Estática comparativa y previsión perfecta en economías con horizonte infinito

Timothy J. Kehoe y David K. Levine*
Clare College, Cambridge
y Universidad de California, Los Ángeles

¿Tendrá una economía de intercambio puro con un horizonte temporal infinito un equilibrio de previsión perfecta determinado? Cuando hay un número finito de agentes de vida infinita los equilibrios están genéricamente determinados. Esto no es verdadero con generaciones sucesivas de agentes de vida finita. Nos preguntamos si las condiciones iniciales junto con los requerimientos de convergencia hacia un estado localmente estacionario determinan una zenda de precios de equilibrio. En este marco hay muchas economías con equilibrios aislados, muchas con un continuo de equilibrios y muchas sin ningún equilibrio. Con dos o más bienes en cada periodo no sólo el nivel de precios puede estar indeterminado sino que también los precios relativos. Además, tal indeterminación puede ocurrir con o sin dinero fiduciario y con equilibrios que sean o no eficientes en el sentido de Pareto.

1. Introducción

Este artículo considera si las economías con horizonte infinito tienen equilibrios de previsión perfecta determinados. Esta pregunta es de crucial importancia. Si en su lugar, los equilibrios estuvieran localmente indeterminados, no sólo no podríamos hacer predicciones de estática comparativa, si no que los agentes en el modelo no podrían determinar las consecuencias de shocks no anticipados. La idea fundamental de previsión perfecta es que las expectativas de los agentes deberían coincidir con la verdadera sucesión futura predicha por el modelo, si el modelo no hace predicciones determinadas, el concepto de previsión perfecta no tiene significado alguno.

Consideraremos dos casos extremos: el primero con un número finito de consumidores con vida infinita y el segundo con un número infinito de consumidores con vida finita, esto es, un modelo de generaciones sucesivas. En ambos modelos consideramos economías estacionarias de intercambio puro. No consideramos producción, ni almacenamiento de bienes entre periodos. Estos modelos no son realistas pero son los más factibles de estudiar. Extensión de los resultados de este artículo a modelos con producción, activos perdurables.

* Agradecemos a David Hackus, Drew Fudenberg, John Geanakoplos, J. S. Jordán, Andreu Mas-Colell, James Mirrless, Herbert Scarf, y los participantes en los seminarios en MIT, UC Berkeley, UC San Diego, UCLA, McMaster University, el Federal Reserve Bank de Minneapolis, la conferencia NBER de Equilibrio General, Northwestern University, marzo de 1982, y los encuentros de la Sociedad Econométrica Latinoamericana. Ciudad de México, julio de 1985 por los útiles comentarios y sugerencias.

infinitamente, y combinaciones de los dos tipos de consumidores son tratados por Muller y Woodford [29].

Cuando hay un número finito de consumidores de vida infinita, argumentamos que los equilibrios están generalmente determinados. Esto es debido a que el número efectivo de ecuaciones que determinan el equilibrio no es infinito, sino que es igual al número de agentes menos uno y debe determinar la utilidad marginal de la renta para todos los agentes excepto uno. En general, cerca de un equilibrio, esas ecuaciones son independientes y determinan exactamente las incógnitas.

Cuando hay infinitas generaciones sucesivas, este razonamiento no funciona: no necesariamente un número infinito de ecuaciones es suficiente para determinar un número infinito de incógnitas. Consideraremos si las condiciones iniciales junto con los requerimientos de convergencia cerca de un estado localmente estacionario determinan una senda de precios de equilibrio. Permitiremos dos tipos alternativos de condiciones iniciales. En el primer tipo la generación de viejos en el periodo inicial tendrá derechos nominales sobre las dotaciones de la generación joven. En el segundo tipo la generación vieja tendrá derechos reales. En la terminología de Samuelson [31], la primera situación es con dinero fiduciario y la segunda es sin dinero fiduciario. Este artículo proporciona un catálogo de ejemplos, todos robustos, de indeterminaciones e inestabilidades que pueden ocurrir cerca del estado estacionario con ambos tipos de condiciones: en ambos casos hay muchas economías con equilibrios aislados, muchas con un continuo de equilibrios y muchas sin equilibrios. Con dos o más bienes en cada periodo, no sólo el nivel de precios puede estar indeterminado sino también los precios relativos. Es interesante notar que la indeterminación tiene poco que ver con la eficiencia en el sentido de Pareto: los equilibrios pueden estar determinados o indeterminados sin importar si son eficientes o no en el sentido de Pareto.

También consideraremos un experimento conceptual alternativo en el cual los agentes usan una regla de pronóstico que sólo depende de los precios corrientes para predecir los precios del siguiente periodo. Si el estado estacionario es estable, y si eliminamos cierto caso peculiar, existe una regla de pronóstico de predicción perfecta. Si hay un continuo de equilibrios, podría haber un continuo de tales reglas de pronóstico. Aún así, la derivación de dicha regla, evaluada en los precios del estado estacionario, está localmente determinada. Esto hace posible hacer estática comparativa en un entorno del estado estacionario a pesar de la no unicidad local del equilibrio. McCallum [28] ha argumentado que la indeterminación puede eliminarse con frecuencia en modelos de expectativas racionales lineales insistiendo en que los agentes emplean una regla de pronóstico iterativa cerrada que utiliza un conjunto minimal de información. Esta sugerencia tiene en gran parte el mismo espíritu de nuestro análisis de reglas de pronóstico, aunque las diferencias entre los dos marcos de trabajo son lo suficientemente amplias para no ser posible una comparación cercana.

Finalmente, contrastamos la determinación en el modelo con un número finito de agentes con vida infinita con la indeterminación en el modelo de generaciones sucesivas. Aunque los modelos y los experimentos conceptuales que hacemos parten de [4], argumentamos nuestro modelo de generación infinita.

De ninguna manera en este artículo presentamos resultados con algún modelo unic皋eral está equipado con un único consumidor distribuido en cada periodo. En asociados con los cuales hay dinero fiduciario cuando hay dinero fiduciario; en otras palabras, con un solo número de agentes, Shell [2] ha extensivamente el uso de bienes en cada generación con resultados, nuestros modelos generales no dependen del número de agentes. Si la edad exógenamente fija se impondría, podrían existir indeterminaciones.

Burmeister, C. (1976) Indeterminación y convergencia: un análisis de precios de inversión y la previsión de residuos finito de agentes e imponen algunos derechos iniciales más de una dimensión no las mismas funciones.

Calvo [9] ha mostrado que el comportamiento de los consumidores de información en esos ejemplos de un activo tal que McCallum [4]...
que hacemos parecen bastante diferentes en los dos casos, siguiendo a Barro [4], argumentamos que el modelo con vida infinita puede entenderse como un modelo de generaciones sucesivas con herencias.

De ninguna manera somos los primeros en estudiar los problemas analizados en este artículo. Discutiremos entonces brevemente la relación de nuestros resultados con algunos de los que han aparecido previamente:

Que un modelo de generaciones sucesivas pueda tener un continuo de equilibrio es bien conocido. Samuelson [31] mismo ha señalado los problemas al contar ecuaciones e incógnitas en este tipo de modelos. Gale [16] ha proporcionado un análisis completo del modelo de generaciones sucesivas con un único consumidor con dos períodos de vida en cada generación y un bien en cada período. En tal modelo encuentra que la indeterminación está siempre asociada con las condiciones iniciales que permiten derechos nominales: si no hay dinero fiduciario, entonces el equilibrio está siempre determinado. Aun cuando hay dinero fiduciario, cualquier indeterminación es a lo nuevo unidimensional; en otras palabras, si hay indeterminación, el equilibrio puede indexarse con un solo número, por ejemplo, el precio del dinero fiduciario. Balasko y Shell [22] han extendido estos resultados a un modelo en el cual hay muchos bienes en cada período pero un solo consumidor que vive dos períodos en cada generación con una función de utilidad Cobb-Douglas. En contraste con esos resultados, nuestro análisis indica que la indeterminación en modelos más generales no depende de la existencia de dinero fiduciario ni es necesariamente unidimensional; aun si un índice de precios relativos para el stock de dinero es exógenamente fijado, los precios relativos de los bienes dentro de un período podrían estar indeterminados.

Burmeister, Caton, Dobell y Ross [8] han investigado las posibilidades de indeterminación en modelos de crecimiento con bienes de capital heterogéneos. Su análisis es similar al de este artículo en el sentido de que ellos consideran un sistema linealizado cerca de un estado estacionario y se preguntan si la convergencia hacia ese estado estacionario asegura la determinación. Su análisis difiere del nuestro en que el comportamiento del ahorro de los consumidores está exógenamente dado en lugar de resultar de la maximización de la utilidad y de previsión perfecta. Nuestro análisis indica que la maximización de la utilidad y la previsión perfecta eliminan la indeterminación cuando hay un número finito de agentes con vida infinita. Aún en economías de generaciones sucesivas se imponen algunas restricciones sobre la indeterminación potencial haya o no derechos iniciales nominales. Incidentalmente, aunque indeterminaciones de más de una dimensión parecen posibles dentro del marco de Burmeister et al., ellos no lo mencionan. Todas las indeterminaciones que discuten son unidimensionales.

Calvo [9] ha construido ejemplos sencillos de indeterminaciones similares a las discutidas por Burmeister et al. Su modelo difiere del de ellos en que el comportamiento del ahorro surge de la maximización de la utilidad de los consumidores de generaciones sucesivas con previsión perfecta. La indeterminación en esos ejemplos sigue siendo unidimensional y está indexada por el precio de un activo tal como tierra o capital.

