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Biologists and economists have analyzed populations where each individual 
interacts with randomly selected individuals. The random matching generates a 
very complicated stochastic system. Consequently biologists and economists have 
approximated such a system with a deterministic system. The justitication for such 
an approximation is that the population is assumed to be very large and thus some 
law of large numbers must hold. This paper gives a characterization of random 
matching schemes for countably infinite populations. In particular this paper shows 
that there exists a random matching scheme such that the stochastic system and the 
deterministic system are the same. Journal of Economic Literature Classification 
Numbers: 026, 213. 161 1992 Academic Press, Inc. 

1. INTRODUCTION 

There is a large literature in economics, evolutionary biology, and 
population genetics that studies dynamical systems with individuals 
randomly matched in pairs, although the particular way in which people 
are matched is left unspecified. In this paper we describe ways of matching 
individuals and the properties of such matching schemes. We first give 
some examples in economics and biology where random matching occurs. 

Gale [13] considers a market that contains a large number of 
individuals who meet randomly in pairs. Agents are characterized by their 
history, which includes the initial endowments and utility function. When 
individuals meet, they bargain over the terms of trade. Gale assumes that 
the matching scheme is such that the probability with which an individual 
meets an individual with a particular history equals the proportion of the 
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population with that particular history. Furthermore, Gale assumes that 
the distribution of histories does not depend on which individuals were 
matched in the previous periods. Gale goes on to characterize the 
equilibrium strategies. 

Fudenberg and Levine [lo] examine a model where there are n popula- 
tions; each population consists of m different types, where each type is 
defined by a belief over which strategy the other individuals adopt. The 
proportion of population i that is of type j is denoted by pii. Every period 
each player from a population i is randomly and independently matched 
with one individual from every other population i’ (i’ # i). Fudenberg and 
Levine assume that the probability with which a player meets a player from 
population i’ and of type j is pi?. The randomly matched individuals play 
a game selecting strategies according to their beliefs and updating their 
beliefs according to the observed strategy choices of the other players. 
Fudenberg and Levine go on to characterize the steady states of this 
dynamic system. 

These models are very similar to the models that have been studied 
extensively in population genetics. ’ In a common formulation of these 
models, the phenotype (e.g., eye color) is determined by the action of two 
genes at one locus. Genes are assumed to be of two types (alleles): A, and 
A,. Individuals are of three types (genotypes): A,A,, A,A,, and A,A,. 
When two individuals mate they each produce gametes (reproductive cells). 
Gametes receive one of the parent’s genes. An offspring is produced by the 
union of a gamete from each parent. When two individuals of types au’ and 
bb’ mate they produce offspring of type ab, ab’, a’b, and a’b’ with equal 
probability. Another assumption describes which individuals mate. 
“Matings take place at random with respect to the genetic differences being 
considered and in a population of infinite size” [4, p. 451. All individuals 
mate at the same time and then are completely replaced by their offspring. 
Thus the dynamics of the process depends on the random matching of 
individuals and the random selection of genotypes for the offspring. 
Suppose there is a large population and the initial relative frequency of 
alleles A, and A, in the population is p1 and pz (pl +p2 = 1). Then the 
Hardy-Weinberg theorem states that in the next period the relative 
frequency of the genotypes A,A,, A,A,, A,A, is respectively p:, 2p,p,, 
and pi. This theorem is “proved” (just as in the original papers by Hardy 
[ 163 and Weinberg [31]) by computing the expected proportion with 
which each of the matches occurs. No explicit modeling of the matching 
scheme and no derivation of a law of large numbers is given. Furthermore 
there seems to be some confusion in the literature about whether the 

’ This similarity is one of the reasons for the large literature on the application of 
evolutionary biology to game theory. See [ 1, 2, 5, 6,9. 11,22, 281. 
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population needs to be infinite or very large. Feller [S, p. 1353 writes: “In 
a large population the actually observed frequencies of the three genotypes 
in the filial generation will be close to the theoretical probabilities.” And in 
a footnote at the end of this sentence: “The statement is made precise by 
the law of large numbers and the central limit theorem, which permits us 
to estimate the effect of chance fluctuations.” Hofbauer and Sigmund [ 171 
write: “A few more premises were used implicitly in the derivation. For 
instance we equated “frequency” with “probability.” This is admissible in 
the limiting case of very large populations” [page 91. The model just 
described is generalized to the case where genotypes differ in fitness (the 
expected number of offspring) and thus where the number of a particular 
allele changes with time. 

Thus, underlying the models by Fudenberg and Levine as well as the 
biological models is the conjecture that if the population is very large 
(possibly infinite) there exists a matching scheme such that the proportion 
of matches involving individuals of two particular types is equal to the 
expected number of such matches when all matches are equally likely. In 
the model by Fudenberg and Levine and in the biological models, the 
matching scheme is implemented repeatedly and each individual’s type is 
allowed to change between periods. Then the individuals follow a 
stochastic process governed by the way types are updated and by the 
matching rule. Again, the models are analyzed as deterministic systems. 
The law of motion is computed by assuming that in every period the set 
of individuals adopting the same strategy is matched with the population 
average. Thus there is an implicit conjecture that if the population is large 
enough, there exists a matching rule that matches individuals in every 
period in such a way that the deterministic process provides a good 
description of the stochastic process. 

This paper proves that there is a random matching rule such that the 
deterministic process is equivalent to the stochastic process when 
individuals are represented by the set of natural numbers. Thus this paper 
answers the following questions that are usually left unanswered in the 
literature: How is the population characterized? What is the structure of 
the matching process? How are types assigned to individuals? What do we 
mean by each subpopulation facing the distribution of types equal to the 
population distribution? How do we characterize the evolution of the 
population from the random matching scheme? 

The problem analyzed in this paper is similar to the problem of whether 
idiosyncratic risk disappears in large populations. If the population is taken 
to be the natural numbers and individuals’ risk are i.i.d., then the popula- 
tion as a whole does not face idiosyncratic risk. Feldman and Gilles [7] 
and Judd [ 181 point out that this result does not necessarily extend to the 
case where the population is taken to be the unit interval. Let Xi be the risk 
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faced by individual i and let X= (Xi)is rO,,, be a collection of i.i.d. random 
variables that have finite mean and finite variance. Then it can be shown 
[19, p. lo] that there does not exist a measurable process equivalent 
to X, and thus the integral of X does not converge (almost surely) to its 
expectation. * 

The discussion of the risk problems leads us to think that analyzing ran- 
dom matching in a countable population is easier than analyzing random 
matching when the population is the unit interval. Furthermore, in the 
models of risk analyzed, the event that individual i is in an accident does 
not affect the probability that individualj is in an accident, while in match- 
ing models, if individual i is matched to individual i, then individual i has 
to be matched to individual i. Thus, the problem of randomly matching 
individuals seems harder than the problem of randomly assigning accidents 
to individuals. Consequently, it seems more likely that useful results can be 
generated in the countable population model than in the continuum 
population model. 

Section 2 gives an example of how the dynamics for a very large popula- 
tion differs from the dynamics for an infinite population. Section 3 
describes the problem of finding a matching technology for infinite popula- 
tions such that all matches are equally likely. Section 4 describes the main 
results of this paper. Section 5 proves the first conjecture; i.e., that there is 
a matching scheme such that a law of large numbers holds. Sections 6, 7, 
8.3 prove the second conjecture; i.e., that there exists a random matching 
scheme such that the law of large numbers holds when individuals are 
matched infinitely many times. Section 8.2 proves that the deterministic 
process provides a good approximation for the evolution of a finite (but 
large enough) population, for a finite number of periods. 

