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Abstract

In this paper, I construct a model of an exchange economy in which bankruptcy arises in a man-
ner similar to what we observe. This model is a more realistic representation of some markets in
which intertemporal assets are traded. Using standard and natural assumptions, I show that every
economy represented by this model has an equilibrium. Using examples, I highlight some welfare

effects of bankruptcy.
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1 Introduction

In recent years, total indebtedness has increased greatly and a greater proportion of this debt is
being traded in asset markets through securitized pools of assets. For example, using data from
the Flow of Funds accounts of the United States, we see that from the end of 1990 to the end of
the first quarter of 2000, total consumer credit outstanding has increased from $0.8 trillion to $1.4
trillion and total mortgages outstanding from $3.8 trillion to $6.5 trillion. Over the same period,
the proportion of consumer credit traded in asset markets through securitized pools of assets has
grown from 9.5% to 30.6% and the proportion of total mortgages from 28.6% to 46.0%.2

Also, the number of personal bankruptcies has increased greatly. For example, in the United
States, total personal (non-business) bankruptcies increased from about 286 thousand for the twelve
months ended March 31, 1985 to about 787 thousand for the twelve months ended March 31, 1995
to about 1.3 million for the twelve months ended March 31, 2000.3

These observations imply that there is a greater chance that a debtor’s debt is being traded in
asset markets through a securitized pool of assets and that a bankruptcy affects creditors invested
in such pools. Because agents can be buyers of some assets and sellers of others, default by some
debtors leads to partial recovery for their creditors and this might force these creditors to default
on their debt to others. This can set off a chain reaction resulting in widespread default and
bankruptcy. As more and more people invest in asset markets (either directly or indirectly) these
chain reactions can potentially affect a large proportion of the population.

Thus, it becomes important to understand how bankruptcies filter through and affect investors
in a securitized pool of assets, how they affect recovery rates on assets and how they affect trading
and the allocation of resources through the mechanism of markets. To do this, it is important
to understand the legal framework governing bankruptcy (for example, the rights of creditors and
debtors in bankruptcy law and the role of exemptions) and the trading institutions governing credit
(for example, the effects of credit limits on asset trade and the role of an agent’s default history

in determining his credit limit and future trading ability). In this paper, I construct a model

2An even higher proportion of revolving consumer credit is securitized. According to Statistical Release G.19 of
the Board of Governors of the Federal Reserve System (August 2000), at the end of the first quarter of 2000, pools

of securitized assets were 52.6% of revolving consumer credit; which stood at $609 billion.
3Source: Administrative Office of the U.S. Courts (News Release; June 9, 2000) and earlier data. Also, personal

bankruptcies account for most of the bankruptcies. In 1985 they were 81.5% of all bankruptcies, in 1995 they were
93.8% and in 2000 they were 97.1%.



of an exchange economy that can be used to analyze these issues. The view in this paper (and
also in some of the other papers mentioned below) is that default and bankruptcy are important
economic phenomena that can be part of an economic equilibrium with competitive markets and
these phenomena are consistent with smoothly functioning asset markets.

As we know, in our society, the issue of bankruptcy is very old. In the United States, a
Bankruptcy clause (Clause 4 of Section 8 of Article I) was adopted in its Constitution on September
3, 1787 (see Warren (1935), page 5). There might be moral arguments for allowing agents to
discharge their debt. However, as the following paragraphs show, debates on bankruptcy bills
provide ample economic justifications for such a discharge.

Allowing for repudiation of debt through bankruptcy law can increase economic activity and
improve welfare of society. This idea has been in public discussion for at least 200 years. For
example, Warren (1935), on page 16, writes the following about the debate on a bankruptcy bill in
1792; “the advocates of the bill, largely from the commercial sections of the country, pointed out
the necessity of restoring to active trade-life the thousands of debtors then in jail or else unable to
resume business by reason of their load of undischarged debts; and they further urged the necessity
of preventing such a condition from again arising.” And again on page 18, “As Jefferson wrote
to Madison: ‘The whole commercial race are lying on their oars and gathering in their affairs,
not knowing what new failure may put their resources to the proof.” In the existing stagnation of
commerce, he said, loans could not be made or money transferred from one city to another.” Using
the language of modern economics, we can say that an equilibrium in an economy with bankruptcy
can have more asset trade than and strongly pareto dominate an equilibrium in the corresponding
economy without bankruptcy.

Similarly, the idea of an optimal bankruptcy law, one that balances rights of a creditor against
the misfortune of a debtor, has been in public discussion for at least 200 years. For example,
Warren (1935), on page 17, writes the following about the views of James A. Bayard of Delaware
in 1792, “A bankrupt law he held was necessary to protect creditors from dishonest and fraudulent
debtors, as well as to enable creditors to protect honest debtors whose trade had been subjected
to unforeseen accidents who shall surrender all their property in order to obtain a discharge.” And
again on page 166, he quotes the following objective of a bankruptcy law from the papers of James
A. Bayard, “Its object is, in the first place, to support mercantile credit, by protecting the rights
of creditors against the fraud of dishonest and the folly of imprudent debtors who may waste or

conceal their property while the ordinary forms of law are going on against them; and secondly to



encourage fair industry and prudent conduct, by enabling honest debtors reduced by misfortune, to
give up their property, free themselves entirely from their debts, and begin the world anew, which

? Thus, an

no man will ever have the courage to do, while a load of old debts is hanging on him.
optimal credit limit and exemption level depends, among other things, on the characteristics of the
agents in the economy.*

In economics, there is an extensive literature on bankruptcy.® To model bankruptcy, many
economists have used a partial equilibrium framework. Their models provide important insights
about optimal debt contracts, about optimal corporate debt versus equity and about dynamic
credit cycles. However, these models do not always capture the feedback effects that are captured
naturally in the general equilibrium framework. Also, these models and some of the earlier models
in the general equilibrium framework exogenously specify whether an economic agent is a debtor
or creditor (hence in these models, agents cannot be buyers of some assets and sellers of others)
and they do not have any real heterogeneity among the economic agents involved. The reader can
get a flavor of some of these models from the papers of Townsend (1979), Stiglitz and Weiss (1981),
Aghion and Hermalin (1990), Hart and Moore (1994), Kiyotaki and Moore (1997), Bernanke,
Gertler, and Gilchrist (1996), Wang and White (2000). This list is by no means comprehensive.

The first attempts to include bankruptcy in a special model of general equilibrium with complete
markets seem to be by Shubik (1972) and Shubik and Wilson (1977). In the framework of a full-
blown model of general equilibrium with complete markets, a seminal paper is by Kehoe and Levine
(1993). Drawing on the literature on dynamic consistency, Kehoe and Levine introduce individual
rationality constraints in the form of endogenous debt limits. These imply that in an equilibrium,
no agent defaults in any state. Alvarez and Jermann (2000) (building on Kehoe and Levine (1993)
and Kocherlakota (1996)) cast these constraints in the form of portfolio constraints and investigate
limited risk-sharing. Their models provide insight in understanding consumption and have been
used in the macroeconomics literature. However, by their very construction, these models do not
have any default or bankruptcy in equilibrium. Hence, if we believe that default or bankruptcy are
ongoing phenomena in market trading and that markets can function smoothly in their presence
then these models cannot explain the existence of default or bankruptcy.

The model that I construct belongs to the class of economic models of general equilibrium with

4For more details on the history of bankruptcy law, the reader can consult Warren (1935) and Dunscomb(Jr.)

(1898).
®A search in EconLit for bankruptcy yields more than 1200 articles since 1969.



incomplete markets or, GEI-models.® In this framework, a seminal paper is by Dubey, Geanakoplos,
and Shubik (1997). Some other models are proposed by Dubey, Geanakoplos, and Zame (1997),
Modica, Rustichini, and Tallon (1999) and Araujo and Pascoa (1999). Some of the economic
justifications for allowing default and bankruptcy that are mentioned above can be seen formally
in these models, in Shubik and Wilson (1977), in Zame (1993) and also in the model I construct.
However, (as we shall see below) when compared to these models, my model portrays better the
institutions involved in bankruptcy and it allows for an explicit role for exemptions and credit
limits. Therefore, in my model, we can see directly the effect of these institutional details on asset
trade, debt recovery and equilibrium allocations.

Dubey, Geanakoplos, and Shubik (1997) assume that an agent incurs a loss in utility when he
defaults, the loss increasing proportionately in value of default. In their words, utility penalties
are “interpreted as the sum of third party punishment, future (unmodelled) reputation losses, and
pangs of conscience” (see page 9 of their paper). However, utility penalties exist in the psyche of
the consumer. Such penalties leave the creditor no legal recourse for debt recovery, they exclude
the role of the legal framework in determining an agent’s choice set and they rule out any effect
of an agent’s default history on his future access to asset markets. Utility penalties, by subsuming
these relevant economic processes, prevent any analysis of them. In the model I construct, there
are no direct utility penalties. Instead, I work with the more realistic framework of economic and
legal processes and their effects on an agent’s choice environment.

Also, in a general equilibrium model of bankruptcy, there can be what we may call a trivial
equilibrium — an equilibrium in which agents expect economy-wide bankruptcy and no recovery
on the assets and hence there is no trade in the assets. As Dubey, Geanakoplos and Shubik point
out, with pessimistic expectations about debt recovery, this is a possibly realistic equilibrium. Of
course, we also want to know when there is a non-trivial equilibrium. Dubey, Geanakoplos and
Shubik show the existence of a non-trivial equilibrium by ruling out the trivial equilibrium. They
rule it out by requiring agents to expect full recovery on each asset in which there is no trade (or
more precisely, on each asset for which the aggregate value of promised delivery is zero). They
motivate this by writing (on page 17), “one can (but need not) interpret these expectations as if
the government guaranteed delivery on the first infinitesimal promises”. This is certainly possible
but might not always be the case, especially when a government is reluctant or unable to credibly

guarantee delivery. Also, this expectational refinement is based on an endogenous variable (value

SFor details of the GEI model, see Magill and Quinzii (1996).



of promised delivery) and it rules out the (possibly realistic) trivial equilibrium. I do not make
any such expectational refinement, in my model there can be a trivial equilibrium and I show the
existence of a non-trivial equilibrium by making assumptions about the exogenous parameters of
the model.