McCallum [28] recientemente ha tratado de poner la discusión de la
¿qué no requiramos, Diamond y Sea $p_t = (p_t^1, ...)$ se enfrenta con un positivos, el agent que resuelve el problema

$$\max \gamma.$$

El propósito de los precios, este debe satisfacer la restricción que las curvas de plano de coordenadas este el supuesto q rias y suficientes

Un equilibrio sucesión de precios $x^i, x^j, ...$ para γ.

CONDICION

Para encontrar desarrollada por finito de bienes, estrictamente pos

$$\max \sum_{i=1}^{n} \lambda_i$$

De nuevo, lo solución estricta con igualdad existente.

2. El modelo con un número finito de agentes

Empezamos analizando una economía de intercambio puro con un número finito de agentes que consumen durante un número infinito de periodos. En cada período hay n bienes. Cada uno de los m consumidores diferentes es especificado por una función de utilidad de la forma $\sum_{t=0}^{\infty} \alpha_t U_i(x,t)$ y un vector de dotaciones iniciales w^0 que es igual en cada período. En este caso $1 \geq \gamma > 0$ en un factor de descuento. Haremos los siguientes supuestos sobre u_t y w^0:

SUPUESTO a.1 (diferenciabilidad): $u_t: R_{+}^m \rightarrow R$ es C^2.

SUPUESTO a.2 (coneavidad estricta): $D^2u_t(x)$ es negativa definida para toda $x \in R_{+}^m$.

SUPUESTO a.3 (monotonicidad): $Du_t(x) > 0$ para toda $x \in R_{+}^m$.

SUPUESTO a.4 (dotaciones estrictamente positivas): $w^0 \in R_{+}^m$, $i = 1, ..., m$.

SUPUESTO a.5 (acotamiento): $\|Du_t(x_0)\| \rightarrow \infty$ cuando $x_0 \rightarrow x$ donde alguna
$y^i = 0 \quad j = 1, \ldots, n$. $Du_j(x) x$ está acotada. sin embargo, para toda x en cualquier subconjunto acotado de R^n_{+}.

Sería posible extender nuestro análisis a tipos de preferencias más generales que no requieran de separabilidad aditiva, tal como las descritas por Koopmans, Diamond y Williamson [23]. No intentaremos hacerlo aquí.

Sea $p_t = (p_t^1, \ldots, p_t^n)$ el vector de precios prevaleciente en el período t. Cuando se enfrenta con una sucesión $\{p_0, p_1, \ldots\}$ de vectores de precios estrictamente positivos, el agente i escoge una sucesión de vectores de consumo $\{x_{0i}, x_{1i}, \ldots\}$ que resuelve el problema

$$\max \sum_{t=0}^{\infty} \gamma_t \mu_i(x^t_i) \text{ sujeto a } \sum_{t=0}^{\infty} p_t^i x^t_i \leq \sum_{t=0}^{\infty} p_t^i w^t_i, \quad x^t_i \geq 0$$ \hspace{1cm} (2.1)

El propósito de los supuestos a.1-a.5 es asegurar que, para cualquier sucesión de precios, este problema tiene una solución que es estrictamente positiva y que satisface la restricción presupuestaria con igualdad. El supuesto a.5 garantiza que las curvas de indiferencia de los consumidores resulten paralelas al hiperplano de coordenadas al moverse hacia la frontera del ortante positivo. Es éste el supuesto que elimina las soluciones de esquina. Las condiciones necesarias y suficientes para que $\{x_{0i}, x_{1i}, \ldots\}$ resuelva (2.1) son:

$$\gamma_t Du_j(x^t_i) = \mu_t p_j, \quad \text{para alguna } \mu_t > 0 \quad (t = 0, 1, \ldots)$$ \hspace{1cm} (2.2)

$$\sum_{t=0}^{\infty} \mu_t x^t_i = \sum_{t=0}^{\infty} \mu_t w^t_i$$ \hspace{1cm} (2.3)

Un equilibrio (de previsión perfecta) de esta economía está definido por una sucesión de precios $\{p_0, p_1, \ldots\}$ y una sucesión de vectores de consumo $\{x_{0i}, x_{1i}, \ldots\}$ para cada agente, $i = 1, \ldots, m$, que satisface las siguientes condiciones:

CONDICION c.1: Para cada agente i $\{x_{0i}, x_{1i}, \ldots\}$ resuelve (2.1).

CONDICION c.2: $\sum_{i=1}^{m} x^t_i = \sum_{i=1}^{m} w^t_i, \quad t = 0, 1, \ldots$

Para encontrar el equilibrio en esta economía utilizamos una aproximación desarrollada por Negishi [30] y Mantel [24] para un modelo con un número finito de bienes. Siendo $\lambda_t, i = 1, \ldots, m$, algunas ponderaciones de bienestar estrictamente positivas, definimos el problema de maximización del bienestar

$$\max \sum_{i=1}^{m} \lambda_t \sum_{t=0}^{\infty} \gamma_t \mu_i(x^t_i) \text{ sujeto a } \sum_{i=1}^{m} x^t_i \leq \sum_{i=1}^{m} w^t_i (t = 0, 1, \ldots), \quad x^t_i \geq 0$$ \hspace{1cm} (2.4)

De nuevo, los supuestos a.1-a.5 garantizan que este problema tenga una solución estrictamente positiva y que satisfaga las restricciones de factibilidad con igualdad estricta. Las condiciones necesarias y suficientes para una solución son:
\[\lambda_i \gamma_i (D u_i(x_i)) = p_i \quad (i = 1, \ldots, m) \]

para alguna \(p_i > 0 \) \((t = 0, 1, \ldots)\),

\[\sum_{i=1}^{m} x^*_i = \sum_{i=1}^{m} w^i \quad (t = 0, 1, \ldots) \]

Una sucesión de asignaciones es óptima en el sentido de Pareto si y sólo si resuelve el problema (2.4). Nótese que la condición c.2 y (2.6) son las mismas y, además, si definimos \(\lambda_i = 1/\mu_i \), entonces (2.2) y (2.6) también son las mismas. En otras palabras, una asignación eficiente en el sentido de Pareto y los multiplicadores de Lagrange asociados \(\{p_0, p_1, \ldots\} \) satisfacen todas nuestras condiciones de equilibrio excepto, posiblemente, (2.3). Entonces el problema de encontrar un equilibrio resulta un problema de encontrar las ponderaciones de bienestar correctas \(\lambda_i \), \(i = 1, \ldots, m \), de tal manera que se satisfaga (2.3).

Sean \(p(\lambda) \) y \(x(\lambda) \) las soluciones a (2.5) y (2.6). La concavidad estricta de \(u_i \) asegura que \(p_i \) y \(x^*_i \) estén definidas univocamente y que son continuas. Para cada agente definimos la función de exceso de ahorro

\[s(\lambda) = \sum_{i=\Lambda}^{\infty} p_i(\lambda)(w^i - x^*_i(\lambda)) \]

Usando los supuestos a.1 y a.5 podemos mostrar que la suma infinita en (2.7) converge uniformemente sobre subconjuntos compactos de \(R^m_+ \) y, por consiguiente, que \(s(\lambda) \) está bien definida y es continua.

Es fácil verificar que las funciones \(s(\lambda) \) son homogéneas de grado uno y que suman cero. De hecho, las funciones \(s(\lambda)/\lambda_i \) tienen propiedades matemáticas idénticas a las que tienen las funciones de exceso de demanda de una economía de intercambio puro con \(m \) bienes. Un argumento estándar implica la existencia de un vector de ponderaciones de bienestar \(\lambda \) tal que

\[s(\lambda) = 0 \]

Llamaremos a este vector \(\lambda \) un equilibrio, puesto que nuestros argumentos anteriores aseguran que cuando resolvemos el problema de maximización del bienestar (2.4) usando \(\lambda \) como ponderaciones de bienestar la solución es una asignación de equilibrio. A la inversa, un equilibrio está asociado con un vector \(\lambda \).

PROPOSICIÓN 2.1: Si la economía \((u_i, \gamma_i, w^i), i = 1, \ldots, m \) satisface los supuestos a.1-a.5, entonces existe un equilibrio y cada equilibrio está caracterizado por ponderaciones de bienestar \(\lambda_i, i = 1, \ldots, m \), que satisfacen (2.8).

Hemos reducido las condiciones de equilibrio para el modelo con un número finito de consumidores a un número finito de ecuaciones con el mismo número de incógnitas: la homogeneidad de \(s \) implica que una de las variables \(\lambda_i \) es redundante. El que las \(s(\lambda) \) sumen cero, sin embargo, implica que podemos ignorar una de las ecuaciones \(s(\lambda) = 0 \). Para hacer análisis de regula-
ridad debemos poder asegurar que es continuamente diferenciable. Para hacer esto tan sencillo como sea posible, imponemos el siguiente supuesto adicional sobre \(u_i \):

SUPUESTO a.6: \(D_u u^{-1} \) es acotada sobre subconjuntos no vacíos de \(\mathbb{R}_+^n \).

Supongamos, por ejemplo, que \(u_i \) es homogénea de grado \(0 < \alpha_i < 1 \). Entonces el supuesto a.6 se satisface puesto que
\[Du_i(x)Du_i(x)^{-1} = (\alpha_i - 1)x. \]

Notese, sin embargo, que el supuesto a.6 permite sustancialmente preferencias más generales. Un supuesto como tal es necesario para asegurar que las derivadas de \(u_i \) están bien comportadas aun cuando \(x_i \) se acerca a 0. Una demostración de la siguiente proposición puede encontrarse en Kehoe y Levine [19].

