α) = αtL + 1− α and c(H, 1, α) = αtH + 1− α (7)

We already know that in an NC equilibrium x = c(L, 1, α). Therefore, to confirm that

[c(L, 1, α), 1] is an equilibrium, we just need to check that the parameters of the model are

such that no O agent has an incentive to deviate unilaterally from offering x = c(L, 1, α)

(which gives her a payoff of precisely c(L, 1, α) since no cheating takes place).

Deviating to an offer below c(L, 1, α) is never profitable since it yields a lower payoff

conditional on no cheating taking place, but obviously cannot decrease any further the prob-

ability that cheating occurs. Deviating to an offer above c(L, 1, α), and hence accepting that

R agents of type L will cheat, can yield at most a payoff of p c(H, 1, α). In fact this is what

an O agent gets if she makes the largest offer that R agents of type H will not cheat upon,

taking as given the equilibrium value of s = 1. Hence, using (7), a necessary and sufficient
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condition for an NC equilibrium to exist is that

αtL + 1− α ≥ p [αtH + 1− α] (8)

3.2. LC Equilibrium

The conditions under which an LC equilibrium exists can be worked out in a parallel way.

By definition in this case, s = p. Hence

c(L, p, α) = αtL + (1− α)p and c(H, p, α) = αtH + (1− α)p (9)

As we noted above, in equilibrium when s = p it must be that x = c(H, p, α). To ensure

that [c(H, p, α), p] is an equilibrium we then need to check that the parameters of the model

are such that no O agent has an incentive to deviate unilaterally from offering x = c(H, p, α),

which yields her an expected payoff of p c(H, s, α). With a logic that is by now familiar,

without loss of generality we can consider only the deviation to offering x = c(L, p, α) —

the largest offer that will induce no cheating from either type of R agent, taking as given

the equilibrium value s = p. This deviation yields a payoff of c(L, p, α). Hence, using (9), a

necessary and sufficient condition for the model to have an LC equilibrium is

p [αtH + (1− α)p] ≥ αtL + (1− α) p (10)

3.3. Multiple and Unique Equilibria

It is useful to sum up and sharpen our picture of the possible equilibria of the model as a

function of the parameter quadruple (α, p, tL, tH). Purely for the sake of simplicity, from

now on throughout the paper we restrict attention to quadruples away from the boundary of

[0, 1]4, satisfying tH > tL. This dispenses us from having to consider separately some of the

boundary cases which would not add anything of interest to our results.

Proposition 1. Equilibrium Set: The equilibrium set of the model is guaranteed to be non-

empty, and can be of three types. A unique NC equilibrium, and in this case we say that we

are in the NCU regime. A unique LC equilibrium, in which case we will say that we are in

the LCU regime. Finally, there can be one LC and one NC equilibrium, and in this last case

we will say that we are in the LCNC or simply “multiple equilibria” regime.

If (8) is satisfied and (10) is not, then we are in the NCU regime. If (10) is satisfied and

(8) is not then we are in the LCU regime. Finally, if (8) and (10) are both satisfied then we



Equilibrium Trust 12

are in the NCLC multiple equilibria regime.

Although a formal proof of Proposition 1 does not require much more than using some

of the observations we have already made, for the sake of completeness we present one in

the Appendix. Note that in the multiple equilibria regime only two equilibria are possible

because of our simplifying Assumption 1. As we mentioned above, without it we would get a

third “intermediate” equilibrium, in which the proportion of transactions not cheated upon

is strictly between p and 1.

The three equilibrium regimes of Proposition 1 are also all robust in the standard sense.

Proposition 2. Parametric Conditions: The set of parameter quadruples (α, p, tL, tH) that

yield the NCU regime contains an open set. The same is true for the set of quadruples

yielding LCU, and for those yielding NCLC.

A formal proof of Proposition 2 is in the Appendix. The simple argument behind it hinges

on the fact that (8) and (10) can be jointly rewritten as

(1− α)p(1− p) ≤ α(ptH − tL) ≤ (1− α)(1− p) (11)

with the first inequality corresponding to (10) and the second to (8). Since (1−α)p(1− p) <
(1−α)(1−p) for all α and p in the interval (0, 1), we are guaranteed to find robust parameter

configurations that support each of the three regimes.

We conclude this section with an observation, which we do not fully formalize purely for

reasons of space.17 Although they embody a level of trust s exactly equal to 1, the NCU

regime and the NC equilibrium of the NCLC regime are less special than might seem at first

sight. The fact that they yield s = 1 rather than just a “high” s is an artifact of our choice

to consider only two types τ ∈ {L,H} of R agents in order to keep the model as simple as

possible.

Suppose that a small proportion of a third “very low” type were introduced, with the

exogenous component of the cost of cheating between 0 and tL. Then it would be easy to

check that the same parameters supporting an NC equilibrium in the two-types model would

yield an equilibrium in which only the “very low” type of R agents cheat. This is clearly

possible in a completely straightforward way whenever the model yields an NC equilibrium

17The details available from the authors upon request.
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which is “strict” in an appropriate sense. With this observation in mind, we will often

interpret the NC equilibria as “high trust” equilibria of a general kind, rather than focusing

specifically on the fact that they display “full trust” (s = 1).

4. Societies With Different Levels of Trust

4.1. Differences in Fundamentals vs. Equilibrium Switch

As we noticed above, differences of trust levels across different societies are well documented.

Moreover, they are often seen to be correlated with (and sometimes held responsible for)

phenomena of primary economic importance like income levels and growth rates.