Dubey, Geanakoplos, and Zame (1997) require the seller of an asset to purchase collateral which
can be confiscated if he defaults. To operationalize this, Dubey, Geanakoplos and Zame treat all
goods as durable. At the time of delivery, if an agent defaults he loses the undepreciated portion of
the collateral. The penalty of losing the undepreciated value of collateral is economic in nature and
therefore, it avoids the difficulties of utility penalties. However, the model of Dubey, Geanakoplos
and Zame omits an important aspect of default. In their model an agent is never bankrupt. This
is because in their model, the amount that an agent has to repay on his debt is never greater than
the value of the undepreciated collateral. (This also implies that debt recovery from an agent on
one claim is insensitive to an agent’s exposure to other claims.) The creditor has no legal recourse
over and above this value if this value is less than the value of the promised payoff. Since an agent
has to purchase collateral when he sells an asset, he always has enough resources to repay his debt.
Hence, he is never bankrupt. In the model I construct, there is bankruptcy. Moreover, I show that
we can have bankruptcy without invoking the apparatus of durable goods or securing lending by
an already identified portion of an agent’s income.

Modica, Rustichini, and Tallon (1999) assume that an agent is aware of the existence of some
states of the world and unaware of others. Each agent plans only for states of which he is aware
and in such a state his plan accounts for full payment on all his debts. If a state occurs of which an
agent is unaware and in this state he has enough resources to repay his debts, he repays his debts
fully. Otherwise he defaults. Since different agents might be unaware of different states, an agent
expects partial repayment on his holdings of assets even in states of which he is aware.

Modica, Rustichini and Tallon assume that in a state of which an agent is unaware, the maximum
penalty for default that a court imposes on him is his income in that state. In a state of which an
agent is aware, they say that an agent repays his debt because “a court could impose large penalties
if it discovered that the agent is bankrupt” (page 261). Suppose this penalty is the same as the
one in a state of which he is unaware. Modica, Rustichini and Tallon assume that the preference
of every agent is strongly monotone and convex. In addition, suppose there is one agent who has
a bounded intertemporal rate of substitution. In this case if the price of any asset is positive

this agent wants to sell an infinite amount of the asset. Therefore, for asset markets to clear it



is necessary that the price of every asset is zero, which essentially means that asset markets shut
down. Thus, in any equilibrium of such an economy, if the price of any asset is to be positive it
must be that the penalty which a court imposes in a state of which an agent is aware is larger
than the one it imposes in a state of which he is unaware. This implies that a court is cognizant of
which states an agent is aware or unaware. Such cognizance is implausible because the notion of
an agent’s subjective state space is intrinsic to the agent. Thus, in an important sub-collection of
economies represented by their model there seems to be an interpretive difficulty.

Modica, Rustichini and Tallon also mention some unusual features of their model. For example,
equilibrium with unawareness might not exist even with complete markets. And, it is not possible
to interpret their model as one in which agents assign zero probability to states of which they are
unaware (page 265).

Araujo and Pascoa (1999) propose a model that is close in spirit to the one that I construct.
However, they assume that there is a fraction such that this fraction of every agent’s income
cannot be garnished by creditors. This implies that the level of exemption of a rich agent can be
substantially larger than that of a poor agent. This violates the essence of discharge, exemption
and fresh start in bankruptcy law (that is, in exchange for forfeiting his resources in excess of some
bare minimum exemption, an agent can discharge his debt and start his commercial life afresh)
and it differs from the fixed level of exemption that we actually observe. (With a fixed level of
exemption it can be that a very small fraction of the endowment of a poor individual is garnished
and a large fraction of the endowment of a rich individual is garnished.) The model that I construct
captures this aspect of an exemption. Araujo and Pascoa also assume that assets have nominal
payoffs whereas in the model that I construct, assets have real payoffs.

The models by Dubey, Geanakoplos and Shubik, by Dubey, Geanakoplos and Zame, by Modica,
Rustichini and Tallon, and by Araujo and Pascoa all fail to capture an important aspect of default
— the effect of an agent’s default history on his future trading opportunity. This is because their
models have only two time periods whereas the earliest such an effect can be captured is in the
third period. The model I construct has finitely many periods. In it, the default history of an agent
can affect his future trading opportunity in a fairly general manner.

In constructing this model and in proving existence of an equilibrium, I strive to maintain
as much flavor of the Arrow-Debreu model as I can. However, the reader will find the following
features specific to this model and to the proof I present.

In this model, in any period and state of the world, if the excess of an agent’s (gross) income



over the value of his exemption is less than what he owes, the only penalty imposed on him in that
period and state is forfeiture of this excess income. Because his liability is limited to this excess
income, an agent might want to sell an infinite amount of an asset. To prevent this, I introduce
the notion of a credit limit. Also, in the model, the definition of disposable income implies that the
budget set of an agent can be non-convex. To guarantee that aggregate demand is convex-valued,
I assume that the model has a continuum of agents and their distribution is atomless.

In the proof of existence of an equilibrium, in addition to an agent’s optimal choice of a con-
sumption and portfolio plan, it is important to know the loss and debt information associated with
this plan. I extend the demand set to include this information. Also, in the proof, it is necessary
to have a procedure to compute the default rate from aggregate loss and aggregate debt. I define
a default rate correspondence to carry out this computation. Both these modifications can jeopar-
dize a naive adoption of a standard proof of existence of an equilibrium (for example, as given in
Hildenbrand (1974)). Part of what I show in this paper is that a careful adoption of a standard
proof of existence of an equilibrium is possible even with these modifications. This shows that in
the existence proof in this paper, we may use intuition similar to that used in a standard proof of
existence of an equilibrium. It also shows the power and adaptability of the standard proof.

To formalize and prove the claims mentioned above, I proceed in the following manner. First,
I specify the model, define an economy and an equilibrium in it and state the main results. Then,
I present some welfare effects of bankruptcy. After that, I prove the main results. Finally, I point

out some ways in which we may modify and extend the model.

2 Specification of the Model

To specify the model, I proceed in the following manner. First, I outline the organization of
economic activity in an exchange economy in which there is bankruptcy. This helps us understand
the role of the relevant economic and legal entities and the relations among them. Then, I formally
introduce some basic concepts. After that, abstracting some components from the existing legal
framework, I formalize the rights of creditors and debtors in the model. This helps us determine
the financial position of an agent in the model. After that, from some trading restrictions that we
observe, I derive a credit limit for an agent in the model. This helps us formalize the role of credit
limits in the model. Finally, I define a budget set, a demand set, an economy and an equilibrium

in an economy and state the main results.



At an elementary level, an individual becomes bankrupt if his choice set includes plans which
entail his becoming bankrupt in some states of the world and he chooses such a plan. His choice set
might include such plans because of uncertainty and the legal framework. Uncertainty (about his
ability to honor promises of future delivery of goods) enables an agent to make promises of future
delivery of goods which, in some states, exceed his ability to honor them. The legal framework
allows him, in some situations, to renege on his promise and in the provisions of bankruptcy law,
seek protection from creditors. Thus, there is personal bankruptcy because uncertainty combined
with the institutional framework allows plans which entail bankruptcy in some states of the world
to be included in an individual’s choice environment and he chooses such a plan.

In an exchange economy in which there is bankruptcy, economic activity might be organized
as follows. There are consumption goods and assets. Agents use assets to move income among
different time periods and among different states of the world so that they can finance the bundle
of consumption goods that they desire most. One way to move future income to the present is by
getting a loan. This is like selling a promise for future delivery of some good.

When an agent goes to a bank or a credit institution to get a loan, the lenders never determine
his actual ability to repay the loan in every possible state of the world. Rather, they estimate this
ability. They estimate the agent’s future salary, confirm his employment status, evaluate his default
history and determine the riskiness of the loan by considering repayment schedules on similar loans
to others. Using standardized criteria they determine an agent’s credit limit. An agent can get a
loan up to his credit limit. In this view, a bank or a credit institution serves mainly as a check-point
that imposes a credit limit constraint on an agent if he wants to sell a promise for future delivery
of some good. As long as an agent’s promise for future delivery satisfies the constraint imposed by
this check-point, he may sell such promises.

The lenders aggregate these loans to manufacture a composite security, pieces of which are
traded in asset markets.” An agent purchasing a unit of this asset gets a slice of the underlying
loans and bears the average default risk on them.?

At the time of repayment, creditors have some claim to a debtor’s income. However, to ensure

that the debtor is not left penniless, bankruptcy law provides for some exemptions.® A debtor’s

"For example, markets in which collateralized mortgage obligations are traded, markets in which credit card debt

is traded and markets in which car loans are traded.
8In thinking about securitized pools of assets, I follow Dubey, Geanakoplos, and Shubik (1997).
9See §522 of Title 11 of the United States Code Annotated. Examples of exemptions are (some of the) value of

homes, vehicles, retirement accounts, furniture, clothes and other personal property. White (1998) lists exemptions



income up to the value of these exemptions is exempted from forfeiture even if he has debt out-
standing (an abstraction of §522(b)(1) of Title 11 of the United States Code Annotated). Although
creditors cannot reach into a debtor’s exemptions to recover their money they have a prior claim to
the excess of a debtor’s income over the value of his exemptions (abstraction of §726). If an agent’s
(gross) income minus his exemptions is sufficient to repay his creditors, he is required by law to
pay his debts fully. From such an agent there is no loss on any asset and his disposable income is
what remains of his income after paying off what he owes. If an agent’s (gross) income minus his
exemptions is insufficient to repay his creditors, he is bankrupt. From every bankrupt agent the
courts confiscate the excess of his income over his exemptions, determine the loss from him on each
asset based on the method of proportional recovery and discharge his debts (abstractions of §704,
§726-727). The disposable income of each bankrupt agent is the value of his exemptions.'°

Agents use their disposable income to finance their consumption. Total loss on an asset is the
aggregate of loss from each agent on this asset. The ratio of total loss on an asset to total debt
owed on it is the default rate on the asset. Creditors bear the loss in proportion to their asset
holdings.