PROPOSICIÓN 2.2: Si la economía \((u_i, \gamma, w), i = 1, \ldots, m\) satisface los supuestos a.1-a.6, entonces \(s \) es continuamente diferenciable para toda \(\lambda > 0 \).

Una economía regular \((u_i, \gamma, w), i = 1, \ldots, m\) está definida como una economía que satisface los supuestos a.1-a.6 y la restricción:

SUPUESTO r.1 \(D_s(\lambda) \) tiene rango \(m - 1 \) en todo equilibrio \(\lambda \).

La atracción del concepto de regularidad está enaltecedo por su generalidad. Así todas las economías son regulares. Supongamos que parametrizamos el espacio de economías \((u_i, \gamma, w), i = 1, \ldots, m\) permitiendo que las dotaciones varíen mientras que conservamos su suma, \(w = \sum w_i \), constante, y fijando las funciones de utilidad y los factores de descuento. Permitir que las dotaciones iniciales varíen y conservando su suma fija nos permite variar \(s(\lambda) \) conservando fijas \(p(\lambda) \) y \(x_i \).

PROPOSICIÓN 2.3: Las economías regulares forman un conjunto denso abierto de medida total en el espacio de economías parametrizadas por las dotaciones.

La demostración de esta proposición, dada por Kehoe y Levine [19], es una aplicación directa del teorema de transversalidad de topología diferencial. Puede extenderse fácilmente a una demostración de que las economías regulares forman un subconjunto denso abierto del espacio de economías donde las únicas restricciones son los supuestos a.1-a.6 si somos cuidadosos al dar a este espacio una estructura topológica.
5. El modelo de generaciones sucesivas

Analizaremos ahora una economía con un número infinito de agentes de vida finita, un modelo de generaciones sucesivas estacionario que generaliza el introducido por Samuelson [31]. De nuevo hay \(n \) bienes en cada periodo de tiempo. Cada generación \(0 < t < \infty \) es idéntica y consume en los períodos \(t \) y \(t+1 \). Las decisiones de consumo y ahorro de los (posiblemente muchos tipos diferentes de) consumidores en la generación \(t \) están agrupadas en las funciones de exceso de demanda \(y(p_t, p_{t+1}) \) en el periodo \(t \) y \(x(p_t, p_{t+1}) \) en el periodo \(t+1 \). El vector \(p_t = (p^1_t, ..., p^n_t) \) denota los precios que prevalecen en el periodo \(t \). Suponemos que los excesos de demanda satisfacen los siguientes supuestos:

SUPUESTO A.1 (diferenciabilidad): \(y, z : R^{2*} \rightarrow R^n \) son funciones \(C^2 \).

SUPUESTO A.2 (ley de Walras): \(p_t y(p_t, p_{t+1}) + p^*_t x(p_t, p_{t+1}) = 0 \).

SUPUESTO A.3 (homogeneidad): \(y \) y \(z \) son homogéneas de grado cero.

SUPUESTO A.4 (acotamiento): \(\|y(\lambda a_t, \lambda a_{t+1})\| \rightarrow \infty \) cuando \(\lambda \rightarrow 0 \) donde algunas, pero no todas de las \(a^j_t = 0, j = 1, ..., 2n \). \(y(\lambda, \lambda) \) está, sin embargo, acotada inferiormente para toda \(\lambda \in R^{2*} \).

Debreu [13] y MoeColell [26] han mostrado que el supuesto A.1 impone relativamente poca pérdida de generalidad. El supuesto A.2 implica que hay algunos medios de contratación entre generaciones de tal manera que cada consumidor se enfrenta a una restricción presupuestaria ordinaria en los dos periodos de su vida. Como mostraremos después, esto significa que la economía tiene un stock constante (posiblemente cero o negativo) de dinero fiduciario. El supuesto A.4 es un supuesto de acotamiento estándar. Es usado para garantizar la existencia de estados estacionarios interiores. Muller y Woodford [29] han extendido el análisis presentado en este artículo para permitir bienes libres; aquí no intentaremos hacerlo de esta manera.

Nótese que solamente consideramos economías de intercambio puro y consumidores con dos periodos de vida. Permitimos, sin embargo, muchos bienes y tipos de consumidores, y el caso de consumo multiperiodo puede reducirse fácilmente al caso que estamos considerando: si los consumidores viven \(m \) períodos, simplemente redefinimos las generaciones de tal manera que los consumidores nacidos en los periodos \(1, 2, ..., m - 1 \) sean de la generación 1, los consumidores nacidos en los períodos \(m, m + 1, ..., 2m - 2 \) sean la generación 2, y así sucesivamente. En esta reformulación cada generación se solapa sólo con la siguiente generación. Nótese que el número de bienes en cada nuevo periodo definido, y el número de consumidores en cada nueva generación definida, se incrementa por un factor de \(m - 1 \). Ver Balasko, Cass y Shell [1] para una descripción detallada de este procedimiento.

La economía empieza en el periodo 1. El exceso de demanda de la gente vieja (generación 0) en el periodo 1 es \(z_0(a, p_t) \) donde \(a \) es el vector de parámetros que representa la historia pasada de la economía. Un equilibrio (de previsión perfecta) de una economía \((z_0, y, z) \) que se inicia en \(a \) está definido como una sucesión de precios \(\{p_1, p_2, ...\} \) que satisfacen las condiciones siguientes:

CONDICION E.1:

CONDICION E.2:

Una vez que \(\rho, \rho \) y \(\rho \) ecuación en diferencia Nuestro objetivo primio precicios iniciales \(p, \gamma, \beta \) y \(\beta \) iniciales \(z_0 \) y \(a \), sin emb atención en la ecuación.

Definimos un estado \((\rho, \gamma, \beta) \in R_{2+} \) que satisface:

\[z(p, \beta) \]

En otras palabras, \(\rho, \gamma \) crece en \(\beta \) en cada \(1/\beta - 1 \) es la tasa de in Levine [22] resaltan q finito de estados estac Nuestro interés en estacionario. Sea \((\rho, \gamma, \beta) \) que contiene a \((\rho, \gamma, \beta) \) ecuación en deferencia.

Llamamos a una s localmente estable \(\lim_{t \rightarrow \infty} q_t = q, \|q_t\| \rightarrow q, \|q\| \rightarrow q \), no una determinada que sea localmente est.

Una razón para re caso más sencillo de e equilibrios de previsión ges hacia un estado calcular los precios fut no van hacia el est globo y computadora que, si el equilibrio e continuo de equilibrio en un sentido más am en un sentido restric saldrían del entorno.

Podemos linealizar tando

\[D_1 x(p_t - \beta^{t-1} p) + (D_1 z(p_t - \beta^{t-1} p) \right) \]
CONDICION E.1: \(z_0(u,p_1) + y(p_1, p_2) = 0 \).
CONDICION E.2: \(z(p_{t-1}, p_t) + y(p_t, p_{t+1}) = 0, \ t > 1 \).

Una vez que \(p_1 \) y \(p_2 \) están determinados la condición E.2 actúa como una ecuación en diferencias no lineal que determina todos los precios futuros. Nuestro objetivo principal es analizar hasta qué punto E.1 determina los precios iniciales \(p_1 \) y \(p_2 \). La siguiente sección estudia el papel de las condiciones iniciales \(z_0 \) y \(a \). Sin embargo, ignoraremos por ahora E.1 y enfocarnos nuestra atención en la ecuación en diferencias E.2.

Definimos un estado estacionario de E.2 como un vector de precios \((p, \beta p) \in \mathbb{R}^{n_2}_+, \) que satisface
\[
z(p, \beta p) + y(\beta p, \beta^2 p) = z(p, \beta p) + y(p, \beta p) = 0 \tag{3.1}
\]

En otras palabras, si el vector de precios \(p \) prevalece siempre, y el nivel de precios crece en \(\beta \) en cada periodo, los mercados siempre se vacían. En este caso \(l/\beta - 1 \) es la tasa de interés del estado estacionario. En el caso general, Kehoe y Levine [22] resaltan que para una normalización de precios hay un número finito de estados estacionarios.

Nuestro interés en este artículo está en lo que sucede cerca del estado estacionario. Sea \((p, \beta p)\) un estado estacionario, y sea \(U \subset \mathbb{R}^{n_2}_+ \) un cono abierto que contiene a \((p, \beta p)\). Es conveniente definir \(q_t = (p_t, p_{t+1}) \) y ver a E.2 como la ecuación en diferencias de primer orden
\[
z(q_{t-1}) + y(q_t) = 0, \quad t > 1 \tag{3.3}
\]

Llamamos a una senda \(\{q_1, q_2, \ldots \} \) que satisface las condiciones E.1 y E.2 localmente estable con respecto a \(q = (p, \beta p) \) y \(U \) si \(a \in U \) y \(\lim_{t \to \infty} q_t = q/\|q\| \). La pregunta que estamos tratando de contestar es si hay o no una determinada senda de precios que satisfaga las condiciones E.1 y E.2 y que sea localmente estable.