Our model can generate such differences in two conceptually distinct ways.

The first is when two societies are characterized by the same parameter quadruple gener-

ating the NCLC regime, the LC equilibrium is realized in one of the societies (the low trust

one) while the NC equilibrium is realized in the other (the high trust society). We refer to

this case as an equilibrium switch.

The second possibility is that different levels of trust across two societies reflect the fact

that the two societies are characterized by different parameter quadruples, leading to different

levels of equilibrium trust. This in turn can happen in several different ways, as the two

quadruples can be in different regions of the parameter space supporting different equilibrium

regimes, or they might support the same equilibrium regime but with different equilibrium

trust levels. These cases are what we refer to as a difference in the fundamentals.

Among the many ways in which a difference in fundamentals can arise it is useful to

single out the case in which only the probability mass of the two types of R agents changes,

with all other parameters constant. This we refer to as a difference in the distribution of

types. Specifically, in one society the parameter quadruple is (α, p, tL, tH), in the other is

(α, p, tL, tH), and in both the LC equilibrium obtains.18 In the first case the equilibrium trust

level is s = p and in the second it is s = p < s.

The distinction between differences in the equilibrium level of trust that arise from an

equilibrium switch or from a difference in fundamentals is more than a curiosity. These

two possibilities would in fact call for distinct policy stances from a Government seeking to

intervene to rectify a low level of trust. If the low trust level is the result of an equilibrium

switch, then the Government can attempt to engender a switch to a higher level of trust by

18So, clearly, both parameter quadruples must give rise to either the LCU or the NCLC regimes.
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re-focussing the expectations of the players. Convincing everyone in society that the level of

trust is s instead of s will do the job since this is capable of becoming a self-fulfilling prophecy.

If instead the low level of trust is due to a difference in fundamentals then the only way

to ensure a high level of trust is to engineer a change in the parameters of the model. This

is conceptually and operationally different from a self-fulfilling change in beliefs, and likely

harder to achieve, although one might imagine a range of tools that vary from economic

incentives to educational programs based on “civic culture” that could be brought to bear.

The conceptual difference between the two hypotheses, difference in fundamentals versus

equilibrium switch, might also be of interest to scholars in other disciplines, such as political

science or sociology. In essence, a difference in fundamentals points to different norms of

behavior being rooted in “anthropological” factors, while an equilibrium switch points in

the direction of random events triggering changes that become long-lasting because of self-

reinforcement mechanisms at work in society.

4.2. Trust and Transaction Levels

Suppose that we observe two societies, one with a high and the other with a low level of

trust. Can we identify whether the differing trust levels are due to an equilibrium switch or

to a difference in the fundamentals?

Somewhat surprisingly, the answer is a qualified yes. As we mentioned in the introduction,

partial identification is in general possible, as there are some observations that allow us to

rule out an equilibrium switch.19 Full identification can be achieved if the range of possible

alternatives can be further restricted in an appropriate way. In particular, if we know that

the only differences in the fundamentals that need to be considered are variations in the

distribution of types, then full identification becomes possible.

We begin with the general case, in which all possible variations in parameter quadruples

are considered.

The key to identification — partial or full, as the case may be — is the equilibrium level of

x, the offer made in equilibrium by all the O agents, which is also the equilibrium individual

transaction level.

The following two propositions make our claim precise for the general case

19See footnote 3 above.
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Proposition 3. Individual Transaction Levels — Equilibrium Switch: Let a parameter qua-

druple supporting the NCLC regime be given. Then the level of x in the associated NC

equilibrium is lower than the level of x in the associated LC equilibrium.

It follows that if the difference in equilibrium trust between two societies is due to an

equilibrium switch in the sense of Subsection 4.1, then the equilibrium level of x is negatively

correlated with the equilibrium trust level.

When it comes to a difference in fundamentals, in principle we should consider any pair of

equilibria, of the NC and/or LC type. For completeness, the following proposition examines

four cases. The bottom line is that when we allow for unrestricted differences in fundamentals,

the relationship between differences in the equilibrium trust level and the level of individual

transaction cannot be pinned down.

Proposition 4. Individual Transaction Levels — Change in Fundamentals: Fix arbitrarily

a parameter quadruple supporting an NC equilibrium. Then we can find parameter quadru-

ples that support LC equilibria with individual transaction levels that can be both higher

and lower than in the given NC equilibrium.

Fix again arbitrarily a parameter quadruple supporting an NC equilibrium. Then we can

find parameter quadruples that support NC equilibria with individual transaction levels that

can be both higher and lower than in the given NC equilibrium.

Fix arbitrarily a parameter quadruple supporting an LC equilibrium. Then we can find

parameter quadruples that support NC equilibria with individual transaction levels that can

be both higher and lower than in the given LC equilibrium.

Finally, fix again arbitrarily a parameter quadruple supporting an LC equilibrium. Then

we can find parameter quadruples that support LC equilibria displaying a higher level of trust

and a lower level of individual transactions than in the original LC equilibrium, or a lower

level of trust and a higher level of individual transactions than in the original LC equilibrium.

The picture yielded by Propositions 3 and 4 — namely, partial identification — changes

considerably when we consider the case in which parameter differences are restricted to be dif-

ferences in the distribution of types in the sense mentioned above. In this case the ambiguity

highlighted by Proposition 4 no longer holds and a definite conclusion can be reached about

the correlation between trust and the size of individual transactions following the difference

in parameter values.