The model of an exchange economy that I construct has the essential features mentioned above.
A natural notion of equilibrium in such an economy is a collection of prices, default rates and
individual plans such that individuals are optimizing, markets are clearing and the default rate on
an asset equals the ratio of total loss on that asset to total debt owed on it. With this notion of
equilibrium and using standard assumptions about preferences and endowments and using natural
assumptions about the rights of creditors and debtors and about credit limits, I show that every
economy represented by this model has an equilibrium.

Let us look at some basic concepts. I assume that partial order on RX, K = 1,2,..., is the usual
one.!! For any ¢ € RK, ¢, denotes the positive part of ¢ and is the vector with k-th component

& if & > 0 and 0 otherwise and & denotes the negative part of ¢ and is the vector with k-th

by state for each state in the United States and for the District of Columbia. Note that, by §522(e), a debtor cannot

contract away his exemptions. As Epstein (1995) writes on page 177, such a contract is not enforceable.
10The model that I construct abstracts some essential components of bankruptcy under Chapter 7 of the United

States Bankruptcy Code. According to the Administrative Office of the U.S. Courts (News Release; June 9, 2000), in
the last six years, Chapter 7 bankruptcies hovered around 73% of all personal bankruptcies and personal bankruptcies
increased from 94% to 97% of all bankruptcies. A description of the Bankruptcy Code is given in Epstein (1995) and

a quick overview in White (1998).
Uy > y means Ty > Yk, k=1,... ,K; £ > ymeans x > y and £ # y; * > y means rx > Y,k =1,... ,K. For

E C R, E, is the set of those elements in E which are greater than or equal to 0.



component —&, if & < 0 and 0 otherwise. Thus, for any ¢ € RX, ¢, >0,6_>0and ¢ =&, —¢_.

The model has a finite number of periods, indexed ¢t = 1,... ,7T and a finite number of states,
indexed s = 1,...,5. Each state s is a particular history of the environment from period 1
through period T. The events observable in period ¢ are given by a partition S; of {1,...,S}.
To reflect dependence of actions in period ¢ on events observable in that period, I shall say that
a function on {1,...,S} is S;-measurable if it is constant on each event E; € S;. To reflect the
additional availability of information as time goes on, I assume that the sequence of partitions,
S = (8;)L, is nondecreasing in fineness and call it an information structure. Fort=1,...,T,
let Ry = {(&(s))5_1 € R¥|&(-) is Si-measurable } be the subspace of RS consisting of vectors which

T
are S;-measurable and let R = X R;.

t=1
The model has a finite number of consumption goods, indexed £ =1,... , L. The consumption
T
space in period t is X; = (R}), and the consumption space is X = x X;. An element z =

t=1
(z¢)]_, € X is a consumption plan which entails consumption of z;(s), units of good £ in period

t, state s.

The model has a finite number of assets or contracts,'? indexed j = 1,...,J. Their payoff
in period t is summarized by a S x J matrix of asset returns, denoted A;. Its sj-th component,
denoted Aq(s);, specifies the (non-negative) payoff of asset j in period t, state s in terms of good
£ = 1. For convenience, I assume that Ay is the zero matrix and to reflect the dependence of asset
returns on the information available, I assume that for each ¢ > 2, A4(-) is S;-measurable. The
sequence of asset return matrices, A = (At)g;l, is called an asset structure. Portfolios of assets
are defined as follows. The portfolio space in period ¢t < T — 1 is Z; = R{ and that in period ¢t = T
is Zr = {0} C R7.. The portfolio space is Z = 51 Z;. An element z = (2;)]_, € Z is a portfolio
plan which entails a holding of z(s); units of a;set j in period t, state s. Occasionally, we shall
run across the notation z;_1, where t = 1. Whenever we have to consider a portfolio zg, let us use
zo = 0.

Prices of goods and assets are defined as follows. The price space in period t < T — 1 is
Ay = {(pt,qt) € (R{) 4 | for every s, 3, pe(s)e + doa(s); = 1} and that in period ¢t = T is
Ap = {(pT,O) € (RET), | for every s, 3, pr(s)e = 1}. The price space is A = § A;. Each

t=1
element (p,q) € A is a price system with p;(s), the price of a unit of good /£ in period ¢, state s

2In this model, assets have long lives. However, it is easy to incorporate in this model assets with short lives. In
fact, if there are only assets with short lives, it is easier to prove some components of the proof of existence of an

equilibrium. Also, all welfare effects given in this paper remain true even if assets have short lives.
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and g¢¢(s); the price of a unit of asset j in period ¢, state s.

The model has a continuum of agents I = [0, 1], indexed i € I. (I, B, 1) is a measure space with
@ a complete, finite, atomless measure. Each agent i has a preference relation, ' C X x X, which
is complete, reflexive, transitive, convex, continuous and strongly monotone (z > & = z >* #)3
and an endowment, w' = (w})l_, € X. I assume that the collection of endowments, (w*);cy, lies
in a bounded set, it satisfies inf; w® > 0 and that the map 7 +— (=%, w*) is measurable.

These are the basic concepts. Let us now look at the rights of creditors and debtors in the
model and use these to determine the financial position of an agent.

We know that there are laws governing priority of claims of creditors on a debtor’s income and
laws protecting debtors from the claims of creditors. Abstracting some components from this legal
framework, I assume the following about the decision making environment of an agent in the model.
(1) There is an exemption — that is, a bundle of goods such that the value of an agent’s endowment
up to the value of this bundle is exempted from forfeiture even if he has debts outstanding, (2) a
creditor has a prior claim to the excess of a debtor’s income over the value of the debtor’s exemption
and (3) the claim of any creditor on an agent’s income has the same priority as the claim of any
other creditor. These assumptions describe the rights of creditors and debtors in the model.™
The first assumption implies that the exemption value of an agent is the lesser of the value of his
endowment and the value of the exemption bundle. The second assumption implies that if the
liquidation value of an agent — that is, the excess of his (gross) income over his exemption value
— is greater than the debt he owes, his liability is the debt he owes. Otherwise, his liability is
his liquidation value. The third assumption implies that creditors share losses from a debtor in
proportion to what he owes them. If we think of unsecured lending as lending which is not secured
by an already identified portion of future income but only by a general claim on it then this model
has only unsecured lending.'?

To see an illustration of the notion of a default rate on an asset, suppose that total loss from
agents on this asset is # and total debt owed by them on this asset is 7y, with 0 < 8 <~y and vy > 0.
Then, the default rate on this asset is a = g and recovery rate 1 — . Thus, default rate on an

asset in a particular period and state is a number between 0 and 1 telling us the proportion of debt

which is bad. This motivates the following notation.

13The notions of indifference (~°) and strict preference (') are the usual ones.
' A limitation of this model is that it does not allow for renegotiation.
15We can interpret an asset in this model as a reduced form representation of the unsecured portion of an underlying

asset but I shall not force this interpretation.
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The default rate space in period ¢t = 1 is Vi = {0} C R and in period ¢t > 2 is V; =
{at € RtJ [0<ay <1 } (Here, 0 is the vector of zeros and 1 the vector of ones, both in ’Rtj) The
default rate space is V = tg Vi. An element o € V is a default rate system with oy(s); the
default rate on asset j in pe_riod t, state s.

To ensure that in each period and state the value of the exemption is not zero, I assume that
an exemption is an element e € X such that e > 0.

Let us now determine the financial position of an agent. Suppose (p, g, @) is a price and default
rate system and 2’ a portfolio plan for agent i. In period ¢, state s, agent i’s endowment income
is p(s)wi(s), he is supposed to receive pi(s)1[As(s) + gi(s)]2}_1(s)+ from his period ¢ — 1 asset
purchases but expects to receive only ijl(l — a(8))pe(s)1[Ae(s); + qi(s);](2i_1(s)+); and he
owes py(s)1[A+(s) +q1(s)]zi_;(s)—. The gross income of agent i in period t, state s is the sum
of his endowment income and what he expects to receive in that period and state. His exemption
value in that period and state is ¢!(p, ¢, a, 2 );(s) = min( p(s)wi(s), ps(s)es(s) ) and his liquidation
value in that period and state is the excess of his gross income over his exemption value. Agent i
18 bankrupt in period t, state s if in that period and state his liquidation value is less than what
he owes. His liability in period ¢, state s is the lesser of his liquidation value in that period and
state and what he owes in it. An implication of these definitions is that if we think of default as a
situation in which an agent repays less than what he owes then, in this model, an agent defaults

t.16

exactly when he is bankrup The net income of agent i in period t, state s is

i, q,0,2)i(s) = p(s)wi(s) + Do;(1 — as(s);)pe(s)1[Ar(s); + qe(s);](2f_1(5)+);
— pi(9)1[Ae(s) + @i (s)]zf_1 (s) -

For ¢ = 1 this reduces to p; (s)wt(s). The disposable income of agent i in period t, state s is

Wi(pa q,a, zi)t(s) = ma.x( fi(pa q,Ot,Zi)t(S) ’ ei(paqaaazi)t(s) )

For ¢t = 1 this reduces to p;(s)wt(s). Tt is trivial to check that agent i is bankrupt in period t,
state s if and only if fi(p,q,,2"):(s) < €(p,q,, 2")¢(s). In this case his disposable income is
€' (p, q, @, 2)¢(s) and he contributes (€ — f)!(p, g, a, 2*):(s) = €(p,q, o, 2°)¢(s) — fi(p, q, a, 2*)4(s) to
the pool of bad debts. Otherwise, he contributes nothing to the pool of bad debts. The loss from
agent 7 in period t, state s is A*(p, g, @, 2%)¢(s) = max((e — f)*(p, g, @, 2*)¢(5),0). The debt owed by

agent i on asset j in period t, state s is v (p,q,a,2%)(s); = pt(s)1[Ae(s); + @t (s);](zE_1(s)-);-

'6This does not mean that he has no choice about whether to default or not. He still controls his portfolio choice

which affects his bankruptcy status and hence his default status.
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The ratio of loss from agent % in a period and state to what he owes in it is the proportion of his
debt that creditors cannot recover. Therefore, the loss from agent ¢ on asset j is this proportion of

what he owes on asset j. Formally, the loss from agent i on asset j in period t, state s is

Bi(p, ¢y, 2)(s) SR =T B4 @ Z (e Hp(i[Ails) + as))3 1 (5)- >0
14, Q2 Jt\S )5 — B

0 otherwise.
Notice that for t = 1, 8%(p,q, @, 2)1(s); = 7*(p, g, @, 2%)1(s); = 0.