Una razón para restringir nuestra atención a estabilidad local es que es el caso más sencillo de estudiar. Las sendas de precios estables son también los equilibrios de previsión perfecta más plausibles. Si los equilibrios son convergentes hacia un estado estacionario cercano entonces los agentes pueden calcular los precios futuros usando solamente información local. Si los precios no van hacia el estado estacionario, entonces los agentes necesitan información global y computadoras muy grandes para calcular los precios futuros. Nótese que, si el equilibrio está indeterminado en el sentido restrictivo de que un continuo de equilibrios converja a un estado estacionario, está indeterminado en un sentido más amplio. Por otra parte, aun si el equilibrio está determinado en un sentido restrictivo podría haber un continuo de equilibrios que se saldrían del entorno del estado estacionario.

Podemos linealizar E.2 alrededor de un estado estacionario \((p, \beta p)\), resultando
\[
D_z(p_{t-1} - \beta^{-1} p) + (D_z + \beta^{-1} D_y)(p_t - \beta^p) + \beta^{-1} D_z(p_{t+1} - \beta^{+1} p) = 0 \tag{3.3}
\]
Aquí todas las derivadas están evaluadas en el estado estacionario \((p_0, \beta_0)\), y usamos (3.1) y el hecho de que las derivadas de los excesos de demanda son homogéneas de grado menos uno. Nuestro supuesto A.3 de homogeneidad nos permite escribir (3.3) como

\[
D_1 p_{t-1} + (D_2 z + \beta^{-1} D_1 y)p_t + \beta^{-1} D_2 y_{t+1} = 0
\]

(3.4)

Si se satisface la siguiente condición de regularidad, entonces (3.4) define una ecuación lineal en diferencias de segundo orden.

SUPUESTO R.1: \(D_2 y(p, \beta p)\) es no-singular en todos los estados estacionarios \((p_0, \beta_0)\).

De nuevo, fijando \(q_t = Gq_{t-1}\) donde

\[
G = \begin{bmatrix}
0 \\
-\beta D_2 y^{-1} D_1 z \\
-D_2 y^{-1}(\beta D_2 z + D_1 y)
\end{bmatrix}
\]

(3.5)

La homogeneidad implica que \(Gq = \beta q\) donde \(q = (p, \beta p)\); en otras palabras, \(G\) tiene un valor propio igual a \(\beta\). La ley de Walras implica que \(p[\beta D_1 z D_2 y]G = p[\beta D_1 z D_2 y]\); en otras palabras, \(G\) tiene un valor propio igual a la unidad. Supondremos que \(G\) también satisface la siguiente restricción de regularidad:

SUPUESTO R.2: \(G\) es no singular y tiene valores propios distintos; además, los valores propios tienen el mismo módulo si y sólo si son complejos conjugados.

Consideraremos la ecuación en diferencias \(q_t = (1/\beta)Gq_{t-1}\). El vector de precios \(q_t\) del estado estacionario es un punto fijo de esta ecuación en diferencias. Sea \(n^*\) el número de valores propios de \((1/\beta)G\) que caen dentro del círculo unitario, esto es, aquellos cuyo módulo es menor que la unidad. Estos corresponden a los valores de \(G\) que caen dentro del círculo de radio \(\beta\). Un teorema estándar de ecuaciones lineales en diferencias implica que el conjunto de condiciones iniciales \(q_1\) tal que \(q_t = Gq_{t-1}\) tiene \(\lim_{t \to \infty} q_t/\|q_t\| = q/\|q\|\) es un subespacio de dimensión \(n^* + 1\), \(V_n^*\), de \(R^{2n}\) (ver Irwin [18], pp. 151-154 y Kehoe y Levine[22]). La dimensión extra que se muestra se debe a la homogeneidad: Si \(q_1\) es tal que \(\lim_{t \to \infty} q_t/\|q_t\| = q/\|q\|\), entonces así es para \(\theta q_1\) para cualquier \(\theta \neq 0\). El subespacio \(V_n^*\) está generado por los \(n^*\) vectores propios de \(G\) asociados con los valores propios que pertenecen al círculo de radio \(\beta\) y el vector propio \(q\) asociado con el valor propio \(\beta\).

El teorema de la función implícita implica que, si se satisface el supuesto R.1, entonces podemos resolver la condición E.2 para encontrar una ecuación no lineal en diferencias \(q_t = g(q_{t-1})\) definida para un cono abierto \(U\) que contiene a \(q\). Naturalmente, \(Dg(q) = G\). Sea \(W_c\) el subconjunto de condiciones iniciales \(q_1 \in U\) tal que \(\lim_{t \to \infty} q_t/\|q_t\| = q/\|q\|\). En otras palabras, dado \((p_1, p_2)\) podemos encontrar una senda en \(U\) que converge al rayo proporcional a \((p, \beta p)\) si y sólo si \((p_1, p_2) \in W_c\). La relación entre \(V_c\) y \(W_c\) está dada por el siguiente teorema:

PROPOSICIÓN 3.1: \(W_c\) es una variedad de dimensión \(n^* + 1\) con espacio tangente a \(q\) igual a \(V_c\).

4. **Determinación**

El exceso de demanda a representar prior al \(t = 1\) la economía después de que la \(g\) sea determinada por shocks, y a partir de la cual las \(p\) y los precios agregados \((y^*, z^*)\) han sido mostrado que podemos encontrar un subconjunto completo de estados estacionarios para todas las suposiciones de maximización de los consumidores.

EUSTÁTICO COMPARADO

Este resultado es la aproximación lineal al conjunto anterior.

Para establecer la R.1-R.2. ¿Esto puede explicarse por la variabilidad de los estados estacionarios? Kehoe y Levin [14] muestran que agregarlos

Este resultado está demostrado por Kehoe y Levine [22]. Que V_i sea el espacio tangente de W_i en q justifica nuestra intuición acerca de (3.4) como una aproximación lineal para E.2: Dice que la mejor aproximación lineal a W_i en q es el conjunto afín $V_i + \{q\}$.

Para establecer la proposición 3.1 necesitamos los supuestos de regularidad R.1-R.2. Estos pueden justificarse mostrando que se cumplen para casi todas las economías, en otras palabras, que se cumplen para un subconjunto denso abierto del espacio de economías. Esto es hecho por Kehoe y Levine [22]. Esto significa que cualquier economía regular puede aproximarse por una economía que satisfaga los supuestos R.1-R.2 y que cualquier perturbación ligera de una economía que satsiface R.1-R.2 sigue satisfaciéndolas.

Hemos remarcado que G tiene una raíz igual a β y una raíz unitaria. ¿Estamos justificados al suponer que no satisface ninguna otra restricción? ¿No podría darse el caso, como, por ejemplo, en control óptimo, que la mitad de los valores propios de G caiga dentro del círculo unitario y la otra mitad caiga fuera? Kehoe y Levine [19] muestran que para cualquier n^\ast que satsiface $2n - 1 \geq n^\ast \geq 0$, existe un conjunto abierto de economías que tienen un estado estacionario con n^\ast raíces dentro del círculo de radio β y $2n - n^\ast$ 1 raíces fuera del círculo de radio β. Adicionalmente, los trabajos de Mantel [25] y Debreu [14] muestran que para cualquier exceso de demanda (y, z) y cualquier subconjunto compacto de R^{2n}_+ podemos encontrar una generación de $2n$ consumidores con preferencias bien comportadas cuyos excesos de demanda agregados (y^*, z^*) concuerdan con (y, z) sobre ese subconjunto. Mas-Colell [27] ha mostrado que podemos escoger este subconjunto compacto y (y^*, z^*) tal que todos los estados estacionarios de (y, z) e (y^*, z^*) estén contenidos en el interior de este subconjunto. Puesto que estamos interesados solamente en los entornos de estados estacionarios, podemos entonces considerar a A.1-A.4 como exhaustivos para todas las restricciones puestas sobre los excesos de demanda por el supuesto de maximización de utilidad por consumidores heterogéneos. Una demostración formal de este punto está dada por Kehoe y Levine [22].

4. Determinación del equilibrio

El exceso de demanda de la generación 0 en el periodo 1 es $z_d(a, p_1)$. El vector a representa la historia del sistema. Nuestro experimento conceptual es: prior a $t = 1$ la economía está en alguna senda de precios. Repentinamente, después de que la generación cero hace sus decisiones de ahorro, pero antes de que p_1 sea determinado, ocurre un shock no anticipado. No ocurren más shocks, y a partir de aquí las expectativas se satisfacen, aunque no hay razón por la cual las expectativas de la generación cero sobre p_1 se satisfagan. ¿Determinan las condiciones de equilibrio E.1 y E.2 una única senda hacia el nuevo estado estacionario, al menos localmente? Si es así, podemos hacer estática comparativa, evaluando el impacto del shock no anticipado. Si no es así, es cuestionable que los agentes pudieran deducir en cuál de las muchas sendas de previsión perfecta estarían ellos.
Nótese que ésta no es la única pregunta que podemos hacer. Podemos inquirir si para una senda de prevención perfecta dada tendiendo hacia menos infinito hay una única extensión hacia más infinito. Creemos que la respuesta a esta pregunta es, en general, sí. O podríamos preguntar si las sendas de precios \(\ldots, P_{-1}, P_0, P_1, \ldots \) que son sendas de prevención perfecta son únicas localmente. Creemos que hay un gran conjunto de economías para el cual la respuesta a esta pregunta es sí, y que hay un conjunto igualmente grande para el cual la respuesta es no. Sentimos que la pregunta que hemos señalado es la más interesante, sin embargo, y que de estas preguntas la única relevante para el trabajo aplicado. Otra pregunta relevante es, por supuesto, cómo manipular sendas de precios que no están cerca de estados estacionarios. Como lo hemos mencionado, sin embargo, no es claro que la previsión perfecta sea una buena hipótesis en tales casos.