2. MATCHES OVER VERY LARGE POPULATIONS 

A natural argument for supporting the conjecture in the introduction is 
the following: if the population is of size n then the probability that the 
matching rule does not behave as its expectation is q(n). By the law of large 
numbers q(n) can be made arbitrarily small by taking n large. In other 
words for large populations the conjecture is approximately correct. As we 
will see in Section 8.2 this argument can be formalized if the matching 
scheme occurs finitely many times. In many cases analyzed in the literature, 
however, the matching scheme analyzed occurs infinitely many times, and 
it is thus possible that the small perturbations that occur in each period 

2 However we can get &-convergence (see Uhlig [29]). Another way around the problem 
is to index individuals by elements of an abstract nonatomic probability space (see Green 
Cl51). 
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alter the process significantly in the limit. We construct an example where 
this problem actually occurs. The example is taken from evolutionary 
biology because (i) such models are very important in evolutionary 
biology, (ii) several economists have applied evolutionary models to game 
theory, and (iii) the mathematics in this example are very tractable. 

Suppose that there is a population consisting of 3M individuals, where 
M is an even number. Individuals have a very simple life: an individual 
born at time t interacts with one randomly selected individual, then at time 
t + 1 gives birth to new individuals and dies. The matching scheme is left 
unspecified but we assume that the same random matching scheme is used 
in each period and that in each period all matches can occur with positive 
probability. 3 Individuals are of three different types: sl, s2, s3. If an 
individual of type s, interacts with an individual of type s, then the 
$,-individual has urr, offspring while the s,-individual has aar offspring. All 
offspring are of the same type as the parent. Suppose that the matrix 
A = (a,,.) is as follows: 

1 2 0 
A= 0 1 2. 

i 1 2 0 1 

First note that the population size stays constant: if individuals of type 
s, and s,. meet they will have together 2 = uUw + a,,, offspring and thus keep 
the population size constant. Note also that, because of the 0 entry in the 
matrix A, at any period t, there is a positive probability that one of the 
types disappears, which we denote by q:. For any population distribution 
among types (M,, M,, M,), where M, + M, + M, = 3M, there exists a set 
of matches for which one of the types totally disappears. Since all matches 
are possible these matches will have positive probability. Denote the 
probability that one type disappears when the population distribution is 
(Mt, MzT M3) by qM,.M2.M,. Let 

qe = min 
iMl+Mz+M,=3M} 

qM,.Mz,M,. 

Then, for all t, q:aqp>O. 
Note that if a type disappears, it never comes back. Consequently, if the 

matching scheme is repeated infinitely often, the probability that at least 
one of the three types will disappear is at least 

1- lim (1 -qe)‘= 1. 
, - ,m 

3 One way of describing the random matching scheme is to think of individuals as being 
drawn successively (without replacement) from an urn. The first and second individuals drawn 
are matched together, the third and fourth individuals drawn are matched together, and so 
on. 
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Let B, be the set of events for which one of the types disappears by time 
t. From the previous remarks {B,} is an increasing sequence and 
lim,,, P(B,) = 1; therefore one of the types disappears in finite time. It is 
easy to see that if type s, disappears, then the population will converge to 
a population composed uniquely of individuals of type s, + I Cmod 3) (almost 
surely). Therefore the population will converge to one of the vertices of the 
simplex in finite time (almost surely). Since this result is true irrespective of 
the population size 3M, it will also be true as M tends to infinity. 

In evolutionary biology the evolution for the population is approximated 
by the replicator model. The replicator model assumes that a proportion 
2p,p, of the matches are between individuals of type s, and s,, where pc 
is the proportion of the population of type s,. Then the proportion of the 
population of type i at time f+ 1 is related to the population at time t in 
the following way: 

p;’ ’ = R,(p’) = p: c, P:ar” 

c, cm. PtaWP:, 

Biologists are interested in the behavior of the system as times goes to 
infinity (see [21]). We already know the limit behavior of the stochastic 
process for the matrix considered above. Next we characterize the 
dynamics of the replicator model for the same matrix. We are particularly 
interested in whether the replicator model gives a good approximation of 
the evolution of a large population. First suppose that the initial popula- 
tion is composed of a third of each type. Then the population will remain 
at the barycenter, contrary to the behavior of the stochastic process. The 
next proposition (which is proven in the Appendix) characterizes the 
limiting population when the system does not start at the barycenter. 

PROPOSITION 1. Suppose the initial population is in the interior of the 
simplex and is not at the barycenter. Then the set of accumulation points of 
the trajectory is a subset of the boundary which contains the vertices and 
infinitely many points. 

Thus for any period T, there is a period t > T such that p’ is far removed 
from any of the vertices, and we conclude that the deterministic 
approximation does not give a very good approximation of the stochastic 
process. 

In most of the literature, the evolution of the population is studied 
through a continuous approximation of (1). Since 
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it is claimed that the discrete process can be replaced by 
equation, 
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the differential 

dp,- 
dt - pr 

( 
C pvarc -C C puavw.pw. 
L t’ II > 

(see for instance [30]). For the matrix considered above, it can be shown 
(see [32]) that the trajectories of the continuous approximation are simple 
closed curves going through the initial population. The behavior of the 
continuous approximation is thus different from the stochastic process and 
the discrete deterministic process. 

3. MATCHES OVER COUNTABLY INFINITE NUMBER OF AGENTS 

This section introduces the notation that will be used in this paper and 
discusses the problems of finding a random matching scheme for an infinite 
population. We assume that the population is countably infinite and is 
denoted by 

N= { 1, 2, . . . . n, . ..}. 

Each individual is matched anonymously to exactly one other individual. 
There are m types of individuals. We keep the terminology vague so that 
the discussion applies to economics (where types are beliefs, preferences, or 
endowments), evolutionary biology (where types are strategies), and to 
population genetics (where types are genotypes or alleles). The set of types 
is denoted by S, where 

s= {Sl) . ..) s,}. 

For convenience we represent the set of types by the standard basis for R”; 
i.e., s, is the m dimensional vector with a one on the rth component and 
zeros on the other components. Let a: N + S be such that 

li-mli+,i a(i)=p. 
z=l 

If a(i) = s, then individual i is of type s,. The uth component of the vector 
p, p”, represents the proportion of the population of type s,. We assume 
throughout that the initial population of type s,, pr, is positive. 
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Let ,Z be the set of all possible pairwise matchings; i.e., 

C = { 0: N + N 1~7 is bijective and for all i, a’(i) = i and cr(i) # i}. 4 

A few remarks on the conditions that characterize C. The first condition 
says that each individual is matched exactly once. The second condition 
says that “if John is matched with Paul then Paul is matched with John.” 
The third condition states that an individual cannot be matched to himself. 
A random matching scheme is then a probability space (C, 9, P), where 9 
is a a-algebra of subsets of C and P is a countably additive probability 
measure. 

We first show that there does not exist a probability space (C, 8, P) 
such that for all distinct players i, j, kE N, the event that player i is 
matched with player j and the event that player i is matched with player 
k are equally likely. Suppose that (Z, F, P) is such a probability space. 
Denote the probability that player i is matched with player j by 

In order for qj to be well defined we need to assume that for all individuals 
i,jEN, 

{aEZIa(i)=j}EK (2) 

Suppose that for i # j, qj = q > 0. Note that since each individual is 
matched once, the sets { ~7 E C 1 a(i) = j} and { cr EC 1 o(i) = k} are disjoint. 
Thus 

P(o(i) E N) = P ( LJ m=i) 
/~N\fil 

=jEg(,) P(~(i)=~~=,s~l,i 4= 00. 