Proposition 5. Transaction Levels — Change in Distribution of Types: Consider two par-

ameter quadruples (α, p, tL, tH) and (α, p, tL, tH) with p >p, each giving rise to an LC equili-

brium with high (s = p) and low (s = p) trust levels respectively.
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Then the equilibrium level of x associated with (α, p, tL, tH) is higher than the equilibrium

level of x associated with (α, p, tL, tH).

It follows that if the difference in equilibrium trust between two societies is due to a

difference in fundamentals in the narrower sense of a difference in the distribution of types,

then the equilibrium level of x is positively correlated with the equilibrium trust level.20

Formal proofs of Propositions 3, 4 and 5, which, again, consist of fairly simple algebra,

appear in the Appendix. Here, we elaborate on the intuition behind our results, beginning

with Proposition 4.

Recall that in any NC equilibrium the level of individual transaction is αtL + 1−α while

in any LC equilibrium it is given by αtH + (1− α)p. Proposition 4 is then the result of the

following observations. If we are allowed to vary all the parameters at will, the necessary and

sufficient conditions (8) for an NC equilibrium to exist are compatible with any value of αtL

+ 1−α in (0, 1). Similarly, if we are allowed to vary all the parameters at will, the necessary

and sufficient conditions (10) for an LC equilibrium to exist are compatible with any value

of αtH + (1− α)p in (0, 1).

The statement of Proposition 5 is an almost immediate consequence of the fact that in

any LC equilibrium the level of individual transactions is given by αtH + (1 − α)p. Hence,

since all other parameters are kept constant, it must increase as p increases.

The intuition behind Proposition 3 requires some intermediate steps. Recall that in this

case we are concerned with a single parameter quadruple supporting the NCLC regime. Call

the level of individual transactions in the LC equilibrium xLC = αtH + (1 − α)p. In the

LC equilibrium an O agent gets an expected payoff of p xLC since with probability 1− p he

is cheated by the R agent he meets and ends up with a payoff of zero. She could however

deviate and make the largest offer that will induce no cheating from any type of R agents.

Denote this by xDLC , and observe that it must equal αtL + (1−α)p. By deviating, she would

get a payoff equal to her offer for sure, hence her incentive constraint tells us that it must be

the case that p xLC ≥ xDLC .

Now consider the NC equilibrium associated with the given parameter quadruple. The

equilibrium level of individual transactions now is xNC = αtL + 1−α, since this is the largest

offer that will keep all R agents from cheating. The only difference between xDLC and xNC

20Note that once we fix all parameters except for p, all NC equilibria are the same. Hence, since the effect
of a switch from LC to NC is already characterized by Proposition 3, the only relevant comparison is the one
treated here — two LC equilibria. All the other cases we treated in Proposition 4 can be ignored.
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is in fact given by the higher level of equilibrium trust reflected in xNC .21 This makes it

immediate to check that we have xDLC > p xNC .

The two steps we have outlined give that p xLC ≥ xDLC and xDLC > p xNC respectively,

which together immediately yield the claim of Proposition 3, namely xLC > xNC .

Before moving on, it is important to remark on the fact that the results in this subsection

are much less special than they seem at first sight. While the algebra used here of course

rests on the specific features of our model, including for instance the linear form of the cost

of cheating, the basic logic behind the arguments generalizes considerably.

In particular, the logic of Proposition 3 relies on the fact that the set of types who cheat

in the two equilibria is different — it is larger in the low trust equilibrium than in the high

trust one. The incentive constraint of O agent in the low trust equilibrium is always going to

entail a comparison with what she can get if the offer is lowered so as to induce a larger set of

types not to cheat — a lower transaction (and hence payoff) with a higher probability (xDLC

above). This lower transaction in general is going to differ from her transaction level in the

high trust equilibrium (xNC above) only because of the effect of higher equilibrium trust, via

the socially determined component of the cost of cheating, but not the idiosyncratic one. The

critical comparison then becomes the one between the payoff to the O agent in the high trust

equilibrium, but multiplied by the probability of not cheating in the low trust equilibrium (p

xNC above), and the deviating payoff (xDLC above). The idiosyncratic component of the cost

of cheating is the same in both cases, while the lower trust level multiplies both components

in the former (as a probability), but only enters the socially determined component of the

cost of cheating in the latter. So long as this is sufficient to establish the analogue of xDLC >

p xNC , the conclusion of Proposition 3 remains valid.

4.3. Trust and Aggregate Transactions

The key result of Subsection 4.2 above is that the level of trust and transaction level x are

negatively correlated in the case of an equilibrium switch.

On the other hand, a recurrent theme in the extant literature (see Subsection 1.2 above)

is that of a positive relationship between trust and income levels and/or growth rates. Does

it then follow that these findings exclude switches across multiple equilibria as the root of

different trust levels in the societies that have been examined?

21The term 1− α is multiplied by p in the case of xD
LC . It is not in the expression for xNC .
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The answer is no. And this is because the transaction level x in our simple model is not

the proper analogue of “GDP.” The analogue of GDP in our simple model is clearly not the

equilibrium level of x (an “intensity” of activity index), but rather the equilibrium level of x

times the probability that no cheating occurs and hence that the surplus from the transaction

does in fact materialize (so, x times an “extensiveness” measure).

Because of the extreme simplicity of our set up, the aggregate level of transactions is

easily computed. In an LC equilibrium it will be the equilibrium value of x times p since a

proportion 1 − p of transactions is cheated on. In an NC equilibrium, since all transactions

produce surplus because no one cheats, the equilibrium value of x is the appropriate measure

of aggregate transactions instead.