Con este experimento conceptual en mente, podemos ahora ver el papel representado por el vector \(\pi \). Resulta de los derechos sobre los consumos actuales que tiene la gente vieja basados en sus decisiones de ahorro hechas en el periodo 0. Definase la oferta monetaria \(\mu = \mu_{x_0}(a, p_1) \) como los derechos nominales de la gente vieja. Observe que en equilibrio \(\mu_{x_0}(a, p_1, p_2) = -\mu \), por la ley de Walras \(\mu_{x_0}(p_1, p_2) = \mu \), en equilibrio \(\mu_{x_0}(p_1, p_2) = -\mu \), y así sucesivamente. Por consiguiente, \(\mu \) es el ahorro neto nominal fijo de la economía para todo el tiempo; esto es, suponemos que no hay intervención gubernamental en los mercados de dinero.

En el estado estacionario tenemos \(\beta P'z(p, \beta p) = \mu \) y \(\beta P'x(p, \beta p) = -\mu \). Hay dos casos de interés. El caso nominal tiene \(\mu \neq 0 \). En este caso debe ser que \(\beta = 1 \). Gale [16] llama a los estados estacionarios de este tipo estados estacionarios de regla de oro. Esto es debido a que la solución del estado estacionario nominal es la solución de un problema de maximización de una suma ponderada de las utilidades individuales sujeta a la restricción de consumo estacionario sobre el tiempo. Alternativamente, en el caso real \(\mu = 0 \). Gale se refiere a los estados estacionarios de este tipo como estados estacionarios equilibrados. En este caso si \(\beta = 1 \) entonces \(\gamma(p, p) \) y \(\zeta(p, p) = 0 \) y \(P'x(p, p) = 0 \), las cuales son típicamente nuestras ecuaciones en las \(n - 1 \) inequálieces \(p_i \) por tanto, \(\beta = 1 \) es sólo por coincidencia. Así, cuando \(\mu = 0 \) el caso más interesante es que \(\beta \neq 1 \). Usando un teorema de índices, Kehoe y Levine [22] prueban que hay, en general, un número impar de estados estacionarios de cada tipo, los cuales, por supuesto, implica la existencia de un estado estacionario de cada tipo.

Suponemos primero que los derechos están denotados en términos nominales. No podemos asumir que el exceso de demanda de los viejos \(z_0(a, p_1) \) es homogéneo de grado cero en \(p_1 \). Suponemos, sin embargo, que \(a \) es un elemento de un subconjunto abierto \(A \) de un espacio vectorial de dimensión finita y que se cumplen los siguientes supuestos:

SUPUESTO 1.1 (diferenciabilidad): \(z_0 : A \times R^n \rightarrow R^n \) es una función \(C^2 \).

SUPUESTO 1.2 (homogeneidad): \(z_0 \) es homogénea de grado cero en \(a \) y \(p_1 \).

Sea \(q = (q, \beta q) \) el estado estacionario después del shock. Hacemos el siguiente supuesto.

SUPUESTO 1

\[
\begin{align*}
z_0(a_0, p) + y(p, \beta \eta) &= 0 \\
R_1 &\text{ implica que } p_1 = \frac{a_0}{p_1}.
\end{align*}
\]

En otras palabras, para meta es analizar varias interpretaciones cercana de un estado estacionario, ocurrió un desplazamiento temporalmente estacionario cercano.

Para analizar el efecto de la introducción de la linealización E.1 cerca.

Sea \(U_1 \subset R^n \), y.d. El teorema de estacionario asume que para \(a \in A \) dada, hay un estado estacionario que depende de un solo punto en el espacio de \(a \).

Consideremos un espacio dimensional más a \(n \). 1 dimensional. En un espacio lineal de hecho, que 1. es

SUPUESTO IF

Nótese que este resulta en otras palabras, queda en economía. El teorema se expone en el siguiente

PROPOSICION:

casi toda \(a \in A \) el \(c \)
SUPUESTO 1.3 (estado estacionario): Existe \(a_0 \neq 0 \) tal que
\[
z_0(q_0, p) + y(p, p) = 0.
\]

En otras palabras cuando \(a = a_0 \) estamos en un estado estacionario. Nuestra meta es analizar lo que pasa cuando \(||a - a_0|| \) es pequeño. Es posible hacer varias interpretaciones de este supuesto: prior a \(t = 0 \) la economía estaba en o cerca de un estado estacionario y un shock temporal la desplazó. Alternativamente, ocurrió un shock permanente y el estado estacionario por sí mismo se desplazó ligeramente. Todo lo que es necesario es que haya algún estado estacionario cercano.

Para analizar el impacto del shock, observamos que los precios \((p_1, p_2) \) están determinados por la condición E.1. Usando la homogeneidad de \(z_0 \), podemos linealizar E.1 cerca del estado estacionario para encontrar
\[
(D_2z_0 + D_1y)p_1 + D_1z_0a + D_2yp_2 - 0 \tag{4.1}
\]
R.1 implica que podemos resolver (4.1) para \(p_2 \) como
\[
p_2 = D_2y^{-1}(D_1z_0 + D_1y)p_1 + D_2y^{-1}D_2z_0a \tag{4.2}
\]
o, introduciendo, como antes, \(q_1 = (p_1, p_2) \),
\[
q_1 = L \begin{bmatrix} a \\ p_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -D_2y^{-1}D_1z_0 & -D_2y^{-1}(D_2z_0 + D_1y) \end{bmatrix} \begin{bmatrix} a \\ p_1 \end{bmatrix} \tag{4.3}
\]
Sea \(U_1 \subset \mathbb{R}^n \), la proyección natural de \(U \) sobre sus primeras \(n \) coordenadas. El teorema de la función explícita implica que en un entorno del estado estacionario conseguimos una solución correspondiente a la ecuación no lineal E.1, \(q_1 = h(p_1, p_2) \), definida para \(p_1 \in U_1, a \in A \), con \(Dh(a_0, p) = L \). Preguntamos si, para \(a \in A \) dado, hay una \(q_1 = (p_1, p_2) \) inicial única que satisfaga E.1 y tenga una extensión a una senda de precios \(\{q_1, q_2, \ldots\} \) en \(U \) que satisfaga E.2 y converja a algún punto en el rango del estado estacionario. El resultado de la última sección implica que la pregunta matemática corresponde a que, si, para \(a \) dada, hay una única \(p_1 \) tal que \(h(a, p_1) \in W_1 \),

Consideremos primero el problema lineal. Para \(a \in A \) (4.3) define un subespacio affín de dimensión \(n \) de \(\mathbb{R}^n \). La versión linealizada de \(W_1 \) es \(V \), la cual es \(n^2 + 1 \) dimensional. Esperaríamos, en general, que estos espacios se intersecten en un espacio lineal de dimensión \(n + (n^2 + 1) - 2n = n^2 + 1 - n \). Suponemos, de hecho, que \(I \) satisface el supuesto siguiente:

SUPUESTO IR.1: I es de rango 2n.

Nótese que este supuesto requiere que \(A \) sea al menos de dimensión \(n \), en otras palabras, que haya al menos \(n \) maneras independientes de impactar la economía. El teorema de transversalidad de topología diferencial puede traducirse en el siguiente resultado:

PROPOSICION 4.1: Sea \(S_1 \) el conjunto de \(p_1 \in U_1 \) tal que \(h(a, p_1) \in W_1 \). Para casi toda \(a \in A \) el conjunto \(S_1 \) si es no vacío, tiene dimensión \(n^2 + 1 - n \).
En otras palabras, lo que en general esperamos del sistema lineal es casi siempre verdadero en el sistema no lineal. Aquí usamos casi todo para medir un subconjunto denso abierto de A cuyo complemento tiene medida cero. Si $n^* + 1 - n < 0$, esto significa que no hay una $p_1 \in U$ con $I(a, p_1) \in W_r$. Si $n^* + 1 - n > 0$, sin embargo, podemos tener esta dimensión o ser el conjunto vacío. 1.2 implica que S_0 en no vacío. Si podemos asegurar que l es transversal a W_r en q, entonces la condición de estabilidad estructural de la transversalidad implica que S_0 en no vacío para toda a si es suficientemente cerca a a_0. Hacemos el siguiente supuesto:

SUPUESTO IR.2: La matriz de dimensión $2n \times (n + 1 + n^*)$

$$\begin{bmatrix}
I \\
-D_2y^{-1}(D_2z_0 + D_1y)
\end{bmatrix}
\begin{bmatrix}
q, v_1, \ldots, v_n^*
\end{bmatrix}$$

tiene rango fila completo siempre que $n + 1 + n^* \geq 2n$ donde q, v_1, \ldots, v_n^* son los vectores propios de G que generan V_r.

Las primeras n columnas de esta matriz generan el espacio tangente de la variedad de vectores q_1 que satisfacen $q_1 = I(a, p_1)$. Las $n^* + 1$ columnas finales generan V_r que el espacio tangente W_r. Para $n^* + 1 - n \geq 0$ esto dice que l es transversal a W_r en a_0.

Del mismo modo que nuestras condiciones de regularidad anterior, los supuestos IR.1 e IR.2 son generales: dada una y que satisface R.1, puede demostrarse fácilmente que estas condiciones se cumplen para casi toda a_0. Bajo los supuestos IR.1 e IR.2, podemos distinguir tres casos:

(i) $n^* < n - 1$. En este caso, para casi toda a, S_a es vacío. En otras palabras, no hay sendas estables localmente. Llamamos a $(p, \beta p)$ un estado estacionario *inestable*. Para la mayoría de las condiciones iniciales el comportamiento asintótico del sistema es el no alcanzar el estado estacionario. Tales estados estacionarios no son muy interesantes. Son inaccesibles.