This summarizes the financial position of an agent in the model. Let us now look at trading
restrictions and how these limit the ability of an agent to take on debt.

From a practical point of view, we know that an individual’s ability to sell an asset and take on
debt is restricted by some credit limit. In the model, a bound on an agent’s ability to sell an asset
is important because with a positive asset price, debt obligation limited by exemption value and
no bound on asset sales, there are many cases in which an agent wants to sell an infinite amount
of the asset.!” Therefore, for asset markets to clear it is necessary that the price of every asset
be zero, which essentially means that asset markets shut down. A credit limit implies a bound on
asset sales. It is this property of a credit limit that I want to abstract and formalize.

We know that a credit limit which an individual faces depends, among other things, on an
estimate of his ability to deliver the goods, on his default history and on the price of the asset.'®
In the model, this is formalized in the following definition.

Let Q = {q € Ri ‘there isp € Rfr and (p,q) € A} and for every j,s,t with ¢ < T — 1, let
Qi(s); = {q €eqQ |qt(s)j > % } A credit limit for agent i is a continuous function C” : QxRi —
RY (mapping (g, ) to C*(q,3)) that is weakly decreasing in 8.1° To reflect the dependence of a
credit limit on the information available in a particular period, I assume that for every ¢, C%(q, 8);
depends only on gy and By where ¢ < t. A credit limit system is a map C : i — C*. I assume
that this map is measurable,?° that C* evaluated at S = 0 when viewed as a function of 7 and q is
bounded and that for every j,s,t witht <T —1, ,u({z el infqut(s)j,ﬂeRi Ci(q,B)i(s); > O}) >0
and if g;(s); = 0 then p({i € I |Ci(q,0)t(s)j =0}) = p(D).

The last two assumptions are useful in proving the main results in this paper. We can think

"For example, every agent with strongly monotone and convex preferences who has a bounded intertemporal rate

of substitution wants to sell an infinite amount of the asset.
18 The price of an asset will reflect the riskiness of the asset.

Y8 < B = Ci, ) < (-, B)).

20The target space is, of course, the space of closed subsets of Q@ x R:. x R{ along with the sigma-algebra generated

by the topology of closed convergence.
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of these assumptions in the following manner. The last assumption says that if in a particular
period and state, the price of an asset is zero then, regardless of his default history, almost no
agent can sell this asset. Of course, if the price of an asset is zero and if an agent selling this asset
has to deliver something on this asset he will choose not to sell the asset and this assumption is
superfluous. This assumption is useful in the case when, even though the price of an asset is zero,
an agent is indifferent between selling or not selling the asset. This happens if the agent is not
required to deliver anything on the asset or if he is bankrupt in the next period. In this situation
the last assumption implies that the agent does not sell the asset.

The assumption before the last one says that, in a particular period and state, if the price of
an asset is bounded away from zero then there are some agents who, regardless of their default
history, can sell this asset. This captures the idea that a credit limit for an agent looks not just to
the past but also to the future. It looks to the future in the sense that there are some agents who,
even though they have a bad default history, will have some money in the next period and hence
are allowed to undertake some promises of future delivery.

In this model, I assume that a credit limit system is exogenous. It would be more satisfying
to endogenize this by postulating an abstract credit limit agency which determines the credit limit
of an agent as the result of an optimization procedure. At the very least, we might expect this
procedure to assign a smaller credit limit to an agent when (expected) loss from this agent is higher
in future periods. However, as an example given below shows, creditors might prefer debtors to
have more debt even when they expect debtors to cause them greater (expected) losses in the
future. This shows us that the notion of an optimal credit limit depends on the characteristics
of agents. Keeping credit limits exogenous allows us to see the effect of different credit limits
on equilibrium outcomes. In future work, I plan to use this information to investigate different
methods of endogenizing credit limits.

Also, in the model, T assume that agents can have individualized credit limits. This does not
mean that agents lose their trading anonymity. At most, they lose their anonymity to a credit-
setting financial intermediary like a bank, a brokerage house or some other lending institution. Just
like they lose their anonymity to a settlement system which allocates a bankrupt agent’s income
among his creditors. In my model (and to an extent in the other models mentioned above) these
intermediaries are abstracted away because they are assumed to play a passive and standardized
role in the economy. This allows us to focus on the trading and allocation aspects of competitive

markets. Once credit limits for agents are determined (intuitively, by financial intermediaries using
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standardized criteria in a passive manner) and a settlement system is in place, these agents can
trade anonymously through markets.

Of course, it is easy and obvious to see that my model can be modified so that credit limits are
independent of agents. This also implies that in determining a credit limit for an agent, we use
some measure of loss independent of particular agents (for example, we can use aggregate loss).
Slightly more generally, depending on some characteristics of agents, we can partition the agents
into a few classes and for agents in each class, use their aggregate loss to determine their credit
limit. To see some other modifications and extensions of this model, see the last section of this
paper.

Using the definition of a credit limit, I formalize the notion that an agent sells assets subject
to a check-point authorization in the following definition of admissibility of a portfolio plan. Let
(p,q, ) be a price and default rate system and C* a credit limit for agent i. A portfolio plan z° is

(C%,p,q,a)- admissible if for every j,s,t witht <T — 1,

if there is s’ € Ey(s) with Ay41(s'); > 0, then Ai1(s);(2i(s)=); < CUgq,B(p,q, 2"))i(s)

otherwise (z}(s)-); < C%(q,B'(p,q, ,2%))e(s);-

Here, F(s) is the event in S; which contains s and 3%(p, q, a, ') is the profile of loss from agent i
on every asset in every period and state. The concept of admissibility formalizes the idea that an
agent’s ability to take on debt depends, among other things, on an agent-specific component which
includes his default history and on the price of the asset which reflects the riskiness of the asset.

Using portfolio admissibility, a bound on asset sales follows immediately.

Lemma 1. Let C be a credit limit system. Then there is Z € Z such that for every price and
default rate system (p,q, ), every agent i, every (C*,p,q, @)-admissible 2%, every period t < T — 1,
state s and asset j, (2i(s)_); < 2(s);.

sup;, C*(4,0)¢(s);

Proof. Let Z be given by 2(s); = max{Ars1(57);] 5'€E:

G757 if there is s’ € Ey(s) such that A;1(s"); >
0 and 2(s); = sup;, C%(q,0)4(s); otherwise. Suppose (p,q,), i, and 2* are as in the hypoth-
esis. Fix j,s and t < T — 1 arbitrarily. If for every s’ € Ei(s), Awy1(s’); = 0 then (2i(s)-);
obviously satisfies the desired inequality. Otherwise, let § € FEy(s) be such that A;1(3); =
max {A¢11(s'); | s' € Ei(s) }. Then, since 2(-) and C(g,0);(-) are S;-measurable and since E;(3) =

E,(s), we have
Ars1(8)(24(5)-); = Am1(8);(2((3)-); < CYa,0)u(8); = C'(q,0)e(s);,
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from which the desired conclusion follows. i

We can now easily comprehend what a budget set for an agent will be like in this model. An
agent’s budget set consists of all consumption and (admissible) portfolio plans which are affordable.
His demand set consists of those plans in the budget set which are optimal with respect to his
preference relation. Formally, let C' be a credit limit system and (p, ¢, ) a price and default rate
system. For an agent i, a consumption and portfolio plan (2%, 2%) is (p, ¢, @)-affordable if in every
period ¢ and state s, py(s)zi(s) + qi(s)zi(s) < W¥(p,q,,2%)s(s). It is strictly affordable if the

inequality is strict. The budget set for agent i is
Bi(p,q,0) = {(xz,z’) eXxZ |(w’,zz) is (p, g, )-affordable and 2° is (Ci,p,q,a)—admissible} .
The demand set for agent i is
Di(p,q,a) = {(m’,z’) € Bi(p,q,a) ‘(xz,zz) € Bi(p,q,a) ==t g }

It is easy to see that B(p,q, ) is compact if and only if p > 0 and ¢; > 0 (for t < T — 1); if
Bi(p,q,a) is compact then D%(p,q,) is not empty; and if D'(p, ¢, «) is not empty then p > 0.
It is also easy to see that the definition of disposable income implies that the budget set can be
non-convex.?!

We now have all the components to define an economy and an equilibrium in it. An economy

represented by this model is a collection
{Sa A, (tza wi)iEIa €, C} )

where S = (S;)L_; is an information structure, A = (A4;)L_; is an asset structure, (=¢,w’) is the
preference relation and endowment of agent 4, e is an exemption, and C' is a credit limit system. An
equilibrium in an economy is a collection (p, q, a; (2%, 2%);c;) where (p,q, ) is a price and default

rate system and

o for almost every 1 € I, (mz,zz) € Di(pa q, ),

o for every s,t, [;zi(s)di= [;wi(s)di and [, zi(s)di =0,

: [k Shatl i idi . ; . i
{ﬁ f§233§§2§§§jd2} if [;7'(p,q,,2")i(s);di >0

[0,1] if [;7'(p,q,c,2")e(s);di =0.