Our model predicts that the correlation between equilibrium trust and the aggregate level

of transactions is positive in the case of an equilibrium switch.

Proposition 6. Trust and Aggregate Transactions: Consider the equilibrium switch of Pro-

position 3, for a given parameter quadruple giving rise to the NCLC regime. Then, the

equilibrium aggregate level of transactions is lower in the associated LC equilibrium than in

the associated NC equilibrium.

The proof of Proposition 6 is in the Appendix. As before, simple algebra is sufficient to

formalize the argument.

4.4. Welfare

Despite its simplicity, in our model we can draw a meaningful distinction between “GDP” (the

aggregate level of transactions of Subsection 4.3) and welfare measures. This is because ourR
agents cheat when they find it optimal to do so. Hence, more cheating does not automatically

reduce aggregate welfare in society. A proper piece of welfare calculus is needed to draw a

conclusion.

Of course, welfare comparisons between to societies with different fundamentals which

— among other things — imply a variation in the players’ preferences are not particularly

meaningful. Therefore, we confine ourselves to comparing welfare across the two different

equilibria when the model is in the NCLC regime.

Before proceeding any further we have to be precise about aggregate welfare. As seems

natural in this context, we focus on the utilitarian benchmark. The expected utilities of R
agents are weighted according to the mass of the two types L and H, and then added to the
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(degenerate average) expected utility of O agents. Recall that each transaction of amount x

that is executed without cheating generates a payoff of x for each side; hence a total surplus

of 2x. Each offer x that is cheated upon by the R agent instead produces a payoff of 0 for

the O agent and a payoff of 2x − c (with c the cost of cheating) for the R agent. It follows

easily that aggregate welfare in an NC equilibrium where all O agents offer xNC is equal to

2xNC . In an LC equilibrium the R agents of type L (who have mass 1− p) cheat while those

of type H do not. Hence in an LC equilibrium in which all O agents make an offer of xLC ,

aggregate welfare is equal to p2xLC + (1− p)[2xLC − c(L, p, α)]. Using (9) aggregate welfare

in this case can therefore also be written as 2xLC − (1− p)[αtL + (1− α)p].

The bottom line is that the natural welfare comparison between the high trust NC equi-

librium and the low trust LC equilibrium is in fact ambiguous.

Proposition 7. Aggregate Welfare in the NCLC regime: There exist parameter quadruples

that give rise to the NCLC regime and such that aggregate welfare is larger in the associated

NC equilibrium than in the associated LC equilibrium. There are also parameter quadruples

that give rise to the NCLC regime and such that aggregate welfare is lower in the associated

NC equilibrium than in the associated LC equilibrium.

The Appendix contains a formal proof of Proposition 7. As before, simple formal manipula-

tions are all that is required.

5. Enforcement

As we mentioned already, the component of the cost of cheating c that is socially determined

— via s — can be reinterpreted as arising from an enforcement technology with limited

resources for catching and punishing the R agents who cheat. This is quite different from

the social norm interpretation we gave before, but the formalisms are surprisingly close in

the two cases.

As previously, we seek to proceed in the simplest possible way.

Assume that there is an enforcement agency with resources k ∈ [k, 1].22 The parameter

k pins down the capacity of the enforcement mechanism in the sense that a mass k of R
agents can be checked and fined. Note that, for simplicity, we assume that the enforcement

22We take k to be a number strictly between 0 and 1. The convenience of assuming that k be bounded
away from 0 will be apparent shortly; see footnotes 24 and 27 below.
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is perfectly targeted; no resources are wasted on R agents that do not cheat.23 A mass

min{k, 1− s} of R agents who cheat is randomly caught and fined. A useful analogy is that

of checks for speeding on the highway. Only cars that are actually above the speed limit are

stopped, and when they are stopped they are fined. However, the number of cars that can in

fact be stopped and fined is limited by the capacity of the Police to deploy its patrol cars.

The speeding analogy is also useful to see intuitively how the mechanics of the social feed-

back on the cost of cheating work in this case. Given that the Police have a fixed capacity for

stopping and fining speeding cars, if a large percentage of the cars on the road actually speed

it will be impossible for the Police to stop all of them. Other things equal, the probability of

being caught and fined will be lower when more cars actually speed. Conversely, when very

few cars actually speed, the fixed capacity of the Police will ensure that many of them will

be caught. In fact, once the mass of speeding cars is equal or less than the Police capacity,

the probability of being caught for those speeding will be one.

It is convenient to normalize the size of the fine to be equal to one. The probability of

being caught and fined for an R agent who cheats is then given by

z = min

{
1,

k

1− s

}
(12)

Since the fine is normalized to one, z is also the expected fine, or the expected cost of cheating,

coming from the enforcement mechanism.24

As we did previously, we assume that z is combined in a linear way with a cost of cheating

arising from the R agent’s type.25 We then obtain that the total cost of cheating now is

c(L, s, α) = αtL + (1− α)z and c(H, s, α) = αtH + (1− α)z (13)

The logic of Section 3 applies to this reinterpretation of the model virtually unchanged.

Only NC and LC equilibria are possible. Condition (8) is still necessary and sufficient for an

NC equilibrium to exist.

23Our results easily generalize to the case in which the proportion of enforcement resources that are targeted
towards the mass s of R agents that do not cheat is non-increasing in s.