(ii) $n^* = n - 1$. En este caso, las sendas de equilibrio localmente estables son únicas localmente y, en un entorno suficientemente pequeño son efectivamente únicas. Este es el caso en el que podemos hacer estática comparativa y en el cual la previsión perfecta es una descripción plausible del comportamiento. Este es un estado estacionario *determinado*.

(iii) $n^* > n - 1$. En este caso hay un continuo de sendas estables localmente. El estado estacionario está *indeterminado*. La estática comparativa es imposible y la previsión perfecta implausible.

Hay grandes conjuntos de economías (conjuntos no vacíos abiertos de economías) que tienen estados estacionarios de cualquier tipo deseado: inestable, determinado o indeterminado. Entonces, ninguna de esas posibilidades es de ninguna forma degenerada.

Consideremos el argumento en el que conseguimos indeterminación debido a haber pedido mucho de los precios sea determinado. Regresamos al experimento concebido la ley de Walras: p satisface $p_1, p_2, \ldots, p_n = 0$ en algún entorno regular de a. Para $(p, \beta p)$ está fijado $(y + p, -y + 1 + p)$ y $\beta > 1$ por lo que establecemos que la condición que de

La estabilidad Recordando que $p = p[-\beta D_1z, -D_2]$ con un vector βp.

Por consiguiente, en Q_0. Fuera de Q_0, los números de frecuencia satisfagan $p_1, p_2, \ldots, p_n = 0$.

Se $a^* = \alpha_1, \ldots, \alpha_n$ el n dentro del circuito de nivel de precios s mediante una $n^2 + 2 - 2$ dimensiones que determina en general la variedad estable de sección de la $s = (n - 1) + n^2 - 1 - n$ caso real que es mientras que $\beta > 1$ y $n^2 = n$ condiciones iniciales las condiciones.

Hasta aquí hemos hecho. En su lugar a en el estado de equilibrio produce una ecuación...
a haber pedido mucho: Como \(z_0 \) no es homogénea demandamos que el nivel de precios sea determinado por las condiciones iniciales. ¿Es posible que esta indeterminación unidimensional sea la única posible a partir de la indeterminación? No. Si \(n^2 + 1 = n > 1, S_2 \) tiene dos o más dimensiones, implicando que hay precios relativos indeterminados.

Regresamos ahora al caso de condiciones iniciales reales. El cambio en el experimento conceptual cae en \(z_0 \): es homogénea de grado cero en \(p_1 \) y satisface la ley de Walras: \(p_1 z_0(a, p_1) = 0 \). Como \(\mu = 0 \), el vector de precios iniciales debe satisfacer \(p_1 y(p_1, p_2) = 0 \). Esta restricción define una variedad de dimensión \(2n - 1 \) en algún entorno del estado estacionario \((p, \beta p)\) si \((p, \beta p)\) es un punto regular de \(p_1 y(p_1, p_2) \). En otras palabras, si \((y' + p'D_1 y + \beta p'D_2 y) = 0 \) no se desvanece en \((p, \beta p)\). Esto, sin embargo, se sigue inmediatamente de (1.1). Llamamos a esta variedad la variedad real y la denotamos como \(Q_r \). Su espacio tangente en \((p, \beta p)\) está formado por los vectores \((p_1, p_2) \) que satisfacen \((y' + p'D_1 y + \beta p'D_2 y) = 0 \) en \((p, \beta p)\). Por consiguiente, la condición que define el espacio tangente de \(Q_r \) puede expresarse como

\[
p' \begin{bmatrix} -\beta D_1 \ z \ D_2 y \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = 0
\]

(4.4)

La estabilidad del sistema está determinada por las raíces de \((1/\beta)G\). Recordando que la ley de Walras implica que \(p' \begin{bmatrix} -\beta D_1 \ z \\ D_2 y \end{bmatrix} G = \begin{bmatrix} -\beta D_1 \ z \\ D_2 y \end{bmatrix} \). En otras palabras, \((1/\beta)G\) tiene un valor propio \(1/\beta\) asociado con un vector propio (izquierdo) que es ortogonal al espacio tangente de \(Q_r \). Por consiguiente, la raíz \(1/\beta\) no tiene efecto en el comportamiento del sistema en \(Q_r \). Fuera de \(Q_r \), sin embargo, la raíz \(1/\beta\) determina el comportamiento del sistema. En particular, si \(\beta < 1 \), ninguna sea con condiciones iniciales que no satisigan \(p_1 y(p_1, p_2) = 0 \) nunca puede aproximarse al estado estacionario real.

Sea \(n^{-s} \) el número de raíces de \((1/\beta)G\), excluyendo la raíz \(1/\beta\), que caen dentro del círculo unitario. Debido a la homogeneidad, incluyendo la de \(z_0 \), el nivel de precios está indeterminado y podemos reducir todo en una dimensión mediante una normalización de precios. En este espacio reducido \(Q_r \) tiene \(2n - 2 \) dimensiones, mientras que la condición inicial \(z_0(a, p_1) + y(p_1, p_2) = 0 \) determina una subvariedad de dimensión \(n - 1 \). La intersección de la variedad estables \(W \), con \(Q_r \) tiene dimensión \(n^{-s} \). Por consiguiente, la intersección de la subvariedad de condiciones iniciales y \(W \), tiene dimensión \((n - 1) + n^{-s} - (2n - 2) \). De este modo, hay las mismas tres posibilidades en el caso real que en el caso nominal, aunque en el caso real \(0 \leq n^{-s} \leq 2n - 2 \) mientras que en el caso nominal \(0 \leq n^{-s} \leq 2n - 2 \). En particular, nótese que, si \(\beta > 1 \) y \(n^{-s} = n - 1 \), entonces el estado estacionario es determinado por las condiciones iniciales reales pero tiene una indeterminación unidimensional para las condiciones iniciales nominales.

Hasta aquí hemos supuesto que \(D_2 y \) es no singular en cada estado estacionario. En su lugar supóngase ahora que \(D_2 y \) tiene rango \(k \), \(0 \leq k < n \), en un entorno abierto del estado estacionario \((p, \beta p)\). En esta situación linealizar E.2 produce una ecuación en diferencias de primer orden de dimensión \(n + k \), el
Lugar de 2n, para reemplazar a (3.5). En otro caso nuestro análisis permanece igual. En el caso nominal la condición de determinación sigue siendo \(n^* = n - 1 \) donde ahora \(0 \leq n^* \leq n + k - 1 \). En el caso real la condición de indeterminación sigue siendo \(n^* = n + 1 \) donde ahora \(0 \leq n^* \leq n + k - 2 \). En particular, si \(k = 1 \), solo una indeterminación unidimensional es posible en el caso nominal y ninguna indeterminación es posible en el caso real.

Que \(D_2 \) tenga rango uno en el estado estacionario donde \(n \geq 2 \) es verdadera sólo para un conjunto de economías merced, densa en ninguna parte; es una situación degenerada. Más aún, si cada generación está formada por un solo consumidor que vive dos periodos y que tiene una función intertemporal de utilidad separable, entonces ambas \(D_2 \) y \(D_1 \) tienen al más rango uno. El que \(D_1 \) tenga rango uno implica que \(n - 1 \) de los \(n + k = n + 1 \) valores propios son cero. Las condiciones de determinación para una economía de este tipo son, por lo tanto, las mismas para una economía con solo bien en cada periodo. Esto ha sido señalado por otros autores: Balasko y Shell [4], quienes asumen consumidores con preferencias Cobb-Douglas, y Geanakoplos y Polemarchakis [17]. Una discusión más completa de estos problemas puede encontrarse en Keohoe y Levine [21].

Podría conjeturarse que en el caso en que los excesos de demanda se derivan de la optimización el consumidor sobre preferencias bien comportadas que la ineficiencia en el sentido de Pareto de las sendas está relacionada con la indeterminación del equilibrio. Una reflexión momentánea del caso real muestra que esto no es cierto. Si \(\beta \geq 1 \), los precios que a través de sendas convergen a un estado estacionario carecen espacialmente en el límite; esto significa que el valor de las dotaciones de cada agente es finito, y, por un argumento estándar debido a Debreu [11], todas esas sendas son eficientes. Pero \(\beta > 1 \) sólo implica que ninguna senda con \(\mu \neq 0 \) nunca se aproxima al estado estacionario real; no pone restricciones sobre \(n^* \). Entonces si \(n > 1 \) la indeterminación es posible. A la inversa, si \(\beta > 1 \), entonces un argumento debido a Balasko y Shell [2] implica que todas las sendas convergentes son eficientes, pero sigue sin haber restricciones sobre los posibles tipos de estados estacionarios.

Tal vez el caso \(\beta < 1 \) es el más incomprendible de todos: aquí si \(n \geq 2 \) podemos tener indeterminaciones entre los equilibrios que convergen al estado estacionario, aun cuando todas estas sendas sean eficientes en el sentido de Pareto y todas imiten el caso de dimensión finita en el que la ley de Walras se satisface aún por la generación inicial.