21This non-convexity remains even if we view purchases and sales of assets as belonging to different spaces.

o forevery j,sandeveryt > 2, oay(s); €

16



The first condition requires equilibrium consumption and portfolio plans to be optimal for almost
every agent. The second condition requires markets for goods and assets to clear. The third
condition requires the equilibrium default rate on an asset to equal the ratio of total loss on that
asset to total debt owed on it if total debt owed on it is not zero. If total debt owed is zero the
default rate can be any number between zero and one.?? The main results in this paper are the

following two theorems.

Theorem 1. With the stated assumptions, every economy represented by this model

has an equilibrium.

One way to prove this theorem is by setting, for every s and every t < T — 1, qi(s) = 0
and a;y1(s) = 1 and by setting, for every i, z° = 0. Then asset markets are closed in every
period so that, in essence, we have a finite collection of sub-economies (each with one period and L
consumption goods) without any asset markets connecting them. The standard proof of existence of
an equilibrium (as in an Arrow-Debreu economy) also shows that this economy has an equilibrium.
However, such an equilibrium is trivial. Formally, an equilibrium (p, g, o; (2*, 2*)icr) in an economy
is trivial if for every s and every t < T — 1, either g;(s) = 0 or ay41(s) = 1. The proof of existence

of an equilibrium that I present in this paper also allows me to prove the following theorem.

Theorem 2. Every economy in which for some j,s,t, e;(s) < inf; wi(s) and A;(s); > 0 has

a non-trivial equilibrium.

Before going through a proof of these theorems let us look at some welfare effects of bankruptcy.

3 Welfare Effects of Bankruptcy

In this section, using examples of economies represented by my model, we shall see some welfare
effects of bankruptcy. As I have mentioned in the introduction of this paper, these welfare effects
are well-known in the legal and economics literature. In the general equilibrium framework, many
welfare effects of default are already given in Dubey, Geanakoplos, and Shubik (1997). (Some of
these are also given in Shubik and Wilson (1977), Zame (1993), Dubey, Geanakoplos, and Zame
(1997) and Araujo and Pascoa (1999).) Of course, because Dubey, Geanakoplos, and Shubik

(1997) subsume important institutional details into unobservables like utility penalties, they can

221t is clear that if total debt owed on any asset in any period ¢, state s is zero and the market for that asset clears

then the value of a:(s); is irrelevant.
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investigate ideas like default penalties only indirectly and cannot say anything about the effects
of exemptions and credit limits on an agent’s trading environment. In my model, realistic and
observable penalties for default are explicitly built into an agent’s trading environment. Thus, it is
useful to know that these welfare effects can also be seen in economies represented by my model.

We shall see these welfare effects by considering two examples, each of which has several versions.
In this section, to notationally distinguish an equilibrium in my model from an equilibrium in other
models, I shall refer to an equilibrium in my model as a Bankruptcy equilibrium.

In the first example, we shall see that an asset market which is useless in the GEI model can
become useful when we allow for bankruptcy, that every equilibrium in the Bankruptcy model can
be at least as good as the equilibrium in the GEI model and that a Bankruptcy equilibrium can
pareto dominate a GEI equilibrium. We shall also see the effects of different levels of exemptions
on equilibrium outcomes. If exemptions are too large there is no possibility of debt recovery and
hence no trade in the asset.

The intuition for these results is that a creditor is willing to lend money to a debtor if the debtor
repays his debt in the state in which the creditor likes to consume even though he is bankrupt in the
other state. Also, default rates change the return on an asset; this changes the asset span and can
make the asset more useful. Therefore, the institution of bankruptcy allows agents to effectively
create a new asset that can lead to a pareto improving equilibrium.

In the second example, we shall see that a pareto optimal Bankruptcy equilibrium strongly
pareto dominates the unique equilibrium in the corresponding GEI economy and cannot be pareto
dominated by the unique equilibrium in the corresponding Arrow-Debreu economy. Therefore,
even when asset markets are incomplete and the GEI equilibrium is strongly pareto inefficient, a
Bankruptcy equilibrium can result in an efficient market outcome. We shall also see that an increase
in the credit limit of a debtor increases the equilibrium trade in the asset and the equilibrium
utility of the creditor even though, in some state of the world, the creditor expects the debtor to
be bankrupt and cause him greater losses. Therefore, creditors might want to make it easier for
a debtor to take on more debt even when they expect the debtor to become bankrupt in some
state of the world. We shall also see that the allocation in a Bankruptcy equilibrium is the same
as in the (unique) equilibrium in the corresponding Arrow-Debreu economy. Therefore, even when
asset markets are incomplete and the GEI equilibrium is strongly pareto inefficient, a Bankruptcy
equilibrium can overcome market incompleteness and achieve the same allocation as in the Arrow-

Debreu equilibrium. Finally, we shall also see that a decrease in exemption increases the equilibrium

18



utility of the creditor and decreases the equilibrium utility of the debtor. Therefore, creditors want
to lobby the legislature for lower exemptions and debtors want to oppose such a measure.

The intuition for these results is that if the debtor has enough resources to repay his debt in a
state in which the creditor likes to consume then the creditor is better off if the debtor is allowed
to take on more debt. This dynamic becomes more beneficial for the creditor when the exemption
in this state is low so that the creditor can recover more of his promised payment from the debtor.

In the next subsection, I present the details of the first example. In the subsection after that, I

present the details of the second example.

3.1 First Example

In this example we shall see that if the decision-making environment of the agents is governed by
the GEI model, the only possible equilibrium utilities are those which agents get from consuming
their endowments. Therefore, in this environment, markets serve no useful purpose. However, if
the decision-making environment is governed by the Bankruptcy model then, in every Bankruptcy
equilibrium, utilities are at least as high as those in the GEI model. Also, there are two equilibria
in the Bankruptcy model, each of which pareto dominates the equilibrium in the GEI model and in
each of which there is trade in the asset and the debtor is not necessarily credit constrained; that is
he might choose not to exhaust his credit limit fully. (In fact, these are the only equilibria in which
there is trade in the asset.) Therefore, with the additional institution of bankruptcy, markets can
become useful and can lead to better outcomes. Finally, we shall see the effect of different levels
of exemption on equilibrium outcomes. If exemptions are too large there is no possibility of debt
recovery and hence no trade in the asset.

Consider an exchange economy in which there are two time periods, indexed 1 and 2 and two
states of the world, indexed 1 and 2. There is no information in period 1 and full information in
period 2. There is one consumption good in period 1 and in each state in period 2. The consumption
space is R%. An element z = (z1,72(1),22(2)) in the consumption space is a consumption plan
which entails consumption of z; units of the consumption good in period 1 and z2(s) units of the
consumption good in state s (s = 1,2) in period 2. There is one asset, given by A = [}]. The
portfolio space is R. An element z of the portfolio space is a portfolio plan which entails holding of
z units of the asset. Prices in period 1 are given by (p1,q) where p; is the price of the consumption

good and ¢ the price of the asset. The price of the consumption good is 1 in each state in period
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2. There are two agents, indexed 1 and 2. The preference and endowment of each agent is

Ul = x1 + 22(1) + 10022(2), w' = (1,10,1),
U? = 21 +100z2(1) + z2(2), w?=(1,1,10).

In the GEI model,?3 if prices are (p1,q) with p; > 0, the affordability constraints for agents i = 1,2
that are relevant to this analysis are

0<zi=1- L, and 0 < zh(s) = wh(s) + 2 (s=1,2).
b1

These constraints mean that in every period and state, the value of consumption of every agent
equals his income. In the Bankruptcy model, suppose the exemption is (e(1),e(2)) and the credit
limit for agent i is C*(q). If prices are (p1,q) with p; > 0 and default rates are o = (a(1), @(2)),
the affordability constraints for agents ¢ = 1,2 that are relevant to this analysis are

0<zt=1- p%zZ and 0 < zh(s) = max( wh(s) + (1 — a(s))z". — 2z~ , min(e(s),wh(s)) ) (s = 1,2).

Also, credit limit restrictions mean that for every agent i, 22 < C(q).

In this example, if agents just consume their endowments, their utilities are (U!, U?) = (111,111)
and if their decision-making environment is determined by the GEI model then markets serve no
useful purpose because the unique GEI equilibrium utilities are also (U, U?) = (111,111). We can
check for the GEI equilibrium as follows. Using the affordability constraints for each agent, we can
re-write the utility of each agent as U' = 1 — pilzl +10 + 2! +100(1 4 2%) = 111 + (101 — pil),z1
so that ‘fiTUII >0< p > 10% and U? = 111—#(101—:0%)22 so that % >0 p > 1(1)—2. This
helps us determine the optimal portfolio choice of each agent. If p; < T%Q, the optimal portfolio
choice of each agent is z' = 22 = —1. If p; > ﬁ, the optimal portfolio choice of each agent is
2l =22 = %. If p = ﬁ, the optimal portfolio choice of each agent is 2!, 2% € [—1, ﬁ] Notice

1

that if the asset market is to clear it must be that p; = 15;. Therefore, the unique equilibrium

prices in the GEI model are (p1,q) = (155, 195)- For £ € [~ <1, 157, the corresponding consumption

and portfolio plan for agent 1 is given by z! = (1 — 101£,10 + &,1 4+ €), 2! = £ and that for agent
2 is given by 22 = (1 +101£,1 — £,10 — £), 2?2 = —¢. The unique equilibrium utilities are given by
(U',U?) = (111,111) and in this situation, markets serve no useful purpose.

Notice that in this example, every Bankruptcy equilibrium is at least as good as the GEI

equilibrium. This is because for each agent, the consumption and portfolio plan consisting of his

2For details of the GEI model, see the book by Magill and Quinzii (1996).
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endowment and no trade in the asset is always in the agent’s budget set. (This is independent of
exemptions and credit limits.) Therefore, in each bankruptcy equilibrium, U! > 111 and U? > 111.