24Note that since k ≥ k > 0, we get that z = 1 whenever s = 1. See footnote 22 above.
25As before, this is just the simplest way of proceeding. It also yields immediate comparability with the

set up of Subsection 2.1.
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When s = p, we must replace (9) with (13). Hence, condition (10) must be replaced by

p

[
αtH + (1− α) min

{
1,

k

1− p

}]
≥ αtL + (1− α) min

{
1,

k

1− p

}
(14)

which is now necessary and sufficient for an LC equilibrium to exist.

Proposition 1 still holds provided that we replace condition (10) with condition (14).

Note next that if we set k = p(1 − p) the new condition (14) coincides with the old

condition (10). Hence we can also conclude that, at least for an open interval of values of k

around p(1− p), Proposition 2 still holds.

It is then immediate to see that Propositions 3, 4, 5 and 6 are also still valid in this

reinterpretation of the model.

The basic conclusion of Proposition 7 — that the effect of an equilibrium switch on

aggregate welfare is ambiguous — is still valid in the case of enforcement we are considering

here. The details are somewhat different however. The part of the cost of cheating that

corresponds to the fine must now be treated differently from the socially generated cost of

cheating in the social norms version of the model. The fine is a transfer from one agent

to another (from the R agent who cheats to the enforcement agency, whatever shape and

form it might take), and hence washes out of the aggregate welfare calculation, instead of

generating a net decrease in aggregate welfare as in the case of the of social norms version of

the model.26 Hence, it is easy to see that aggregate welfare in an LC equilibrium is given by

2xLC − (1− p)αtL, with xLC now equal to (15) below.

It is interesting to track what happens to the features of an LC equilibrium as k changes.

We begin with the obvious observation that in the model with enforcement in an LC equilib-

rium the transaction level is equal to

αtH + (1− α) min

{
1,

k

1− p

}
(15)

since this is the largest offer that will induce the R agents of type H not to cheat. Hence, as

we track the LC equilibrium, an increase in k guarantees both an increase in the individual

transaction level, and an increase in aggregate transactions since the latter is just equal to

(15) multiplied by p.

26The idiosyncratic part of the cost of cheating obviously remains as before
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At this point, it would be tempting to use the model to investigate what is the optimal

level of resources devoted to enforcement.27 Following standard procedure, the latter would

be determined by comparing the marginal cost of increasing k with its marginal benefit, i.e.

the marginal increase in the aggregate welfare of the LC equilibrium as k raises.28 However,

given the simplicity of our model, it would be hard to specify a sufficiently reliable marginal

cost function for k. Moreover, the measure of aggregate welfare we defined, though consistent

with the model, clearly reflects our extremely stylized approach to the problem. On both

counts, it would be reckless to base detailed policy conclusion on the exercise.

There is however a case in which the conclusion that can be drawn is sufficiently strong

to deserve special attention in our view. This is what we turn to next.

The argument involves again the idea of an equilibrium switch that we discussed above.

Consider a parameter quadruple (α, p, tL, tH) such that condition (8) that guarantees the

existence of an NC equilibrium is satisfied as a strict inequality. Note that this is equivalent

to α(ptH − tL)/(1− α) < 1− p. Hence condition (14) that is necessary and sufficient for an

LC equilibrium to exist is satisfied if and only if k is such that

k ≤ k(α, p, tL, tH) =
α(p tH − tL)

1− α
(16)

Now consider the following policy question. We are given a quadruple (α, p, tL, tH) such

that condition (8) is satisfied strictly. We are also told that society is in the LC equilibrium

and that k is equal (or below and very close) to the threshold level k(α, p, tL, tH) given in

(16). We are also told that the marginal cost of an increase in k is finite. Lastly, we are

in a setting in which the policy-maker is interested in the aggregate transaction level — the

GDP measure of Subsection 4.3 above.29 The question then is whether we recommend a local

policy change — a small increase in k.

The answer must be “yes.” The reason is simply that after the increase in k, condition

(14) will be violated. It then follows that the policy will force an equilibrium switch. The

small increase in k will ensure that society switches from the LC equilibrium to the only

27Note that in an NC equilibrium the question is not a very interesting one. Since s = 1, the enforcement-
generated component of the cost of cheating z in an NC equilibrium is equal to 1. Hence the optimal k is
simply k. See also footnote 22.

28Given (15) and the fact that aggregate welfare is computed as we discussed just above, the marginal
welfare increase is 2(1− α)/(1− p) if k < 1− p and zero if k ≥ 1− p.

29Notice that Proposition 6 still holds in the model with enforcement we are considering here.
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remaining one — namely the NC equilibrium. Since the marginal cost of k is finite, a “small”

increase in k must carry a correspondingly “small” cost. However, by Proposition 6 there

will be a discrete jump up in the aggregate level of activity. Hence the policy change must

be worthwhile.

6. Robustness

Our next goal is to investigate whether the high and low trust equilibria have different ro-

bustness attributes — different degrees of resilience to small changes in the environment in

which they emerge.

There are many ways to proceed, as there are obviously many “robustness tests” that

one might devise. We proceed with the “myopic belief revision” analysis below for at least

three reasons. The first is that in our view it fits well our motivation of investigating the

tension between “trusting beliefs” and “trusting behavior” that we mentioned above in the

introduction to the paper. The second is that it seems more novel in nature than some of the

alternatives — for instance payoff-based adaptive dynamics (we return to this point briefly

below). And last, but certainly not least, is that the analysis can be carried out in a very

simple way.