This clearly contradicts the definition of a probability. Alternatively, if 
q = 0 then P(a(i) E N) = 0 which is not consistent with the fact that 
individual i is matched once. 

4 The use of the symbol, 0, in this paper follows Algebra, where a permutation is denoted 
by o. Gilboa and Matsui [14] use a much bigger matching space when examining the 
problem of matching two different populations. They detine the set of matchings to be 6’ 
where 

Q={o:N+[O, l)xNxN}. 

The interpretation is as follows. There are a countable number of matches labeled 
w(l), w(2), .,. A match o(k) = (t, i, j) consists of individuals i and j being matched at time r. 
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Clearly the assumption in Eq. (2) and the assumption that all matches 
are equally likely lead to this contradiction. In order to weaken the set of 
measurable sets we need to find another way to express the idea that all 
matches are equally likely. Alternatively, we can relax the assumption that 
all matches are equally likely. 

4. SUMMARY OF RESULTS 

4.1. A Characterization of Random Matching Schemes 

There are live conditions on the random matching scheme (C, 9, P) that 
we consider. Condition I states that for all individual i, j, k, the probability 
with which individual i is matched with individual j equals the probability 
with which individual i is matched with individual k. Condition II states 
that the probability with which individual i is matched with an individual 
of type s, equals the proportion of the population of type s,, pr. Condition 
III states that, with probability 1 and for Y # u, the proportion of the 
population of type s, that is matched with an individual of type s, equals 
2p,p,. ’ Condition IV, which is implied by condition III, states that for any 
E > 0 and for any 6 >O, if the population is large enough then with 
probability greater than 1 - 6 the proportion of the population of type s, 
that is matched with an individual of type s, is within E of p,pu. Condition V 
states that the random matching scheme does not depend on the 
individuals’ types. Formally, 

I. For all iEN,j, keN\i, P[a(i)=j]=P[a(i)=k]. 

II. For all iEN, S,E S, P[a(a(i)) =s,] = p,. 

III. (SLLN) For all r # v, (l/n) C:=, a,(i) cc,(a(i)) converges almost 
surely to p,p,.’ 

IV. (WLLN) For all r#o, (l/n)Cycl x,(i) cl,(a(i)) converges in 
probability to pr p,. 

V. The random matching scheme (C, F-, P) does not depend on the 
assignment of types CI. 

We showed in the previous section that condition I cannot be satisfied. 
Are there matching schemes that satisfy the remaining conditions, or at 
least a subset of those? 

’ The “2” is missing from condition III because the expression is asymmetric in r and u. 
6 Note that since the probability is countable additive, if condition I holds, this condition 

can be replaced by the condition that the random variables {a(cr(i))} are indepeildent. This 

is not true if the probability measure is only finitely additive (see [25]). 

64257’2.IS 
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PROPOSITION 2. There exists a matching scheme for which Condition II 
and Condition ZZZ are satisfied. 

This proposition corresponds to Theorem 3 in Section 5. The random 
matching scheme works as follows. (i) Each individual rolls an m-sided dice 
where the probability that the outcome is s, is p,. (ii) Suppose the nth 
individual is of type s, and rolls an s,, where r # u. Suppose there exists an 
individual in the population ( 1, . . . . n - 1 } who is of type s,, has rolled an 
s,, and has yet to be paired. If there are several individuals that satisfy 
these conditions, pick the individual represented by the lowest integer and 
match this individual to n. (iii) Suppose the nth individual is of type s, and 
rolls an s,. Then if there exists another individual of type s,, who has rolled 
an s, and who is not paired yet, match this individual to n. Figure 1 gives 
an example of how the random matching works. Clearly, this matching 
process satisfies condition II. By the strong law of large numbers the 
matching rule satisfies condition III. 

PROPOSITION 3. There exists a matching scheme for which condition IV 
and condition V are satisfied. 

This proposition corresponds to Corollary 2 in Section 8. The random 
matching scheme described in this theorem works as follows. We put the 
first 2 individuals in the first urn, the next 4 individuals in the second urn, 
the next 18 individuals in the third urn, and so on. Specifically, let k(n) be 
the number of individuals in the kth urn, where k( 1) = 2, 4(n) = Cr= 1 k(i), 
and k(n) = n#(n - 1). The random matching is generated by drawing 
individuals, pairwise and without replacement, from each urn. Figure 2 
gives an example of how the random matching works. 

For large enough urns the law of large numbers will hold. But the urns 
were formed such that just about all individuals would be placed in a large 
enough urn. Thus the law of large numbers holds for the set of individuals 
as a whole. 

PROPOSITION 4. There are no matching schemes for which condition II 
and condition V hold. 

FIG. 1. Illustration of the random matching scheme constructed in Proposition 1. 
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FIG. 2. Illustration of the random matching scheme constructed in Proposition 2. 

Proof Suppose condition II holds. Let 

a”(i) = 
i 

s2 if i<n 

a(i) if i>n. 

Let 

F”= {a~C~c+(l))=~~} 

= (~~C[3i>n such that a(i)=sl and a(l)=i). 

Clearly, F’ 2 F= 1 . . . 3 F” 2 . . and P(fi, Fn) = 0. Then, since 
lim, + m P( F”) = P(lim, _ m F”), for n large enough, P(F”) < pr. Contra- 
diction. 1 

Note that the existence of a matching scheme can be thought of as a 
mechanism design problem. Proposition 4 can then be interpreted as the 
impossibility of designing a “fair” mechanism if the designer does not know 
the type of all individuals. Gilboa and Matsui [ 143 are able to prove the 
existence of a finitely additive random matching scheme that satisfies 
condition I. However, countable additivity seems necessary for establishing 
condition III and condition IV. 

4.2. A Characterization of Repeated Random Matching Schemes for Infinite 
Populations 

Let A be the set of assignments of types in the population that have a 
Cesaro average; i.e., 

aESNInlirnm (l/n) i (‘) a I exists and is strictly positive 
i=l 

Let r: S x S + S be the updating rule; i.e., an individual of type s, who is 
matched with an individual of type s, becomes a type z(s,, s,). A repeated 
random matching scheme is described by a probability space 
(C” x A”, Y, Prob). 

Let a’(i) denote the type of individual i at time t. If TV’ E A, then p’ 
denotes the Cesaro average of a’. There are three conditions on the 
repeated random matching scheme (Cc0 x A”, 9, Prob) that we consider. 
Condition A below requires that individual i’s type at time t, m’(i), depends 
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on the type of the individual in the previous period, a’- l(i), and the type 
of the individual that was matched with individual i at time t - 1, 
a’- ‘(a’- l(i)). C on itton B requires that the probability with which d’ . 
individual i is matched with an individual of type s,, at time t, is P:. Condi- 
tion C states that, with probability 1 and for r # u, the proportion of the 
population of type s, that is matched with an individual of type s, equals 
2pfp:, for every period t. Formally, 

A. There exists a measurable set G E 3 such that Prob(G) = 1 and for 
all sequences ((a’, g’)} EG, cc’(i)=z[a’+‘(i), a’-‘(a’-‘(i))]. 