Also, the following Bankruptcy equilibrium pareto dominates the GEI equilibrium and in
this equilibrium there is trade in the asset and the debtor is not credit constrained. Suppose

(e(1),e(2)) = (1,1) and C*(q) = C?*(q) = 8¢. Then
(p1,q) = (%, %), a=(0,1), z'=(2,9,1), 2! =-1, 22=(0,2,10), 22 =1

is an equilibrium with utilities (U!,U?) = (111,210). To check that this is an equilibrium, notice
that all markets are clearing, the default rate calculations are correct and for each agent, his plan
is in his budget set. The only thing left to confirm is that agents are optimizing. Let us first look
at the plan for agent 1. Substituting the value of ¢ in the credit limit for agent 1 shows that every

! < 4. The affordability constraints which are relevant to

admissible portfolio, z', must satisfy z

this analysis are

0<zi=1-2' 0<zi(1)=10+2" (sincezl <4) and 0<z}(2)=1,

whence, U! = 1 — 2! 4+ 2! 4+ 10 + 100(1) = 111 (irrespective of choice of z!). Therefore, the
given plan is optimal in the budget set for agent 1. Similarly, the analysis for agent 2 gives us?*
U? =1—224+100(max(1 + 22,1)) + 10 — 22. If 22 <0, then U2 =1 — 22 + 100 + 10 + 2% = 111
(irrespective of z2). If 22 > 0, then U? = 1 — 22 +100(1 + 2?) + 10 = 111 + 9922 whence the optimal
choice of z? is 1 and U? = 210. We conclude that the given plan is optimal in the budget set for
agent 2.

With the same exemption and credit limits and using the same argument as above, it is easy

to check that
11 1 1 2 2
(p1,9) = (5, 5), a=(1,0), =z =(0,10,2), 2 =1, =z*=(2,1,9), 2°=-1

is also a Bankruptcy equilibrium that pareto dominates the GEI equilibrium and in this equilibrium
also there is trade in the asset and the debtor is not credit constrained.

With the same exemption and credit limits, these are the only Bankruptcy equilibria in which
there is trade in the asset. We can see this as follows. Suppose there is an equilibrium with p; < %

and z' # 0. One possibility is that agent 1 sells the asset. If z! < 0 then, because —8 < z!, we have

*for portfolio admissibility, 22 < 4. The affordability constraints are 0 < 2} =1—22 (= 22<1), 0<z3(1) =
max(1+ 2%,1), and 0 < 23(2) = 10 — 22 (since 22 < 4).
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Ul=1- pilzl + max(10 + z',1) + 100 = 111 + (1 — £)2! so that %11— >0 < p1 > . Therefore,

p1
the optimal portfolio choice for agent 1 is 2! = —8¢. Also, —8 < z! < 0 implies that the loss from
agent one in state one is zero and in state two is 2! so that the default rate is & = (0,1). Also,

asset market clearing implies that 22 > 0 so that U? = 1 — plle +100(1 + 2%) + 10 and hence

% >0 p > ﬁ. Ifp; < 1(1)—1 then no positive portfolio choice is optimal for agent 2 which

L
101

800

{01 units of the asset but agent 2 can buy

contradicts z2 > 0. If p; = then agent 1 sells 8¢ =

at most W%o units of the asset. This contradicts asset market clearing. If ﬁ <pr < % then the
=D

optimal portfolio choice for agent 2 is 22 = 7 = %. Asset market clearing implies that the price

of the asset must satisfy —8q = %. The only positive root of this quadratic is ¢ = *141'76‘/5 =~ 0.297
so that p; > %, a contradiction. Therefore, it cannot be that z! < 0. The other possibility is
that agent 1 buys the asset. If z! > 0 then asset market clearing implies that 22 < 0. Using the
same argument as above we can see that this is impossible. Therefore, there is no equilibrium with
p1 < % and z' # 0. Suppose there is an equilibrium with p; > % and z' # 0. If 2! < 0 then
Ul =111+ (1 - pil)z1 so that ‘fl%l > 0 < p1 > & from which it follows that no negative portfolio
choice is optimal for agent 1 which contradicts z! < 0. Similarly, if 2! > 0 then 22 < 0 so that
% >0 p > % from which it follows that no negative portfolio choice is optimal for agent 2
which contradicts 22 < 0. Therefore, there is no equilibrium with p; > % and z' # 0. We conclude

3 3)-

that in an equilibrium in which there is trade in the asset the prices have to be (p1,q) = (
With a little more work, it is easy to see that with the given exemptions and credit limits, the only
equilibria in which there is trade in the asset are the ones given above.

Now let us see how exemption levels can affect equilibrium outcomes. Intuitively, when exemp-
tions are large, a creditor wants to buy less of the asset and the debtor wants to sell more of the
asset because large exemptions reduce the portion of a debtor’s income which can be confiscated
to repay his debt. If the exemption for an agent is too large it could be that in an equilibrium this

agent cannot sell the asset.

The next version of this example shows that if exemptions are too large and prices are (p1,q) =

(3,1) then in every Bankruptcy equilibrium there is no trade. Suppose (e(1),e(2)) = (e(1),1) with
6 < e(l) <10, 6 < e(2) <10 C'(g) = C*(q) = 8¢ and (p1,q) = (3,3). Suppose that at these prices

there is an equilibrium with 2! < 0. Ife(1) =10 < 2! < 0 then U' = 1— 2! +2' +10+100(1) = 111
(irrespective of choice of z!) and if —4 < z' < e(1) — 10 then U' = 101 + ¢(1) — 2! so that the
optimal portfolio choice for agent 1 is z! = —4 and U' = 105 + e(1) > 111. Asset market clearing

implies that 22> = 4. Combined with the affordability constraint for agent 2 in period 1 we have
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0 < 1— 22 = -3, a contradiction. Therefore, with these prices, in any equilibrium in which there
is trade in the asset, it must be that z' > 0 and hence 22> < 0. But a similar calculation shows
that 22 > 0, a contradiction. Thus in this version there is no trade in equilibrium. This result

generalizes a little, as the following proposition shows.

Proposition. Consider the Bankruptcy model with 2 time periods and 1 asset. In every economy
represented by this model, if for every s A(s) > 0 = e(s) > sup; w(s) then in every Bankruptcy

equilibrium of this economy there is no trade in the asset.

Proof. Let (p,q,q, (2%, 2");cr) be an equilibrium. If ¢ = 0 then the credit limit for almost every
agent is 0 so that almost nobody sells the asset. As the asset market is clearing it must also
be that almost nobody is buying the asset. Also, if ¢ > 0 there is no trade in the asset. For
if there is trade in the asset, that is, if ,u({z el ‘zl_ > 0}) > 0 then for every state s such that
A(s) > 0, p({i eI |p2(s)1A(s)z’; >0}) > 0. The aggregate loss in such a state is [;y'(s)di =

[ p2(s)1A(s)2" di > 0 so that a(s) = ﬁ fzggz Also, the loss from agent 7 in such a state is A\(s) =
min(pa(s)1A(s)z5 —pa(s)1(1—a(s))A(s)z% , 0) from which it follows that the loss from agent i on this
asset is 3(s) = pa(s)14(s)z". Therefore, a(s) = 1 so that for every i, pa(s)1(1 — a(s))A(s)z% = 0.
Of course, in a state in which A(s) = 0, we also have, for every i, pa(s)1(1—a(s))A(s)z". = 0. Thus,
in every state and for every i, pa(s)1(1 — a(s))A(s)z}, = 0. As g > 0, using strong monotonicity
of preferences, it must be that for almost every 1, zi = 0 and this contradicts the fact that asset
markets are clearing. Therefore, whether ¢ = 0 or g > 0 there is no trade in the asset. 1l

An application of this result to this example shows that if exemptions are too large (e(1) > 10
and e(2) > 10) then in every Bankruptcy equilibrium there is no trade in the asset and hence
the unique equilibrium utilities are (U',U?) = (111,111). Notice that this result is independent
of credit limits and the proof uses only strong monotonicity of preferences. An analogous result

holds in the model with many time periods and one asset. We shall not look at it in this paper. A

summary of the different versions of this example is given in Table 1 at the end of this paper.

3.2 Second Example

In this example we shall see that if the decision-making environment of the agents is governed by
the Arrow-Debreu model then there is a unique equilibrium which is, of course, pareto efficient.
If this environment is governed by the GEI model then there is a unique equilibrium which is

strongly pareto inefficient. If this environment is governed by the Bankruptcy model then there is
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an equilibrium which is pareto optimal, which strongly dominates the GEI equilibrium and which
cannot be dominated by the Arrow-Debreu equilibrium. Therefore, even when asset markets are
incomplete and the GEI equilibrium is strongly pareto inefficient, a Bankruptcy equilibrium can
result in an efficient market outcome. We shall also see that an increase in the credit limit of a
debtor increases the equilibrium trade in the asset and the equilibrium utility of the creditor even
though, in some state of the world, the creditor expects the debtor to be bankrupt and cause him
greater losses. Therefore, creditors might want to make it easier for a debtor to take on more debt
even when they expect the debtor to become bankrupt in some state of the world. We shall also
see that the allocation in a Bankruptcy equilibrium is the same as in the (unique) equilibrium in
the corresponding Arrow-Debreu economy. Therefore, even when asset markets are incomplete and
the GEI equilibrium is strongly pareto inefficient, a Bankruptcy equilibrium can overcome market
incompleteness and achieve the same allocation as in the Arrow-Debreu equilibrium. Finally, we
shall also see that a decrease in exemption increases the equilibrium utility of the creditor and
decreases the equilibrium utility of the debtor. Therefore, creditors want to lobby the legislature
for lower exemptions and debtors want to oppose such a measure.