We return to the social norms version of the model, and, throughout this section, we

assume that the parameter quadruple is one that sustains the NCLC regime, so that both

equilibria are in fact possible. The question is whether one is more “likely” than the other in

some coherent sense of the word.

Imagine that the population of players is divided into two sets. A fraction q ∈ (0, 1) of

the players believes “myopically” that the NC equilibrium prevails.30 A fraction 1−q instead

believes that the LC equilibrium prevails. These subsets are decided before any draws that

determine the players’ O and R roles, or their type H or L. Hence there are fractions q and

1− q of players with these beliefs in each possible role and type. For short, we will say that

a player or an agent “believes NC” or “believes LC,” as appropriate.

The players’ beliefs about which equilibrium prevails affect the socially determined com-

ponent of their cheating cost. The idiosyncratic component is given by their type as before.

Hence the O agents, can be partitioned in four sets: the H types who believe NC, the H

30The reason we call (as is standard) these beliefs “myopic” is that, as will be apparent shortly, they are
not correct.
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types who believe LC, the L types who believe NC and the L types who believe LC. For these

sets, we get the following shares of the population with corresponding cheating costs

Population Share Cheating Cost

q p αtH + 1− α ≡ c1

(1− q) p αtH + (1− α) p ≡ c2

q (1− p) αtL + 1− α ≡ c3

(1− q)(1− p) αtL + (1− α) p ≡ c4

(17)

Since we are in the NCLC regime, (10) must be satisfied. Using this together with tH > tL,

we immediately get that

c1 > c2 > c3 > c4 (18)

Now consider an O agent who believes NC. Given her beliefs, she will find it optimal to

make an offer of xNC = αtL + 1− α, just as in Subsection 3.1 above. Moreover, an O agent

who believes LC, just as in Subsection 3.2 above, will find it optimal to make an offer xLC =

αtH + (1− α) p.

Using (17) and (18) we now can work out the probabilities that each of the offers xNC

and xLC will be cheated on.

Since xNC = c3, the R agents with costs of cheating equal to c1, c2 or c3 will not cheat

upon receiving the offer xNC . On the other hand the R agents with cost of cheating c4 will

find it optimal to cheat on it. In sum, the R agents who believe LC and are of type L will

cheat upon receiving the offer xNC , while the other R agents will not. This pins down the

probability that an O agent who believes NC and hence offers xNC will be cheated on to be

equal to (1− q) (1− p).

Analogously, since xLC = c2, the R agents with costs of cheating equal to c1 or c2 will not

cheat upon receiving the offer xLC . On the other hand the R agents with costs of cheating

equal to c3 or c4 will find it optimal to cheat on it. In sum, the R agents who are of type L,

irrespective of whether they believe NC or LC will cheat upon receiving the offer xLC , while

the other R agents will not. Hence, the probability that an O agent who believes LC and

hence offers xLC will be cheated on is equal to (1− p).

The next step is to compare the actual probabilities that the O agents will be cheated
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with the myopic beliefs we assigned them to begin with. A natural mechanism to imagine

here is that if the former is larger the the latter, then the share of players with the given

myopic belief will go down while it will go up if the reverse is the case. In other words, if the

“empirical frequency” of cheating is different from what players expect, then in the aggregate

the share of the population that holds the given belief will change: it will go down if the

empirical frequency of cheating is larger than what the players expected and it will go up

if it is lower. The details of the adjustment rule are largely unimportant, so long as it is

“monotone” in the sense we have described, but to fix ideas we will postulate a very simple

one.

Start with a proportion q0 of players who believe NC and a corresponding proportion of

players 1 − q0 who believe LC. Time is discrete and runs as 0, 1, . . . , t, . . . with the share of

NC believers at t denoted qt. Now suppose that all the players who believe NC who are in

fact cheated switch their belief to LC. This is an extreme assumption, but, after all, they

expect to be cheated with probability zero, and they are actually cheated by the R agent

they are matched with.31 In this extreme case we get

qt+1 = qt [1 − (1− qt) (1− p)] (19)

From (19) it is immediate that as t becomes large qt converges to zero. Hence, in this

simple case, the fraction of the population of players who believe NC shrinks through time,

approaching zero as t goes to infinity.

Before commenting further on the result, we reiterate that the same will clearly be true for

a very large class of dynamics that are monotone in the difference between what the players

expect (believe NC or believe LC) and the empirical frequency of cheating.

The fact that qt → 0 as t becomes large pins down the NC equilibrium as less robust than

the LC one. To see intuitively the general phenomenon that we are capturing here recall

that, critically, the players beliefs about the behavior of others affect their cost of cheating.

In other words, those players who believe in LC will have a lower cost of cheating than those

who believe in NC. In general, those players who believe in lower trust equilibria will have a

lower cost of cheating than those who believe in higher trust equilibria.

31To see that it is admissible to only consider the switch away from believing NC as driving the dynamics,
recall that the players who believe LC expect to be cheated with probability 1 − p and are in fact cheated
with frequency precisely equal to 1− p.
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Now imagine that we “perturb” a high trust equilibrium by adding a small fraction of

players who believe that society is in a low trust equilibrium. Since the “invaders” have a

lower cost of cheating, they will cheat in situations in which the players who believe in the

high trust equilibrium do not. Hence, the overall frequency of cheating in society will go up.

Under “monotonic” belief dynamics, the population share of players who believe in the low

trust equilibrium will go up. This will set off another round of increase in cheating, and so

on.