B. For all i, s,, t, u’EA, Prob[cr’(a’(i)) =s,Icl’] = p:. 

C. There exists a measurable set G E 9 such that Prob(G) = 1 and for 
all {(a!, o’)} EG, for all r # u, for all t, lim,,,, (l/n) Cr=, a:(i) a:(a’(i))= 

P:P:,. 

The next proposition is a generalization of Proposition 2. 

PROPOSITION 5. There exists a dynamical random matching scheme such 
that conditions A, B, and C hold. 

This proposition corresponds to Theorem 5 in Section 7. At each period 
we use the random matching scheme defined in Proposition 1: since there 
are a countable number of periods it seems clear that Proposition 1 should 
imply Proposition 4. The difftculty resides in defining the probability 
space. ’ The basic steps in the proof are the following: (i) For each a E A the 
matching scheme is defined as in the proof of Proposition 1. (ii) Next we 
define a matching scheme for all aESN\A, (Z, Fa2;,, P,), such that 
(L’, 9*, P,) is measurable with respect to all a E SN. The crucial result 
used to accomplish this is the Kuratowski-Ryll-Nordziewski Theorem. 
(iii) Then we use the Ionescu Tulcea theorem to define a probability space 
over Z‘” x (SN)co. (iv) The rest of the proof consists of restricting the 
probability space to C” x A”. 

4.3. A Characterization of Repeated Random Matching Schemes for Finite 
Populations 

If the population size is N, denote the population by P(N) = { 1, . . . . N}, 
and let C, be the set of all possible matches, where 

Z,= {u: P(N)+ P(N)/ 0 is bijective and for all i, o*(i) =-i 
and a(i) # i}. 

‘This is similar to the fact that it is much simpler to prove the law of large numbers for 
coin tosses (just use Chebychev’s inequality) than proving that the coin tosses come from a 
well defined probability space (where we use Kolmogorov’s extension theorem). 
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Let P, be the probability measure over EN such that all matches are 
equally likely; i.e., 

IMI ME2zN, P,(M)=- 
ICNI. 

Note that the matching scheme (C,, 2tN, P,,,) satisfies condition I and 
condition V. For any T> 0, define the T-repeated random matching 
scheme (Z’, 2xT, P’), where 2”r is the product a-algebra and PC is the 
product measure. 

PROPOSITION 6. Fix a time period T and consider the stochastic process 
generated by the law of motion z and the random matching scheme 
VT, 2 “T, P’). Then, for N large enough (where N depends upon T), the 
process can be approximated by the deterministic process which is computed 
by taking the expected outcomes in each period. 

This proposition is proved in Section 8.2. 

5. CONSTRUCTION OF A PROBABILITY SPACE OVER MATCHES 

In this section we construct a probability space over the set of matches 
by considering the events: “the set of matches such that individual i is 
matched with an individual of type s,.” Let SN be “the set of realizations 
of matching types;” i.e., if x E SN, then x(i) is the type of i’s match. We first 
define a probability space over SN by requiring that the probability with 
which an individual is matched with an individual of a particular type is 
equal to the proportion of the population of that type. Then we show that 
this probability space induces a probability space over matches, 
(,X,92, Pz).’ This probability space is the (Pz) unique probability space 
for which the probability with which an individual is matched to an 
individual of a particular type is equal to the population average. For this 
probability space each event, “individual i is matched with individual j,” is 
not measurable. If we let these events be measurable, as in the probability 
space (Z, 9:, Pi), then these events are not equally likely, although all 
individuals have the same probability of being matched with an individual 
of type s, (for all s, E S). 

We consider each element in SN as the realization of an infinite sequence 
of i.i.d. random variables where the probability that x(i) equals s, is pv. If 
m = 6 and pO = l/6 (for v = 1, . . . . 6) we can think of x as the outcome from 
rolling a dice infinitely many times. Let (,SN, $3, cl) be the probability space 

8 Thus calling elements in SN “ realizations of matching type” is justified since they can be 
derived from a random matching scheme. 
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we just described where ~?4 is the o-algebra generated by the finite dimen- 
sional rectangles, and p is the extension of the probability over the finite 
dimensional rectangles. 9 For all types s,. let Z,(U) c N be the subset of the 
population of type 3,; i.e., 

Z,(a)= (i~NIa(i)=s,}. 

Note that each set Z,(x) is infinite. Let X,,(a) c SN be the set of realiza- 
tions of the matching process such that the proportion of individuals that 
are of type r and are matched with individuals of type u is p,pC; i.e., 

X,,(a)= xESN/Jimx (l/T) i q(i)x,(i)=p,p, 
i i=l I 

Then by the strong law of large numbers, p(X,,(cr)) = 1. ‘* Let X, be the set 
of realizations of the matching process such that for all s,, s, E S, the 
proportion of individuals that are of type Y and are matched with 
individuals of type u is p,p” ; i.e., X, = fir n, X,, (GI). Note that since X, is 
the finite intersection of sets of measure one, p(X,) = 1. 

For all x E X, and for all types s,, s,, let A:, be the set of players of type 
s, that are matched with an individual of type s,; i.e., 

AzL,- {ieNIa(i)=s,,x(i)=s,}. 

Note that each of the sets A;” has countably infinite many elements and 
thus can be enumerated as 

A$ = (up”(l), a;$), ... ), 

9 Formally, a finite dimensional rectangle is a set of the form 

B= jxeXJxiEB, for all i in J} 

where J is a finite subset of N and for all i in J, B, is a subset of S. Let 

Let 9 be the u-algebra generated by the fmite dimensional rectangles. Proposition V.1.2 in 
[23] shows that there exists a probability over (S N, 99) such that for all J-dimensional 
rectangles, B, p(B) = p,(B). 

lo Let X-=x (i) x,(i). Then, {X,} is a sequence of independent random variables with finite 
variance, ,‘,. Fkthermore, xF=, (o,/i2) < co, and thus by the Kolmogorov’s law of large num- 
bers (see for instance [27, Theorem 6, p. 60]), lim,, ~ (l/7) CT=, X, = p,p#. (almost surely). 
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where a:,(i) < &(i + 1). For any two different types s, and S, let 

if i is odd, 
if i is even; 

a~(afo(i)) = azr(i), 

Clearly if x E X,, then 0: E C. 

if r # u. 

Let cr,: X, -+ Z be such that a,(x) = a:. The function (T, is injective since 
a~cT;=x. 

Next we construct two different probability spaces for matches. In the 
first probability space the events “individual i is matched with individual j” 
and “individual i is matched with individual k” are not equally likely. The 
second probability space is the coarsest for which each subpopulation I,(E) 
is matched with the population average. Note that for this second proba- 
bility space the event “individual i is matched with individual j” are not 
measurable. i ’ 

Since (T, is injective, by identifying x and a: we can construct a probabil- 
ity over .E‘, = g,(X,). Formally, let FE be the a-algebra generated by 
a,(B’n X,) and let P, = ~00; I. Then, (C,, 3$, P,) is a probability space. 

We can extend this probability over all 2 by letting 9: be the a-algebra 
generated by 55* and Z\C, and letting Pi(A) = P,(A n C,). 

THEOREM 1 (C, PA, Pi) is a probability space for which the event 
{(T E C 1 a(i) = j} is measurable. 

Proof Let By be the event “i is the nth player of type a(i) who is 
matched with an individual of type a(j).” Let N,.= (k<i)a(k)=a(i)}. 
Then 

B:‘= u (x E SN 1 x(i) = a(j), Vk’ E N’, x(k’) = a(j), 
(N’cN,IIN’I=,1} 

and Vk”E N,\N’, x(k”) #a(j)}. 