Consider an exchange economy in which there are two time periods, indexed 1 and 2 and two
states of the world, indexed 1 and 2. There is no information in period 1 and full information in
period 2. There is one consumption good in period 1 and in each state in period 2. The consumption
space is R3. An element z = (z1,22(1),22(2)) in the consumption space is a consumption plan
which entails consumption of z; units of the consumption good in period 1 and z2(s) units of the
consumption good in state s (s = 1,2) in period 2. There is one asset, given by A = [H The
portfolio space is R. An element z of the portfolio space is a portfolio plan which entails holding of
z units of the asset. Prices in period 1 are given by (p1, ¢q) where p; is the price of the consumption
good and ¢ the price of the asset. These prices satisfy 0 < p; < 1 and ¢ = 1 — p;. The price of
the consumption good is 1 in each state in period 2. There are two agents, indexed 1 and 2. The

preference and endowment of each agent is
U = 100z1 + z2(1) + 5022(2), w' = (1,10,1),
U? = 21+ 100z2(1) + 22(2),  w? = (10,1,0).
In the GEI model, if prices are (p1,q) with p; > 0, the affordability constraints for agents i = 1,2

that are relevant to this analysis are

ngvzi:l—p%zi and 0 < zh(s) =wi(s) +2' (s=1,2).
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These constraints mean that in every period and state, the value of consumption of every agent
equals his income. In the Bankruptcy model, suppose the exemption is (e(1),e(2)) and the credit
limit for agent i is C*(q). If prices are (p1,q) with p; > 0 and default rates are o = (a(1), a(2)),

the affordability constraints for agents ¢ = 1,2 that are relevant to this analysis are

0<zi=1- p%zz and 0 < zb(s) = max( wh(s) + (1 — a(s))zi — 2", min(e(s),wb(s)) ) (s =1,2).

Also, credit limit restrictions mean that for every agent i, 2 < C(q).

If the agents just consume their endowments their utilities are (U',U?) = (160, 110), if their
decision-making environment is determined by the complete markets Arrow-Debreu model their
unique (and pareto efficient) equilibrium utilities are (U', U?) = (1150, 1100)?® and if their decision-
making environment is determined by the GEI model their unique (and strongly pareto inefficient)
equilibrium utilities are (U',U?%) = (1109,201). We can check for the GEI equilibrium as follows.
Using the affordability constraints for each agent, we can re-write the utility of each agent as
U = 100(1 — L2 + 10 + 2' + 50(1 + 2') = 160 + (51 — 12)z" so that W >0ep > 10
and U? = 110 + (101 — p—l)z so that & W >0&p > 1(1)—2. This helps us determine the optimal

portfolio choice of each agent. If p; < ﬁ, the optimal portfolio choice of each agent is z! = —1
and 22 = 0. If p; = 1— the choice is z! = —1 and 22 € [0, 11001] If 2 ig <p1 < ig(l), the choice is
7' = —land 2 = Z2. If py = {¥, the choice is 2! € [-1,187] and 22 = 1000, Tf {8 < py, the
choice is 2! = % and 22 = 1 Thus, if asset market is to clear it must be that 10% =1 and
hence p; = % Therefore,

1 10

(p1,0) = (o) @ = (11,9,0), 20 = =1, 2" =(0,2,1), 2 =1

is the unique equilibrium with utilities (U, U?) = (1109, 201).
The following Bankruptcy equilibrium is pareto efficient, strongly pareto dominates the GEI
equilibrium and cannot be pareto dominated by the Arrow-Debreu equilibrium. Therefore, even

when asset markets are incomplete and the GEI equilibrium is strongly pareto inefficient, a Bankruptcy

19%x9
10 4

equilibrium can result in an efficient market outcome. Suppose (e(1),e(2)) = (1,1), Cl(q) =
and C?(q) = 13¢. Then

9 10

(Ea E)a = (0,1), zt = (11,1,1), Z' = -9, 7 = (0,10,0), Z* =9

(p1,q9) =

is an equilibrium with utilities (U', U?) = (1151,1000). To see that this is a Bankruptcy equilib-

rium, substitute £ = 9 in the parameterization given below.

*5the unique equilibrium prices and allocations are (p1, p2(1), p2(2)) = (%, %, %) and z' = (11,0,1), z*=(0,11,0).
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In a parameterized version of this example, we can see that an increase in the credit limit of
a debtor increases the equilibrium trade in the asset and the equilibrium utility of the creditor
even though, in some state of the world, the creditor expects the debtor to be bankrupt and cause
him greater losses. Therefore, creditors might want to make it easier for a debtor to take on
more debt even when they expect the debtor to be bankrupt in some state of the world. Suppose

(e(1),e(2)) = (1,1). Fix £ € [1,9] and let C'(q) = %q and C?(q) = %q. Then

10
(plaQ):(ﬁaM)a Oé:(O,].), '771:(11710_571)7 zlz—é’ '772:(0’1—'_5’0)’ Z2:£

is an equilibrium with utilities (U!,U?) = (1160 — &,100 + 100¢). Notice that this equilibrium
allocation is pareto efficient. To check that this is an equilibrium, notice that all markets are
clearing, the default rate calculations are correct and for each agent, his plan is in his budget set.
The only thing left to confirm is that agents are optimizing. Let us first look at the plan for agent 1.
Substituting the value of ¢ in the credit limit for agent 1 gives us, for portfolio admissibility, z1 < &.

If z! > 0 then U' = 100(1 — pilzl) +10+ (1 — a(1))2t +50(1 + (1 — «(2))z!) = 160 + (1 — %)zl.
Since the coefficient for z! is negative the optimal portfolio choice is zero and the corresponding
utility is U' = 160. If —¢ < z' <0 then U' =100(1 — ;L2") +10 + 2" + 50 = 160 + (1 - %)z1
so that the optimal portfolio choice is z' = —¢ and the corresponding utility is U' = 1160 — &.
Therefore, the given plan is optimal in the budget set for agent 1. For agent 2, substituting the
value of ¢ in the credit limit for agent 1 gives us, for portfolio admissibility, 22 < 1. If 22 > 0
then U? = (10 — pile) +100(1 + (1 — «(1))22?) + (1 — «(2))2? = 110 + (100 — 1§—O)z2. Since the
coefficient for z? is positive the optimal portfolio choice is 2% = 10% and the corresponding utility
is U? = 100 + 100¢. If —1 < 22 < 0 then U? = 110 + (100 — %)z2 so that the optimal portfolio
choice is 0 and the corresponding utility is U2 = 110. Therefore, the given plan is optimal in the
budget set for agent 2.

Notice that in this parameterizaton, when & = 9, the equilibrium allocation is very close to the
equilibrium allocation for the Arrow-Debreu model. It is the exemption in state 1 which prevents
the creditor from recovering the last unit of consumption from the debtor. This creates an incentive
for the creditor to lobby for lower exemptions. One might guess that if the exemption in state 1
were lower the creditor is willing to extend even more credit to the debtor. This is correct, as we
can see below.

In the following Bankruptcy equilibrium the allocation is the same as the one in the unique

equilibrium in the corresponding Arrow-Debreu economy. Therefore, even when asset markets
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are incomplete and the GEI equilibrium is strongly pareto inefficient, a Bankruptcy equilibrium
can overcome market incompleteness and achieve the same allocation as in the Arrow-Debreu

equilibrium. Suppose (e(1),e(2)) = (0,1), C'(¢q) = 20q and C?(q) = 2¢q. Then
11 1 1 2 2
(plaq) = (5’5)’ a = (011); T = (115011)1 zo=-10; «z :(071170)7 z©=10

is an equilibrium with utilities (U',U?) = (1150, 1100). To see that this is a Bankruptcy equilib-
rium, substitute £ = 0 in the parameterization given below.

In another parameterized version of this example, we can see that a decrease in the exemption
in state 1 can further increase the equilibrium trade in the asset and the equilibrium utility of the
creditor and decrease the equilibrium utility of the debtor. Therefore, creditors want to lobby a

legislature for lower exemptions and debtors want to oppose such a measure. Fix £ € [0,1]. Suppose

(e(1),e(2)) = (£,1), CHg) = LB D g ang ¢?(g) = LLL g Then

10-¢ 10
(p1,q) = (ma m
is an equilibrium with utilities (U',U?) = (1150 + &,1100 — 100¢). Notice that this equilibrium
allocation is pareto efficient. To check that this is an equilibrium, notice that all markets are
clearing, the default rate calculations are correct and for each agent, his plan is in his budget set.
The only thing left to confirm is that agents are optimizing. Let us first look at the plan for agent 1.
Substituting the value of ¢ in the credit limit for agent 1 gives us, for portfolio admissibility, z! <
10—¢. If 2! > 0 then U = 100(1— L 2") +10+(1—a(1)) 2! +50(1+(1—x(2))2") = 160+ (1— 152¢) 2"
Since the coefficient for z! is negative the optimal portfolio choice is zero and the corresponding
utility is U' = 160. If € =10 < 2" <0 then U' =100(1 — ;L2") + 10+ 2" +50 = 160 + (1 — 13°F)2"
so that the optimal portfolio choice is 2! = ¢ — 10 and the corresponding utility is U = 1150 + &.
Therefore, the given plan is optimal in the budget set for agent 1. For agent 2, substituting the
value of ¢ in the credit limit for agent 1 gives us, for portfolio admissibility, 22 <1 —¢. If 22 > 0
then U2 = (10 — pilzz) +100(1 + (1 — a(1))2?) + (1 — a(2))2% = 110 + (100 — %)22. Since the
coefficient for 22 is positive the optimal portfolio choice is 2% = 10% and the corresponding utility
is U2 =1100 — & If € —1 < 22 <0 then U? = 110 + (100 — %)22 so that the optimal portfolio
choice is 0 and the corresponding utility is U? = 110. Therefore, the given plan is optimal in the

budget set for agent 2.

A summary of the different versions of this example is given in Table 2 at the end of the paper.
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4 Existence of Equilibrium

To prove the two theorems mentioned above, I proceed in the following manner. First, I truncate the
price space so that prices are bounded away from zero. Then, I summarize the relevant information
in the economy in a correspondence on a space which depends on the truncated price space. By
Kakutani’s theorem, this correspondence has a fixed point. As the truncated price space approaches
the untruncated space, there is a sequence of fixed points. From this sequence we get a convergent
subsequence, the limit of which gives us an equilibrium.