The case of a low trust equilibrium being perturbed with an invasion by a small mass of

players who believe in a high trust equilibrium is a very different one. Notice that in this

case the proportion of R agents who cheat upon receiving the offer xLC (made by those O
agents who believe LC) does not depend on q — the fraction of players who believe NC. The

reason is that in the LC equilibrium the offer xLC — as is familiar by now — is the largest

offer that keeps the R agents of type H from cheating, given that they believe LC. Switching

some R agents of type H to believe in NC, will raise their cost of cheating, and hence will

not introduce any new cheaters. After the “invasion” by a small population of agents who

believe NC, the empirical frequency of cheating will remain unchanged, since the empirical

frequency of being cheated still equals the one expected by the O agents.

Before moving on, we mention briefly another robustness exercise that we do not report in

any detail for reasons of space, but which also points in the direction of high trust equilibria

being less robust than low trust ones. The idea is to start again with some players who

myopically believe NC and some others who myopically believe LC, but to base the dynamics

of their respective shares of the population on the expected payoffs that accrue to each

combination of type (H or L) and myopic belief.32 In this case too, the results point in

the direction of low trust equilibria being more robust than low trust ones. Intuitively, the

players who believe LC have, other things equal, lower cheating costs and this gives them an

advantage in the payoff based dynamics over the players who believe NC.

32There is a vast literature on learning/evolutionary game theory that concerns dynamics related to the
ones we are sketching out here, and is also related to our previous exercise. This is clearly not the place
to even attempt a survey, but we refer the interested reader to the two monographs by Weibull (1995) and
Samuelson (1997) and the many references cited there.
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7. Summary and Conclusions

Our main purpose was to explore the tension between trusting beliefs and consequent trusting

behavior, and the incentives to cheat by requiring that the level of trust in society be the

fraction of transactions that are not cheated upon in equilibrium.

Our results demonstrate that a simple social feed-back mechanism is sufficient to generate

a rich pattern of possible equilibria that shed light on the issue of equilibrium trust. We set

up a simple static model in which one side of a transaction can cheat and walk away with

the entire surplus, but must suffer a cost of cheating with a socially generated as well as

an idiosyncratic component. The socially generated component captures the idea that social

norms will make it more costly to cheat when a smaller fraction of the population engages in

cheating behavior.

Our findings point to the fact that there are two main possible sources of differences in

trust levels across societies. One is the multiplicity of equilibria, that can arise for given fun-

damental parameters. The other is a difference in the fundamental parameters themselves.

Surprisingly, the two regimes are empirically partially identifiable in general, and fully iden-

tifiable under some further restrictions. The key variable to identification is the equilibrium

size of individual transactions, which must be negatively correlated with the equilibrium level

of trust when the source of different trust levels are multiple equilibria.

The positive relationship between trust and aggregate income levels (our static model has

little to say about growth of course) that has been claimed in the literature is not negated

by the negative correlation associated with a switch across multiple equilibria. The reason is

that, in this case, when individual transaction levels go down, the frequency of transactions

increases.

Interestingly, since our agents cheat if and only if they find it optimal to do so, the

relationship between aggregate income and aggregate welfare is not unambiguous in our

model. As society switches across multiple equilibria with high and low trust, aggregate

welfare could go up as well as down.

Our model can also be reinterpreted as one with standard selfish preferences, in which

an enforcement agency uses limited resources to catch and punish those agents who cheat.

Because of the limited resources devoted to enforcement, when the fraction of agents who

cheat is higher, it is less likely that cheating agents are caught. This produces a social feed-

back mechanism that is the same as the one in the social norms case, and hence all the same
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results are valid in this reinterpretation of the model.

Finally, we report explicitly on one robustness exercise which indicates that high-trust

equilibria are more vulnerable than low-trust ones. Introducing a small fraction of agents

who believe in the low-trust equilibrium in a population of agents who believe and play

according to the high-trust one can destroy the high-trust equilibrium. The reason is that

the invaders have a lower cost of cheating precisely they believe in the low-trust equilibrium

— a less demanding social norm. This pushes up the fraction of transactions that are cheated

on, which in turn causes the agents who believe in the high-trust equilibrium to revise down

their beliefs.

Appendix

Proof of Proposition 1: To see that the equilibrium set is always not empty, suppose first that

tL ≥ p tH (A.1)

In this case, inequality (8) is clearly satisfied and hence an NC equilibrium exists. Next, suppose that (A.1)
is violated. Then the middle term of (11) is positive. Since the first term in (11) is positive and strictly less
than the third term in (11), one or both of the inequalities in (11) must be satisfied. Since the first inequality
in (11) is the same as (10) and the second is the same as (8), we must have that either an LC or an NC or
both equilibria exist. Hence the equilibrium set is always not empty.

To see that only the three NCU LCU and LCNC regimes are possible, we only need to argue that there
are no equilibria other than the LC and the NC ones.

As we noted in the text, the solution to (4) consistent with Assumption 1 is unique and can only take
the values x = c(L, s, α) or x = c(H, s, α). Together with (6), this is sufficient to prove the claim.

Proof of Proposition 2: We have already noted that the first inequality in (11) is the same as (10) and
the second is the same as (8).

Hence, any parameter quadruple such that

α (ptH − tL) < (1− α) p (1− p) (A.2)

must yield the NCU regime. Hence the set of parameter quadruples that yield the NCU regime must contain
an open set.