Thus By is the finite union of rectangles and is thus measurable. Similarly, 
let By be the event ‘j is the nth player of type a(j) who is matched with 
an individual of type a(i).” Clearly, BJ’ is measurable. Let B” = BP n B,’ and 
let B= Un<min(i,jb B”. Clearly, B” is measurable and x E B if and only if 
6, (x)(i) = j. Therefore, 

o,(B)= {aECIo(i)=j)EFA, 

and thus the event that individual i is matched with individual j is 
measurable. 1 

” Recall that in Section 3 we showed that for a probability space over ,r either the events 
“individual i is matched with individual j” are not measurable or they are not equally likely, 
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The random matching scheme (Z, .9”f, Pi) has the property that an 
individual, i, is more likely to meet an individual j, when this individual is 
nearby (i.e., 1 i - jl small), and less likely to meet an individual, j, when this 
individual is far away (i.e., [i-j1 big). We define a random matching 
scheme, (& k a, a , o-’ P*) that does not have this property and such that Pz 
and PL agree on 9:. In order to do this, let 4,: C -+ SN be defined by 
4, (cr) = CI 0 c and let Y, = 4, (Z). Finally, let (SN, B’, p’) be the completion 
of the space (SN, 9?, ,B). 

LEMMA 1. A’, c Y,. Consequently, p’( Y,) = 1. 

Proof Let x E A’(U). Then a,(x) EC and bM(a,(x)) = x. Therefore, 
x E Y(E). Consequently, $( Y,) = 1 since A’, c Y, and $(X,) = 1. 1 

The probability measure $ is restricted over Y, by setting 

z?i9’,=sYn Y,, py(A)=p’(An Y,). 

Let 5: be the a-algebra on C generated by b;‘(W,) and let Pz = ,u,,o ba. 

THEOREM 2. (C, F,‘, Pi) is a probability space. 

Proof Follows from the previous lemma, the fact that p(X,) = 1, and 
Proposition 2.12 (p. 21) in [3]. 

For either probability space we have thus proven the following theorem. 

THEOREM 3. Let Z,(a) be the subset of the population of type s,. Suppose 
that the proportion of the population of type s, is p”. Suppose that people are 
matched at random according to the matching rule (Z; pa, P,). Then the 
proportion of the population Z,(a) that is matched with an individual of type 
s, is pv (almost surely). 

6. EXTENSION OF THE PROBABILITY OF THE 
REALIZATIONS OF MATCHES 

In the previous section we defined a probability over the set of realiza- 
tions of the matching process. In order to do that we had to assume that 
the assignment of types, u, was such that the Cesaro average converges; i.e., 
u E A where 

T  

A = a E SN I !i, f .c a(i) exists and is strictly positive 
r=l 
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In this section we dispence with this assumption; i.e., we define a probabil- 
ity over the realization of matches for all a E SN. This is done by means of 
a measurable extension of the averaging which we denote by g. 

In order to prove the existence of a measurable extension we need both 
a topological and a measurable structure for SN. The space SN is endowed 
with the product topology; this makes SN a complete, separable, metric 
space I2 and (SN, 28) a measurable space where g is the Bore1 o-algebra. 

Let G: SN -+ R” be such that for all tl~ SN, G(a) is the set of cluster 
points of a; i.e., 

Tn 
such that ,,l\rnm $ ,C u(i) = a 

n1=1 

Note that since ((l,/T)~iT_, a(i))... is an infinite sequence belonging to 
the m-dimensional simplex it has a convergent subsequence and thus G(a) 
is nonempty. 

LEMMA 2. The correspondence G is closed-valued and measurable. 

Proof. Fix a E SN, let {am}, be such that am E G(a) and am + a. For all 
m E N, let { Tr}” be such that 

For each m EN, let n(m) be such that 

II 
+ TfJ’u(i)-tzmil < l/m 

n(m) i=l 

and n(m) > n(m - 1). 

Then it is each to check that lim,, cu (l/T” ) CUT) u(i) = a. Therefore, n(m) 1 
a E G(M) and G(a) is closed. 

Let Fc R” be closed. Then, 

G-‘(F)= {o&~~IG(Lx)~F#~~/) 

= ct~S~(3{T,,}, such thatnl\mW$,2a(i)EF 
“r=l 

I2 One possible metric is d, where for all a, p E SN, 

d(a, B)= c la(i)-H4l 

,EN 2’(1 + la(i)--B(4) 
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and 

aER”‘I!lbEFsuch that Ilrr-hli<k 

Since for all T and n, F,, E g’, G- ‘(F) E ?8 and G is measurable. 1 

LEMMA 3. The correspondence G has a measurable selection g. 

Proof: The Kuratowski-Ryll-Nordziewski Theorem (see for instance 
Theorem 14.2.1 in [20]) states that any closed-valued B-measurable 
correspondence into a complete separable metric space has a g-measurable 
selection. Thus the result follows from Lemma 2. 1 

Note that for all a E A, g(a) = lim., a (l/T) C,‘_ i tx(i) and thus g is the 
extension we are looking for. 

Let B be a finite measurable rectangle in SN; i.e., 

B = {x E SN 1 x(i) E Bi for all i in J}, 

where JC N is a finite set and for all i in J, Bjc S. Then let p(c(, B) be the 
probability that if the type of each individual is given by a, then for all i E .I, 
individual i is matched with an individual of type B,; i.e., 

Aa, B) = n ( c n,(a)). 
icJ SE 6, 

The function ~(cY,. ) can clearly be extended so that (SN, a, ~(cc,. )) is a 
probability space. 

LEMMA 4. The function p is a stochastic kernel. 

Proof In order to check the measurability of ,u( ., B) it is sufficient to 
consider the case where B is a finite dimensional rectangle [23, p. 751. For 
this case, p( . , B) is clearly a continuous function of g(a). Therefore, 
pL( ., B) is a measurable function. 1 

7. REPEATED MATCHING SCHEME 

In this section we define the notation to describe a population which is 
matched inlinitely many times, and in which after each period individuals’ 
type may change. We extend the results of Section 5 for this context. Note 
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that even if we start with an assignment of types in the population that has 
a Cesaro average, the updating of individuals’ types can be such that the 
new assignment of types does not have a Cesaro average. In the previous 
section we showed that we could define a random matching scheme for this 
case. In this section we show that the random matching scheme is such that 
in every period the assignment of types has a Cesaro average (almost 
surely). 

Let T: S x S-, S be such that if at time t an individual of type s,, is 
matched with an individual of type s,. then at time t + 1 the individual is 
of type T(L ~1. I3 In order to g uarantee that no type disappears 
immediately we assume that for all types s, there exist types s, and s,, 
(where r, u, w  can be equal) such that T(s,, s,.) = S,E S. Let 
t:SNxSN+SN be such that for all in N, x, c1 E SN, 

t(x, Lx)(i) = T(tx(i), x(i)). I4 

If at time t individual i is of type a(i) and is matched with an individual 
of type x(i) then, at time t + 1, individual i’s type is ~(GI, x)(i). For all 
XESN and for ail CI E SN, the functions t:SNx{x)+.sN and 
t: {a} x SN + SN are continuous I5 (and thus measurable) and hence 
jointly measurable. I6 

I3 Note that this law of motion includes the one considered in Section 2, where 

T(S,, S,) = 
SC if n,,.#O 

Sk if a,, =O. 

The results in this paper show that if the population is countably intinite then Eq. (1) 
describes the behavior of the process (almost surely). 