Concluimos esta sección señalando que hay seis tipos posibles de estados estacionarios: real o nominal, cada uno de los cuales puede ser inestable, determinado o indeterminado. Si hay dos o más bienes en cada periodo entonces hay conjuntos abiertos de economías con cada combinación posible. El caso con un solo bien en cada periodo, el cual se ha estudiado más extensivamente, es sin embargo excepcional; la inestabilidad es imposible y en el caso real la indeterminación también es imposible.
5. Predicción

En esta sección examinaremos el caso de las condiciones iniciales nominales con más detalle. De nuevo nos centraremos en el entorno de un estado estacionario estable \((p, \beta p)\) con \(n' \geq n - 1\), y supondremos que se satisfacen todas las condiciones de regularidad. Nuestro objetivo se centra en cómo los agentes pronostican los precios futuros. Una posibilidad es que usen la ecuación dinámica 1.2, o equivalentemente, pronostiquen \(q_{t+1} = y(q_t)\). Nótese que al menos que \(n' = 2n - 1\) éste es en realidad un sistema dinámico inestable: pequeñas perturbaciones pueden provocar que la senda se separe del estado estacionario.

Investigaremos ahora las posibilidades alternativas que tiene los agentes para pronosticar los precios futuros como función, solamente, de los precios corrientes. Este tipo de pronóstico de iteración cerrada permite converger hacia el estado estacionario. Sorprendentemente, es también localmente determinado: esta restricción sobre las reglas de pronóstico es suficiente para eliminar gran parte de la indeterminación que encontramos en la sección anterior, haciendo posible la estática comparativa local. Sin ser sorprendente, tal pronóstico es imposible cuando el estado estacionario es inestable. Aquí sólo examinaremos las condiciones iniciales nominales para hacer la presentación tan sencilla como sea posible; un análisis análogo puede hacerse para condiciones iniciales reales.

Un pronóstico de iteración cerrada en una función \(p_{t+1} = f(p_t)\) que proporciona los precios del período siguiente como una función de los precios corrientes. Supondremos que \(f\) satisface los siguientes supuestos:

SUPUESTO F.1 (diferenciabilidad): \(f\) es una función \(\mathbb{R}^2\) definida en un cono abierto \(U_1 \subset \mathbb{R}^n\) que contiene los precios relativos \(p\) del estado estacionario.

SUPUESTO F.2: \(f(p) = \beta p\).

SUPUESTO F.3 (homogeneidad): \(f\) es homogénea de grado uno.

SUPUESTO F.4 (previsión perfecta): \(z(p_t, f(p_t)) + y(f(p_t), f'(p_t)) = 0\).

SUPUESTO F.5 (convergencia): \(\lim_{t \to \infty} f'(p_t) / \|f'(p_t)\| = p / \|p\|\) para todo \(p_t \in U_1\).

Aquí, por ejemplo, \(f'(p)\) denota \(f'(f(p))\). El supuesto F.2 insiste que en el estado estacionario la regla de pronóstico recoge el estado estacionario F.4 es el supuesto de previsión perfecta: si los pronósticos se realizan, los mercados efectivamente se vacían. El supuesto A.5 dice que sólo estamos interesados en las reglas de pronóstico que permiten la convergencia hacia el estado estacionario, en otras palabras, que son estables.

Empezamos por preguntar si, para \(n' \geq n - 1\), en realidad existe una regla de pronóstico que satisfaga los supuestos F.1-F.5. Como antes, consideraremos primero el problema linealizado. Para construir una regla de pronóstico escogemos \(v_1, \ldots, v_{n-1}, q\), los vectores propios independientes en \(V\), el subespacio estable del sistema linealizado. Es importante que podamos escoger \(v_1, \ldots, v_{n-1}\), de tal manera que los vectores complejos aparezcan en pares conjugados. Esto se puede hacer siempre que \(n - 1\) sea par. También siempre se puede hacer si \(n' = n - 1\) puesto que \(v_1, \ldots, v_{n-1}\) incluye todos los vectores propios correspon-
dientes a los valores propios dentro del círculo de radio β y tales vectores propios necesariamente son complejos conjugados. En el caso peculiar cuando $n - 1$ es impar y no hay valores propios reales dentro del círculo de radio β, y entonces no hay vectores propios reales en V_{s}, no podemos hacer esta elección de $v_{1}, ..., v_{n-1}$. Esto no es accidental: en este caso no hay reglas de pronóstico estables de previsión perfecta.

Sea V_{s} el espacio vectorial real generado por $v_{1}, ..., v_{n-1}, g$, puesto que los vectores complejos vienen en pares conjugados, el espacio es de dimensión n. Lo que sugerimos es, para p_{i} dada, escoger p_{i+1} tal que $(p_{i} - \beta^{i}p_{i+1}, p_{i+1} - \beta^{i+1}p_{i})$ sea un elemento de V_{s}. A partir de la estructura de g existe una única elección de p_{i+1} dado que:

SUPUESTO FR.1: $v_{1}, ..., v_{n-1}, p$ son vectores independientes donde v_{i}, $i = 1, ..., n - 1$, se forma con los primeros n componentes de v_{i}.

Si se cumple FR.1, podemos encontrar una única matriz F, la cual depende de $v_{1}, ..., v_{n-1}$, tal que

$$
(p_{i+1} - \beta^{i+1}p) = F_{i+1}p
$$

sea nuestra regla de pronóstico lineal.

Revisamos primero que el sistema linealizado (5.1) satisfaga la versión linealizada de F.2 F.5. Puesto que $q \in V_{s}$, $(p_{i}, p_{i}) \in V_{s}$ y, por consiguiente, $p = \beta p$. Puesto que $v_{1}, ..., v_{n-1}, q$ son vectores propios de G, V_{s} es invariante bajo el sistema dinámico G, lo que significa que si $q_{i} \in V_{s}$ entonces $Gq_{i} \in V_{s}$. Finalmente, puesto que $V_{s} \subset V$, y $(p_{i}, -\beta^{i}p, p_{i+1}, -\beta^{i+1}p) \in V_{s}$ debemos tener que $\lim_{i \to \infty} p_{i} = \|p_{i}\| = p/\|p\|$.

Es natural conjeturar que podemos entonces encontrar una f con $Df(p) = F$ que satisfaga los supuestos F.1-F.5: esto se sigue del teorema de linealización diferenciable de Hartman en Irwin [18, p.117]. Como g es homogénea de grado uno, f puede escogerse homogénea de grado uno. Si $n = n - 1$, entonces f es única. Esto es bien conocido cuando f es lineal (ver, por ejemplo, Blanchard y Kahn [6]). Sin embargo, $n > n - 1$, f podría no ser única, ni siquiera localmente única. Además, en el caso en que $n - 1$ sea impar y que todos los valores propios de G que caen dentro del círculo de radio β sean complejos, f ni siquiera existirá. La derivada $Df(p) = F$ en el estado estacionario es única localmente, sin embargo; hay solo un número grande finito de posibilidades. Para ver esto escríbese el supuesto F.4 como $(f(p), f^{2}(p)) = g(p_{0}, f(p))$. Diferenciando esto en p vemos que

$$
\begin{bmatrix}
F \\
F^{2}
\end{bmatrix} = G
\begin{bmatrix}
I \\
0
\end{bmatrix}
$$

Escribiendo F en la forma canónica de Jordán $F = HAH^{-1}$, vemos que

$$
\begin{bmatrix}
HA \\
HA^{2}
\end{bmatrix} = G
\begin{bmatrix}
H \\
H
\end{bmatrix}
$$

6. Conclusiones

Concluimos restros posibles para futuros consumidores de β genéricamente data argumentado que β todas posibles para.

Hay un número modelos y en el es deberíamos dejar, superficial que conjuntos de resol modelos es que en uno en términos segundo está espe Como hemos expl [14], y Mas-Colle agregada en el m compradores en el entonces todo lo q
R implica que A es diagonal cuyos elementos son iguales a los valores propios de G y que las columnas de

$$
\begin{bmatrix}
H \\
HA
\end{bmatrix}
$$

son los vectores propios correspondientes de G. Puesto que G tiene solamente un número grande finito de valores propios, sólo hay un número grande finito de elecciones de F; en realidad, nuestra construcción original es la única forma de obtener soluciones que satisfagan los requerimientos de estabilidad F.5.

Nótese que, si $n' > n + 1$, hay en general muchas elecciones posibles de ν_1, \ldots, ν_{n-1} y, por consiguiente, de F. El hecho importante es que sólo hay un número finito de elecciones. Además, bajo nuestros supuestos de regularidad, F varía suavemente con pequeños cambios en los parámetros de (y, z). Al hacer esta técnica comparativa en un conjunto de un número grande finito de reglas de pronóstico, escogemos la única F que corresponde a la regla de pronóstico que se estaba usando antes del shock.

Finalmente, revisamos la condición inicial; ésta es ahora

$$
z_0(a, p_1) + y(p_1, f(p_1)) = 0 \quad (5.4)
$$

Podemos resolverlo localmente para p_1 resultando

$$
p_1 = -(D_2z_0 + D_1y + D_2yf)^{-1}D_1z_0a \quad (5.5)
$$

6. Conclusiones

Concluimos resumiendo nuestros resultados e indicando algunas direcciones posibles para futuras investigaciones. Cuando hay un número grande finito de consumidores de vida infinita hemos demostrado que los equilibrios están genéricamente determinados. En el caso de las generaciones sucesivas hemos argumentado que la determinación, la indeterminación, y la inestabilidad son todas posibles para un amplio rango de economías.