Moreover, any parameter quadruple such that

(1− α) (1− p) < α (ptH − tL) (A.3)

must yield the LCU regime. Hence the set of parameter quadruples that yield the LCU regime must contain
an open set.

Lastly, clearly

(1− α) p (1− p) < (1− α) (1− p) (A.4)



Luca Anderlini and Daniele Terlizzese 29

and hence for an open set of parameter quadruples we can be sure that

(1− α) p (1− p) < α (ptH − tL) < (1− α) (1− p) (A.5)

Therefore, we can be sure that the set of parameter quadruples that yield the NCLC regime also contains an
open set.

Proof of Proposition 3: By assumption, the given parameter quadruple supports the NCLC regime.
Hence, (11) must be satisfied. The level of individual transactions in the NC equilibrium is αtL + 1 − α,
while in the LC equilibrium it is αtH + (1− α) p. Hence it suffices to show that (11) implies

α tL + 1 − α < αtH + (1 − α) p (A.6)

Consider the first inequality in (11). Divide both sides by p and rearrange to obtain

α tL
p

+ 1 − α ≤ α tH + (1 − α) p (A.7)

which, given that 0 < p < 1 immediately yields (A.6).

Lemma A.1: Fix any arbitrary x ∈ (0, 1). Then there exist parameter quadruples that satisfy (8). This
ensures that an NC equilibrium exists, and such that the individual transaction level in the associated NC
equilibrium (given by xNC = αtL + 1− α) is in fact equal to the arbitrarily given x.

Proof: The claim is obvious by inspection of (8). Simply fix α and tL so as to ensure that xNC = x, as
required. Then fix an arbitrary xH ∈ (xL, 1), and finally pick p suitably small so that (8) is satisfied.

Lemma A.2: Fix any arbitrary x ∈ (0, 1). Then there exists parameter quadruples that satisfy (10). This
ensures that an LC equilibrium exists, and such that the individual transaction level in the associated LC
equilibrium (given by xLC = αtH + (1− α)p) is in fact equal to the arbitrarily given x.

Proof: The claim is obvious by inspection of (10). One way to see this is to observe that we can pick α and
p arbitrarily close to 1, and ensure that xLC = x as required by choosing the appropriate level of tH . Picking
xL sufficiently small is then sufficient to ensure that (10) is met.

Proof of Proposition 4: To avoid ambiguity we will refer to the first second, third and fourth paragraphs
of the statement of Proposition 4 as A, B, C, and D respectively.

A is an immediate consequence of Lemma A.2. B and C are immediate consequences of Lemma A.1.

To prove D, proceed as follows. Let an arbitrary parameter quadruple (α, p, tL, tH) such that (10) is
satisfied and let the individual transaction level in the associated LC equilibrium be xLC = αtH + (1− α)p.

We need to show that we can find two parameter quadruples as follows. A quadruple (α′, p′, t′L, t
′
H) such

that (10) is satisfied, p′ > p and x′LC = α′t′H + (1−α′)p′ < xLC , and finally a quadruple (α′′, p′′, t′′L, t
′′
H) such

that (10) is satisfied, p′′ < p and x′′LC = α′′t′′H + (1− α′′)p′′ > xLC .

To construct (α′, p′, t′L, t
′
H) starting from (α, p, tL, tH) we can increase p by a small amount ε > 0, while

decreasing tH by a small amount 2ε(1−α)/α, so that overall individual transaction level decreases as required.
If we then decrease tL by the same amount as tH , it is immediate that the new quadruple (α′, p′, t′L, t

′
H) must

in fact satisfy (10), as required.

To construct (α′′, p′′, t′′L, t
′
H ′) starting from (α, p, tL, tH), we can decrease p by an an arbitrarily small

amount ε > 0, and set t′′H arbitrarily close to 1. By inspection, for ε sufficiently small and t′′H sufficiently
close to 1, the individual transaction level will increase and (10) will be satisfied, as required.
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Proof of Proposition 5: In the low trust equilibrium the individual transaction level is αtH + (1 − α)p.
In the high trust equilibrium the individual transaction level is αtH + (1−α)p. The claim is then immediate
from the fact that p > p.

Proof of Proposition 6: Since the parameter quadruple gives rise to the NCLC regime, (11) must hold.
The second inequality in (11), together with the fact that p < 1 immediately gives that

p [α tH + (1 − α) p] < α tL + 1 − α (A.8)

Recall that xLC = αtH + (1−α)p and xNC = αtL + 1−α, and that the aggregate transaction levels in
the LC and NC equilibria are p xLC and xNC respectively. Hence (A.8) proves the claim.

Proof of Proposition 7: Aggregate welfare in the NC equilibrium is given by

WNC = 2 (α tL + 1 − α) (A.9)

while aggregate welfare in the LC equilibrium is given by

WLC = 2 [α tH + (1 − α) p] − (1 − p) [α tL + (1 − α) p] (A.10)

Since the parameter quadruples we are concerned with all give rise to the NCLC regime, (11) must hold.

Notice next that, provided that tH and tL are suitably close to each other, (11) is compatible with
quadruples that have a value of p arbitrarily close to 1. By inspection of (A.9) and (A.10) in this case we
must have that WLC > WNC .

It remains to show that for some parameter quadruples that satisfy (11) we can have that WNC > WLC .
Notice that, again provided that tH and tL are suitably close to each other, (11) is compatible with quadruples
that have a value of p arbitrarily close to 0. By inspection of (A.9) and (A.10) in this case we must have that
WNC > WLC .
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