A more general model would allow for a stochastic law of motion; i.e., 

where r is measurable and (S, Y(S)) and ([0, I], &I( [0, I])) are measurable spaces (where 
B(S) is the power set and &I(S) is the Bore1 o-algebra). The map becomes stochastic after we 
deline a probability over the measurable space ([0, I], @( [0, 11)). 

I4 If T is stochastic then t: SN x SN x [O. llN -+ A is such that for all in N, X, CLE SN, 

5E10, IIN. 

t(x, a, t)(i) = da(i), x(i), 5J 

Is Suppose a” + a and let m > 0. Then there exists an N such that for all n > N and for all 
i < m, a”(i) = a(i). Thus for all n > N and for all i< m, t(a”, x)(i) = [(a, x)(i). Therefore, 
r(a”, x) ---t t(a, x) and f( ., x) is continuous. The same proof shows that t(a, .) is continuous. 

i6The proof that the continuity of each section implies joint measurability is in the 
Appendix. 
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Let Z=SNxSN and let V=W@9?. Let Q:Zx%+[O, l] be such that 
for all (c(, X) E Z and ail (B, B’) E V, 

Q((u, xl, (B, B’)) = xe(f(a, x)) pL(f(a, xl, B’). ” 

Q((M, x), (a’, x’)) is the probability that if at time t the population has 
types assigned by c1 and is matched according to x, then at time t + 1 the 
population has types assigned by U’ and is matched according to x’. 

LEMMA 5. The function Q is a transition probability, i.e., for each C E g, 
Q( ., C) is measurable and for each z E Z, Q(z,.) is a probability measure. 

Proof. Fix z E Z. Then Q(z, .) is the product of two probability 
measures and is thus a probability. Fix C = (B, B’) E V. Note that Q( ., C) 
is the product of two measurable functions of t and that t is a measurable 
function of z. Therefore, Q( ., C) is a measurable function. 1 

The Ionescu-Tulcea theorem (see for instance [ 23, Proposition V. 1.11) 
states that if { (E,, 9J} is an infinite sequence of measurable spaces and if 
P~G;~ is a transition probability defined with respect to the spaces 

( 

I I 
X Es, 0 E and (E,+l,%+lh 
s = 0 s=O > 

then there exists a unique probability, P,,, on 

whose value for every measurable rectangle Xf= i I;, XF! T+, ES is given by 

. . . I P~.-T~l(xO...xT~,;dxT). 
FT 

Let Z=XnsN Z and S??= BnsN W. Then the Ionescu-Tulcea theorem in 
conjunction with Lemma 5 gives the following result. 

I’ For the case where r is stochastic let Iz be the Lebesgue space over [0, llN. For all 
a, x E SN, let P.,~ be the probability measure on (SN, $3’) defined by 

Then, 

Q((u, XL (B, B’)) = j/U, B’) dp,.(r). 



DYNAMICAL SYSTEMS AND RANDOM MATCHING 493 

- - 
THEOREM 4. There is a unique probability Q, over (Z, W) such that for 

every finite dimensional rectangle, C’, x . . . x C,X,“, J+ , SN, 

Just as in section Section 5, let X, be the set of realizations of the 
matching rule such that each subpopulation is matched with the 
population average. By the results in Section 5, for all c1 E A, ~(cl, X,) = 1. 

LEMMA 6. The correspondence X: A + SN is measurable and closed 
valued. 

Proof: The proof is exactly the same as the proof of Lemma 2. 1 

LEMMA 7. The graph of X is measurable. 

Proof. The graph of a closed measurable function is measurable (see 
[20, Proposition 13.2.2 and Proposition 13.2.4]), thus this result follows 
directly from Lemma 6. 1 

THEOREM 5. Suppose that the initial population’s types are described by 
Q E A and the population is matched according to x0 E X,,. Then at every 
period the assignment of types has a Cesaro average and each subpopulation 
is matched with the population average (almost surely). 

Proof Let C = graph X and let z E C. Clearly, x,,;,(t(z)) = 1 and by the 
results in Section 4, u(t(z), A’,,=,)= 1. Then since t(z)E A we get that 
(t(z), X1,=)) E graph X and thus, 

Qk Cl 2 Qk (t(z), x,c,,)) = x,Jt(z)) At(z), J’t(.-J = 1. I8 

Since for all z E C, Q(z, C) = 1, then for all JE N, 

a,[ cx..-xc i z 
n=J+l 1 

= =Q( 
5 

zo, z,; dz,)... 
I Q(zJ- 1, zJ; dz,)= 1. 1 

C 

‘s In order to prove that Q(z, C) = 1 we had to show that C was measurable. An alternative 
way of proving the same results is to show that the set C is fhick (i.e., A EV, 
An C= 0=+ P(A) =0) and thus &x, C)= 1, where 0 is the extension of Q over the trace 
o-algebra U(U) such that &A n C) = Q(A) (see [26, p. 15, Theorem 51). 
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Since in each period each subpopulation is matched with the population 
average, given an initial population, a, we can compute the distribution of 
types at any given period t, g’(a). Specifically, by letting 

and we define recursively g’(a) by 

g’(a) = g’-‘k’(a)). 

Next we want to show that the probability Qz, is generated by some 
probability space over the set of matches. 

Let 4: ,EN x AN + Z be such that 

4(fa,), {a,))= {(aio~i, aJ1. 

- -, Let Y= &C” x AN) and let (Z, %’ , Q’) be the completion of the space 
- -, (Z, V, &). Using the same arguments as in Lemma 1 we can show that 

graph Xc Y and thus Q’(Y) = 1. The probability Q’ is restricted over Y by 
setting 

%y=%n Y and QdC)= Q’(Cn Y). 

Let B be the o-algebra generated by qf~ - ‘(%?r) and let P = Q ,,n 4. Using 
the same argument as in Section 4 we get the following result. 

THEOREM 6. (LNxA N, F P) is a probability space. , 

In many applications we will not be interested in the actual matches but 
only in the evolution of the population. Let v: SN x B + [0, l] be such that 
for all aeSN and BECS, 

v(a, B) = Aa, t;‘(B)). 

For all a, a’ E SN, v(a, a’) is the probability that if at time t the popula- 
tion’s types are described by a, then at time t + 1 the population’s types are 
assigned by a’. Futia [ 12, Theorem 6.21 proves the following result. 

LEMMA 8. The function v is a transition probability; i.e., for each BE C-k?, 
v( ‘, B) is measurable and for each a E SN, v(a, .) is a probability. 

Let S=XnEN SN and B= ansN 93’. Then, the Ionescu-Tulcea theorem 
gives the following result. 
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THEOREM 7. There is a unique probability 5, on (3, a) such that for 
every finite dimensional rectangle, B, x . . x B, Xnms J + , SN, 

FE0 
[ 

B,x ... xB, i SN 
fl=J+ I 1 

=j v(ao,a,;da,)... I “(a,- I, ccJ; da,). 

BI BJ 

COROLLARY 1. Zfcq,EA then v,,[A”]= 1. 

Proof Follows since we showed in Section 4 that v(c(,,, A) = 1. 1 

8. MATCHING SCHEMES THAT Do NOT DEPEND 
ON INDIVIDUAL'S TYPES 

Suppose there are finitely many individuals. We represent individuals as 
balls, where the color of the ball represents the type of the individual. The 
random matching scheme is given by drawing balls from an urn, two at a 
time and without replacement. In the first subsection we prove that if the 
urn is large, the probability with which the pairings behave according to 
expectation is high. In the second subsection and the third subsection we 
use this result to characterize a random matching scheme for finite and 
infinite populations. 