Hay un número de diferencias obvias en la especificación de estos dos modelos y en el experimento conceptual que sobre ellos hemos realizado. No deberíamos dejar, sin embargo, que estas diferencias, que en realidad son más superficiales que sustantivas, oscurezcan el notable contraste entre los dos conjuntos de resultados. Una diferencia obvia en la especificación de los dos modelos es que en el primero el comportamiento del consumidor está especificado en términos de funciones de utilidad y dotaciones mientras que en el segundo está especificado en términos de los excesos de demanda agregada. Como hemos explicado, sin embargo, los resultados de Mantel [24], Debreu [14], y Mas-Colled [27] justifican el uso del concepto de exceso de demanda agregada en el modelo de generaciones sucesivas: en cuanto el número de consumidores en cada generación excede el número de bienes, en este caso $2n$, entonces todo lo que la maximización de la utilidad implica sobre los excesos de
demanda agregada está dado por los supuestos A.1 A.4. En otras palabras, podríamos haber derivado los mismos resultados para el modelo de generaciones sucesivas si lo hubiéramos especificado en términos de funciones de utilidad y dotaciones; hemos empleado la formulación de exceso de demanda solamente porque es más conveniente. En el modelo con un número finito de consumidores de vida infinita, sin embargo, el teorema de Mantel-Debreu no se cumple: Hay más bienes que consumidores. Reducir la dimensión del problema de caracterización de equilibrios al número de consumidores, un número finito, es un paso crucial en nuestros argumentos. Es, de hecho, una pregunta abierta si un modelo con un número infinito de consumidores de vida infinita tiene genericamente equilibrios determinados.

Un aspecto muy restrictivo de nuestra especificación del modelo con consumidores de vida infinita es que la utilidad es aditiva separable y descontada a una tasa constante. Esto implica, por ejemplo, que, si no tienen todos los consumidores el mismo factor de descuento y, entonces aquellos con factores de descuento menores que el máximo no consumen nada asintómicamente. Conjeturamos, sin embargo, que nuestros resultados prevalecen en modelos con preferencias más generales; valdría la pena verificar esto.

Deberíamos señalar que los resultados de determinación en el modelo con consumidores de vida infinita no están de ninguna manera relacionados con los resultados de determinación obtenidos con el modelo de generaciones sucesivas con un solo consumidor con utilidades aditivas separables en cada generación; el último resultado depende de manera crucial del supuesto de un consumidor representativo mientras que el primero no depende de dicho supuesto. Sería con certeza útil, sin embargo, saber que la indeterminación en modelos de generaciones sucesivas no puede solamente surgir para un conjunto abierto de economías, sino también para economías con preferencias razonables. Un paso en esta dirección está dado por Keboe y Levine [20], quienes ilustran todas las posibilidades de determinación, indeterminación, e inestabilidad en una economía en la que cada generación está formada por un único consumidor que vive tres periodos con utilidad de elasticidad de sustitución constante. Una caracterización más general de los valores propios en términos de los supuestos sobre las preferencias también valdría la pena.

Otra diferencia obvia en la especificación de los dos modelos es el concepto de equilibrio: en el modelo con consumidores de vida infinita permitimos sendas de precios generales menores que el modelo de generaciones sucesivas restringimos nuestra atención a sendas que convergen a un estado estacionario. Esto no debilitaría el contraste en los resultados para los dos modelos, sin embargo, puesto que la indeterminación del concepto de equilibrio más restrictivo implica la indeterminación del concepto general. Nuestro análisis de equilibrio en el modelo de generaciones sucesivas puede aplicarse a sendas de precios de equilibrio que converjan a ciclos si redefinimos las generaciones y los periodos de tiempo; un ciclo de k periodos puede verse como un estado estacionario de un modelo donde cada nueva generación que se define está formada por k generaciones originales y cada nuevo periodo de tiempo que se define incluye k periodos de tiempo originales. Si fuéramos a analizar el modelo con consumidores de vida infinita usando los requerimientos de convergencia a estados estacionarios precios de equilibrio general que el nuestro y, más grande es lo equilibrio, de hecho entre los dos modelos tales en el modelo de tener derechos sobre reales, positivos o negativos de vida infinita, toda la inicial básicos. Teniendo vida infinita. Los derechos (posiblemente no el suyo) Mientras esos cambios son en el consumidor en equilibrio.

Podría pensarse vienen de los requer para algún tipo de generaciones sucesivas es que $\lim_{T \to \infty} P_{T+k}$ es factible. También ha demostrado Balasso de equilibrio indeterminado sin embargo, esto no es particular. Para hacer que pequeñas, nos perm puede pensarse como de los de la idea de Barro [4] ha argumentado que los descendientes y miembro de una familia una vez que esia hora razón general para función de utilidad y ciertamente posiblemente obvio con esta descuentos son igual rían nada: los consu de sus progenitores embargo, ya hemos plen para especificar. ¿Cuáles son las formas de desarrollo de proyectos y algunos agentes de [79] han considerado aquí. Ellos encuentran...
estados estacionarios, encontraríamos, por supuesto, que cualquier senda de
precios de equilibrio es determinada e inestable. Estudiando un modelo más
general que el nuestro, Bewley [5] ha demostrado que, si el factor de descuento
γ es más grande que lo suficientemente cercano a la unidad, entonces todos los
equilibrios, de hecho, convergen a estados estacionarios. Otra diferencia más
entre los dos modelos se debe a la naturaleza de los dos experimentos concep-
tuales: en el modelo de generaciones sucesivas la generación vieja inicial puede
tener derechos sobre las dotaciones de la generación joven, ya sean nominales o
reales, positivos o negativos. En contraste, en los modelos con consumidores de
vida infinita, toda la renta se genera a partir de la venta de las dotaciones
iniciales propias. Tener derechos nominales es imposible con consumidores de
vida infinita. Los derechos reales, sin embargo, son fácilmente asignados como
(posesivamente no estacionarios) cambios en la estructura de las dotaciones.
Mientras esos cambios no resulten en rentas no positivas para cualquier
consumidor en equilibrio, nuestro análisis sigue siendo verdadero como antes.

Podría pensarse que las diferencias en los resultados de determinación
viene de los requerimientos en el modelo con consumidores de vida infinita
para algún tipo de condición de transversalidad, la cual no tiene el modelo de
generaciones sucesivas. Sin embargo, éste no es el caso. Todo lo que la
condición de transversalidad garantizaría en el modelo de generaciones sucesi-
vases es que \(\lim_{t \to \infty} p_t = 0 \). Esto obviamente excluye el equilibrio con dinero
físico. También garantiza la eficiencia en el sentido de Pareto, como lo han
demuestro Balasko y Shell [1]. Puesto que es posible tener sendas de precios
de equilibrio indeterminadas que convergen a un estado estacionario con \(\beta < 1 \),
sin embargo, esto no garantiza la determinación.

Para hacer que las diferencias entre los dos modelos parezcan aún más
pequeñas, nos permitimos señalar que el modelo con agentes de vida infinita
puede pensarse como un modelo de generaciones sucesivas donde los consumi-
dores dejan herencias a sus descendientes y dan legados a sus progenitores.
Barro [4] ha argumentado que, si los niveles de utilidad del tiempo de vida de
los descendientes y progenitores entran en las funciones de utilidad de cada
miembro de una familia de consumidores de vida infinita, entonces esta familia
actúa como si fuera un solo consumidor de vida infinita. Aunque no hay una
razón general para sospechar que este consumidor de vida infinita tendría una
función de utilidad con un factor de descuento constante y separable aditiva, es
ciertamente posible pensar en especificaciones en las que la tendencia. Un proble-
ma obvio con esta clase de especificación es que, si no todos los factores de
descuento son iguales, entonces asintóticamente, algunas familias no consumi-
rian nada: los consumidores usan casi toda su renta para el servicio de la deuda
de sus progenitores, la cual, ellos a su vez, pasarán a sus descendientes. Sin
embargo, ya hemos conjeturado que los resultados de determinación se cum-
plen para especificaciones más generales que evitan este tipo de problemas.

¿Cuáles son las propiedades de un modelo en el que algunos consumi-
dores dejan herencias y otros no lo hacen, en otras palabras, un modelo con
algunos agentes de vida infinita y otros de vida finita? Muller y Woodford
[29] han considerado esta pregunta usando el enfoque que hemos desarrollado
aquí. Ellos encuentran que, aunque la presencia de consumidores de vida
infinita elimina los equilibrios que son ineficientes en el sentido de Pareto o incluyen dinero fiduciario, ello no elimina la indeterminación. También extienden nuestro análisis incluyendo economías con producción y activos infintamente perdurables. Pueden identificar un número de casos en los que los equilibrios están determinados, aunque, como en el modelo que hemos analizado aquí, hay conjuntos abiertos de economías con equilibrios indeterminados. De nuestros resultados surgen muchas preguntas interesantes: ¿El resultado de determinación versus indeterminación depende de número de agentes finitos versus infinito o de horizontes de vida finitos versus infinitos? ¿Qué propiedades matemáticas poseen los modelos con un número infinito de agentes de vida infinita? En el modelo de generaciones sucesivas hemos estudiado el comportamiento de las sendas de precios de equilibrio cerca del estado estacionario. ¿Es posible decir mucho acerca de su comportamiento lejos del estado estacionario? A través de este artículo hemos supuesto expectativas de previsión perfecta. ¿Qué alternativas teóricamente atractivas existen? ¿En cuanto nos tenemos que alejar del supuesto de previsión perfecta para conseguir determinación?

Referencias