8.1. Some Urn Results 

An urn contains R red balls and B blue balls. 2b balls are drawn in pairs 
from the urn without replacement (where 2b < R + B). Let Z, be the ran- 
dom variable which equals 1 if the jth pair drawn is {red, red} and equals 
0 otherwise. Let X be the random variable that denotes the number of 
{red, red) pairs drawn; i.e., 

x= i I,. 
/=I 

Then the expected value of X, E(X), is computed by using the 
exchangeability of the random variable I,. 

E(X)= 2 P[jth pair is {red, red}] 
j= 1 

= bP[lst pair is {red, red}] 

R =b- R-l 
R+BR+B-1’ 
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Next we compute the variance of X, V(X). 

E(X(X- l))= E c rizi 
( ) if ; 

= i;j P[ith pair is {red, red} and jth pair is {red, red}] 

=b(b- l)P[lst pair is {red, red} 

and 2 nd pair is {red, red} ] 

=b(b- l)R 
R-l R-2 R-3 

R+BR+B-1R+B-2R+B-3’ 

(First equality: definition of expectation; second equality: algebra; third 
equality: exchangeability.) Then, 

V(X) = [E(X2) -E(X)] + E(X) - [E(X)]‘. 

Let N be the total number of balls and let R = pN, B = (1 - p) N. Let 
2bN be the number of balls drawn when there are N balls in the urn. Let 
XN be the random variable which denotes the number of {red, redjpairs 
drawn when there are N balls in the urn and 2bN balls are drawn. Let N 
be very large so that the terms (N-l), (N-2), . . . . (pN-3) can be 
approximated by, respectively, N, N, . . . . pN. Then, 

+ bN(zW2 (bN12 @NJ4 
N2 - N4 1 

=$[(b”-1)p4+p2-bNp4] 

=&?(l-p2). 

By Chebychev’s inequality, for all t > 0, 
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Suppose bN + co as N + co. Then, ( l/bN) XN converges in probability to 
p*. Similarly the proportion of {blue, blue} pairs converges in probability 
to (1 - p)* and the proportion of {blue, red} pairs converges in probability 
to Zp( 1 - p). Suppose an urn contains balls of type si, . . . . s, in proportion 
PIT . . . . p,. If we label the balls of type s, “red,” by the above result we get 
that the frequence of {s,, s,} pairs approaches pp. If we label the balls of 
type s, and s, “red,” the frequency of pairs is,, s,}, (s,, s,}, (s,, s,} 
approaches (p, + p,)‘. Since we know that the frequency of {s,, s,} and 
{s,, s,} pairs approaches pf + pi, then the frequency of pairs (s,, s,} must 
approach 2p, A. 

PROPOSITION 7. As the size of the urn goes to infinity the proportion of 
(s,, s,) pairs converges in probability to 2p,p,. 

8.2. A Matching Scheme for Finite Populations and Finite Number of 
Periods 

A justification of the analysis of the deterministic model for a finite 
population is that the modeler is just interested in examining the law of 
motion for a finite number of periods, T, and that for a large enough 
population the deterministic model is a good approximation of the 
stochastic model. This section proves this conjecture. 

Let p: be the expected proportion of individuals of type s, at time t. The 
initial proportion p” is given while the other proportions are computed by 
assuming that each type is matched with the population average. If the 
population size is N, the population is denoted by P(N), where 
P(N) = { 1, . . . . N}. For any period t = 1, . . . . T, let ~1’: P(N) -+ S denote the 
assignment of types in the population. The initial population a0 is given 
while the populations in the other periods are obtained by the law of 
motion r (which is described in Section 7) and the matching rule. The 
matching scheme is the following: individuals are represented by balls in 
an urn which are drawn pairwise without replacement. Individuals 
drawn simultaneously are matched to one another. As usual a match is 
represented by 0. 

THEOREM 8. Consider the random matching scheme we just defined. Then 
for any T > 0, E > 0 and for any 6 > 0 there exists a positive integer N’ such 
that for all population sizes N > N’ and all types s, the following hoUs: with 
probability greater than 1 - 6, the proportion of the population P(N) of type 
s, at time T, (l/N) xi”=, a:(i), is within E of pr. 

Proof: The idea behind the proof is the following. We find a lower 
bound for the proportion of the population which is matched according to 
the population average in every period (with probability 1 - v). The lower 

642,‘57,2-I6 
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bound and 1 - v can be made arbitrarily close to 1 by taking the popula- 
tion to be large enough. This allows us to find a subpopulation which 
behaves exactly according to the deterministic model. Again the proportion 
of the population in this subpopulation can be made arbitrarily close to 
one by taking the population to be large enough. 

Fix T>O, s>O, and 6>0. Let t>O be such that (1 -(.s/5))T> l-s, let 
v be such that (1 -v)‘> l-6, let p = min,,,. TPb, and let N be greater 
than N’ where 

N, = TC’m(m - 1) 
26E2p4 _ 

From the results in the previous subsection we know that 

p 
(I 

Let t = (2&/t) p2 and replace N by its lower bound (for the moment we do 
not bother with the term (1 - (E/[))~- ’ in N). Then 

p 
(I 

P”PP$ c 
IE P(N) 

%(i)%(O(i)) +’ d v  
I ) m(m- 1)’ 

Consequently, 

P max p”pz-i C 
( I r, 0 lEP(N) 

a,(i)a,(f~(i)) >i_p’ <v. 
I > 

Some more algebraic manipulations give 

p maxI~~~~-(lIN)Ci,P(N)a,(i)a”(~(i))l<~ ,1-v. 

r, ” Pr PC > 5 ’ 

Thus there exists a subpopulation, P,, such that for all r and o, 

PPP~= 1 a,(i) a,(a(i)) 
is PI 

and ) P, 1 2 (1 - (s/t)) N. Since subpopulation P, is matched according to 
expectations, after the updating of types, the distributions of individuals in 
population P, is given by p’. Note also that since N’ has a term (1 - (&/r)) 
which we did not use in computing bounds, population P, is large enough 
to get exactly the same bounds we computed above. Thus, with probability 
greater than 1 -v, there is a subpopulation P, of population P, such that 
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individuals are matched according to the population average, and 
lP,l > (1 -(E/O) IPll > (1 - hw’ N. 

Consequently, with probability greater than (1 - v)~ > 1 - 6, the propor- 
tion of individuals matched according to the correct proportions is 
(1 - (E/{))~> 1 - E, which gives the desired result. 1 

8.3. A Matching Scheme for Infinite Populations 

Let k, 4: N + N be defined recursively by k( 1) = 2, 4(n) = Cr=, k(i), and 
k(n) = mj(n - 1). For all i E N, let 

U, = {4(n - I), i(n - 1) + 1, . . . . 4(n)}; 

D, = {d: U, -+ U, 1 d is bijective and for all i E N, 

d(i) # i and d’(i) = i}. 

(Here U stands for “urn,” D stands for “draws,” k(n) is the number of 
individuals in urn n, d(n) is the number of individuals in all the urns up to 
urn n.) Let 53” = 2O’ and for all D E 9,,, let 

Clearly, (Di, gi, Pi) is a probability space. Let D= X,zi D,, let 
$3 = 02 I g;, and let P= I’Jz 1 Pi. Then by the definition of product 
probability, (D, 9, P) is a probability space. Let de D; then d(i) = j stands 
for “individual i is matched with individual j.” P(d) denotes the probability 
with which the match d occurs. 

Let S= {sr, . . . . s,} where we identify S, with the m dimensional vector 
with 1 on the rth component and 0 on the other components. Let a: N -+ S 
be such that lim ,,,+ m (l/N) C,“_, cc(i) = p. Note that in the limit, the 
average type in an urn is the same as in the population at large; i.e., 

lim 1 2 u(i)=p. 
n - 10 k(n) ie Z/(H) 

By the result in Section 8.1 (where bN G N), 

(Vk>O) lim P 
n-m [I 

~i~F,..,r.(i)4(n(i))-p:l>k]=0. 

Let &l(n) = max{ ie N I&i) <n}. Note that by the construction of U(n) 
and the results in the previous section that 
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iim E 
n-m 

k ,i a,(i)~I~(a(i)) 
r=l 1 

:P 7. a,(i) 4(@(i)) = lim f 
n + c0 Ln ie U(Fl(n)) 

+’ i a,(i) 4(4i)) 
n. I=(c&‘(n))+l 1 

= lim W4-'(n)) p2+n-B(dp'b))-1 2 r P, n n-cc n 

=P 
2 
r. 

Furthermore, since the draws in 
in other urns, 

one urn are independent from the draws 

a,(i) 4(di)) 

+1 f: a,(i) 4(44) n. 
r=qq+-‘(n))+l 1 

= lim n-m k(l!l(n)) y4Jny P,2(1- Pf) 

1 
+ 

n-‘&#-‘(n)) - 1 * 

n-4(&‘(n))- 1 n Pf(l- P3 

= 0. 

Thus by Chebychev’s inequality we get the following theorem. 

THEOREM 9. (l/n) XI= 1 a,(i) &(a( i)) converges in probability to p:. 

By the same reasoning than the one in the last paragraph of Section 9.1 
we get the following corollary. 

COROLLARY 2. (l/n)C;=r ff,(i)d,(a(i)) converges in probability to p,pV. 

9. CONCLUSION 

Biologists and economists have analyzed populations where each 
individual interacts with randomly selected individuals. The random 
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matching generates a very complicated stochastic system. Consequently 
biologists and economists have approximated such a system with a deter- 
ministic system. The justification for such an approximation is that the 
population is assumed to be very large and thus some law of large numbers 
must hold. In the paper we give an example for which this assumption does 
not hold. This does not mean that this kind of approximation may never 
hold, but that the correctness of the approximation depends on properties 
of the law of motion. 

This paper gives a characterization of random matching schemes for 
countably infinite populations. In particular this paper shows that there 
exists a random matching scheme such that the stochastic system and the 
deterministic system are the same. Economists and biologists have assumed 
that the probability with which an individual is matched with a particular 
subpopulation equals the proportion of the population in that subpopula- 
tion. This paper shows that, for a countable population, this is possible 
only if the random matching scheme depends on the assignment of types in 
the population. 

The problem described in the previous paragraph arises only if we are 
interested in infinite populations. If we examine the behavior of the process 
for finitely many periods, we conclude that if the population is large 
enough, then there is a matching scheme such that the deterministic pro- 
cess provides a good approximation of the stochastic process. In proving 
this result, we provide an upper bound on deviation (Eq. (3)) which should 
be useful in a variety of applications (in simulations of neural networks, for 
instance). However, if we consider the case of finite populations and an 
infinite number of periods we may run into problems as was shown in 
Section 2. 

APPENDIX 

The following lemmas prove Proposition 1. Let A = {p E R: 1 p, + p2 + 
p3=l},&l={ P~Alp,P,p,=O},~,=(1,0,O),u*=(0,1,O),~,=(0,0,1). 
Let pO E A \aA be the initial population, let p’ = R’p’, and let o be the set 
of accumulation points of the orbit {p’}. 

LEMMA 9. The set of accumulation points is a subset of the boundary. 

Proof. Suppose p is an accumulation point which is not on the bound- 
ary of the simplex; i.e., p~co\aA. Weising [32] proves that the function 
W(p) = (l/p, p2p3) is strictly increasing along any trajectory. Thus all con- 
vergent subsequences must converge to a point on the set L c W -‘( W(p)). 
Note that by the properties of limit sets R(L) = L but that for each 
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YE R(L) and ZE L, we have W(y) > W(z), which is clearly a contra- 
diction. m 

LEMMA 10. The set of accumulation points includes the three vertices. 

Proof Since A is compact, the set of accumulation points, o, is 
nonempty. 

We first show that the set of accumulation points includes at least one 
vertex. Suppose p is a limit point (thus a point on a boundary) which is 
not a vertex and let the subsequence {t,,] be such that lim,, o. p’” = p. 
Without loss of generality suppose that p E {YE A 1 y, = 0). Note that 
lim, + m R”(p) = v2. Thus the subsequence (p’n’“} is such that 
lim,, 3? ~‘n+~= v2. 

Note that if p is such that p l = 0 and p2 p3 > 0, then for any E > 0 there 
is a large enough N such that IpN - v31 <E. Since R” is continuous, if pf is 
close enough to p then Ip’ + N - v3( < E. Consequently vj is an accumulation 
point. Similarly we can show that v1 E o. 1 

LEMMA 11. The set of accumulation points is infinite. 

Proof. Let B(u,, E) be the open ball of radius E around vi; i.e., B(u,, E) = 
{PEAI IP-vii <E}. S ince R is continuous and R(ui) = v,, there exists a 
scalar .s>O such that if i#j then R(B(v,, &))nB(vj, &)=a. Since the ver- 
tices are accumulation points of the trajectory {p’}, then P’E B(vi, E) for 
infinitely many integers t. Thus for infinitely many t, ~‘EZE A\ui B(vi, E). 
Since the set Z is compact, there exists a subsequence converging to p E I. 
Thus p E o\ui vi. Then for all t, R*p E o and for all t #s, R’p # R”p (since 
W is strictly increasing on R’p). 1 

The following theorem is used in Section 7. 

THEOREM 10. Let (X, 99) be a measure space where X is a separable 
complete metric and ~43 is the Bore1 u-algebra. Let f: Xx X -+ X be such that 
for all x E X, f: {x} x X + X and f: Xx {x} -+ X are continuous. Then f is 
measurable. 

Proof Since X is a separable metric space, the Bore1 a-algebra @ has 
a denumerable subfamily, 9 generating 33 (see for instance [24, 
Theorem 1.81). Let 

LS= {D,, . . . . D,, . . . . }. 

Let 

F”={F,nF,n ... nF,,Iwhere Fi=Dior Fi=X\Di} 

= {F;, . . . . F”,,,,, > 
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Note that 9” is a partition of X and that Yn c 93’. For all i and n choose 
y; such that y: E Fy. Finally, let 

m(n) 
f,(x, Yf = 1 fc? Yl) xxx Fy. 

r=l 

Note that the continuity off: Xx {c} -+ X easily implies the continuity of 
the function g: Xx A’-+ X, where g(x, y) =f(x, c). Thus fn(x, y) is a 
measurable function. Fix YEX and for all 12 let i(n) be such that YE F:,,,. 
Note that F:(,, c F$yi ,) and that Fyc,, 1 { y >. Then, 

lim fn(x, Y) = lim f(4 y&J =fk h-t Y:&,) =.0x, y). 
n - ‘02 n- xc n-x 

The function f is hence the pointwise limit of a sequence of measurable 
functions and is thus measurable. 1 
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