Let us truncate the price space as follows. For n > L + J and n # oo, the n-truncated price
space in period t < T —1is A, ; = {(pt, @) € Ay |(pt,qt) > 111} (here, 1 is the vector of ones in
RtL+J) and in period ¢ = T is An,T = {(pT,O) € Ar |pT > %1} (here, 1 is the vector of ones in
’R%) The n-truncated price space is A, = El An,t-

The correspondence that 1 use to summar_ize the relevant information in the economy is a
product of three correspondences. The first correspondence is the aggregate extended demand
correspondence — it relates market variables (price and default rate) to aggregate individual choices
(aggregate demand and the corresponding total loss and total debt). The second correspondence
is the price correspondence — it relates possible levels of excess demand to prices. The third
correspondence is the default rate correspondence — it relates possible levels of total loss and total
debt to default rates associated with them.

First, let us look at the aggregate extended demand correspondence and some of its prop-
erties. As a preliminary step, let us look at the demand correspondence. The demand cor-

respondence for agent i associates to every (p,q,a) in A x V the set D(p,q,c). Let Py =

{(p,q) € A| for some s,t, ps(s) = 0}. Then we have the following lemma.

Lemma 2. For every i, the demand correspondence for agent i has closed graph on (A \ Py) x V.

Proof. Suppose (Pm, Gm, tm, T4y, 24,) — (P, q, @, 2%, 2%), (P, @) and (p, ¢) not in Py and (z,,2¢,) €
D' (pm, Gm,m). We need to verify that (z%,2') € D'(p,q,a). It is easy to see that (z*,2%) €
Bi(p,q, a). So suppose (1%, 4') € B*(p,q, ). We want to conclude that z* >? £°.

Fix £ € (0,1) arbitrarily. Let us first confirm that for all m sufficiently large, (£4%,¢27) €
B (D, @m, i) Since for every s, t, £fH(p, q, o, )¢(s) < fi(p,q, o, ££%)¢(s) and &€ (p, q, o, )i (s) <
€ (p, q, o, %)y (s), (17, £4Y) is strictly affordable at (p, g, ). Thus, there is mg such that m > mg im-
plies that (€4, £2%) is (pm, Gm, am)-affordable. To check for admissibility, temporarily fix j, s, ¢ with

t < T—1. Suppose there is s’ € Ey(s) such that Az (s"); > 0. If either (£(s)-); = 0 or Azy1(s); =
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0 then Azy1(s);((€4')¢(s)-); = 0 otherwise Ar1(s);((§£7)(s)-); < C'(q,8'(p, ¢, @, €4'))e(s);- In

either case, there is my(s); > mg such that m > my(s); implies

A1 (9);((€8)1(s) )i < CH(qm» B (Pms Gy O, €2°))1(8) -

Now, suppose that for every s’ € Ey(s) Aip1(s’); = 0. If (£i(s)-); = 0 then ((££%)i(s)-); = 0
otherwise ((£2%)(s)-); < C%(q, " (p,q, @, €%"))t(s);. In either case we may choose m¢(s); > mo

such that m > my(s); also implies that

(E£e()=); < Cams B'(Pm» Gm> 0tm; €27))1(5);-

Therefore, £€4' satisfies the admissibility constraint for this j,s,z. This implies that for m >
max; s mi(s);, £ is (C%, pm,y Gm, @um)-admissible and hence (££%,££Y) € B (pm, Gm, Qtm)-

From the optimality of %, and the continuity of >=* we conclude that z* >* ’, as desired. I

To define the aggregate extended demand correspondence, I use the concept of an extended
demand set. The extended demand set extends the demand set to incorporate information on
loss and debt associated with an optimal consumption and portfolio plan. Formally, let (p, ¢, a)
be a price and default rate system. Fix n > 1. Let 2’ be a portfolio plan for agent i. Define
5 (p, 4, 0, #)i(s); = max(v(p, 4, @, #)e(s);, ) and B (p, g, @, #)e(s); by replacing 7/ (p, 4, @, 1)y (s);
in the definition of 8%(p, ¢, @, 2*)i(s); by 4% (p,q, @, 2%):(s)j. For n = oo, the definition remains the
same but with the convention that é = 0. For n > 1, including n = oo, the n-extended demand

set for agent i is

(z%, 2%) € D'(p,q, ) and for every 7,s,t,
Dz(p, q,a) = (:vi,zi;ﬁAi,ﬁfi) EXXZ X Ri X Ri B;(s)J = Afl(p, q,a,zi)t(s)j,
F(); = An(p, 0, & 2')e(s);
To every (p,q,a) in A x V the n-extended demand correspondence for agent i associates the
n-extended demand set D (p,q,a) and the n-aggregate extended demand correspondence
associates the set [, D% (p, q, a)di.

From the previous lemma, it is easy to see that for each n, including n = oo, D! has closed graph
on (A\ Fy) x V. In addition to this, if a price and default rate system (p, g, ) satisfies p > 0 and
g > 0 (for t < T—1), then D is uniformly bounded (over i) on a neighborhood of (p, g, @) so that by
Proposition D.IL.8 in Hildenbrand (1974) (p.73), [; D} (p, ¢, @)di has closed graph at (p, ¢, ). Also,

because the measure on agents is atomless, [ I D: (p, g, @)di is a convex subset of X x Z x ’Ri X Ri
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(p,q) not in Py and if (x%,z}z,;@;ﬁz) € D! (pn,qn, o) then (2,24, 8',4') € D! (p,q,).26 The
role of the aggregate extended demand correspondence is to aggregate individual demand and the
associated loss and debt to yield the aggregate demand and the corresponding aggregate loss and
aggregate debt in the economy.

Second, let us look at the price correspondence and some of its properties. Consider, for a fixed
aggregate demand in period ¢, the function which assigns to each price in period ¢ the value of
excess demand. Formally, for every n > L + J and n # oo, every t and every (xy,2;) € X; X Zy,
let vi(2s,2) : Apy — Ry be given by (pg,q1) — (pe(8)Ci(s) + qi(8)2e(s))5_;, where Ci(s) = z4(s) —
I; wi(s)di. The n-price correspondence in period t, Ot : Xe X Zp — An,t, is given by (x¢,z¢) —
{(pt,qt) € An,t |(pt, q) € argmax vy(xy, 2¢) } The n-price correspondence, ©, : X X Z — A,
associates to each (z,z) the set tgl On t(zt,2t). To see that for every n > L+ J and n # oo,
the n-price correspondence has closed graph and takes non-empty and convex values in a compact
set it is sufficient to state a fact that is easy to prove — for every such n and for every t, 0,
has closed graph and takes non-empty and convex values in a compact set. The role of the price
correspondence is the same as that of its counterpart in the Arrow-Debreu economy. In the words
of Debreu (1959) (p.83), the price correspondence “prompts one, when trying to reduce positive
excess demands, to put the weight of the price system on those commodities for which the excess
demand is the greatest.”

Third, let us look at the default rate correspondence and some of its properties. Fix n > 1 and

n # oo. For each (8,7) € Ry x Ry let 4, = max(vy, %) and let ¢, (5,7) = {min(%, 1)} Also, let

{min(g,l)} ify >0,
$(B,7) =4 {1} ify=0and 8> 0,
[0,1] ify=0and g =0.

Then, for every n > 1 and n # oo, ¢, is a continuous correspondence with non-empty, compact
and convex values. Also, it is easy to see that ¢, has closed graph and takes non-empty, compact
and convex values. For every n, including n = oo, the n-default rate correspondence in period
t=1, ¢n1: (R{)+ x (R{)+ — V4, is the correspondence which is identically zero and in period
t>2, ¢nyt: (R4 x (R])+ — V4, is the correspondence which associates to each (8,;) the set

X ¢n(Bi(3)j,7(s);)- The n-default rate correspondence, ®, : R, x R — V, associates to
Jss

26Tt is helpful to keep in mind the elementary fact that for a sequence v, € R+, if we let 4, = max(qyn, 1) then

An =Y E Yn = -
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T
each (/83’7) the set t>—<1 ¢n,t(/8t57t)'

From the properties of ¢, it follows that for every n, ®, has closed graph and takes non-
empty, compact and convex values. As in the case of the n-extended demand correspondence, it
is easy to see that for any sequence (By,Vn, o) € RYL x RL x V., if (Bn, Yn, ) = (8,7, ) and
apn € Pn(Bn,n) then a € @5 (5,7y). The role of the default rate correspondence is to use aggregate
loss and debt in the economy to compute the default rate.

These three correspondences summarize the relevant information in the economy. To ensure
that the demand correspondence takes non-empty values and that we are working with a compact
and convex space, let us check that for any fixed n > L 4+ J and n # oo, when prices and default
rates are in A, x V, the actions of agents and the integrals of these actions lie in a fixed, non-empty,
compact and convex subset of a Euclidean space, independent of elements in A, x V.

The bound on asset sales shows that the set of admissible portfolios is bounded below indepen-
dent of 4, independent of prices in An, independent of o and independent of n (n # oc). Also, since
asset prices are strictly positive, the set of affordable portfolios is bounded above. Since individual
endowments lie in a bounded set, this bound can be taken independent of 7. Thus, the set of
affordable and admissible portfolio plans and their integrals lies in a non-empty, compact, convex
set Z, C Z which is bounded below independent of n.

By definition, the set of consumption plans is bounded below by 0. Since individual endowments
lie in a bounded set and the set of affordable portfolio plans is bounded (independent of i, (p, q) € A,
and «), the set of affordable consumption plans is bounded above (independent of i, (p, q) € A,, and
«). Thus, the set of affordable consumption plans and their integrals lies in a non-empty, compact,
convex set X,, C X which is bounded below by 0.

Also, by definition, loss from any agent is bounded below by 0. Since the set of affordable
portfolio plans is bounded below (independent of i, (p,q) € A, and a), loss from any agent is
bounded above (independent of i, (p,q) € A,, and a). Thus, potential loss from agents and
potential aggregate loss in the economy lie in a non-empty, compact, convex set R, C R’ which
is bounded below by 0. Similarly, potential debt owed to agents and potential aggregate debt in
the economy lie in a non-empty, compact, convex subset of R7. If necessary, let us replace R by
a larger compact, convex subset of R’ that is bounded below by zero to conclude that potential
debt owed to any agent and potential aggregate debt in the economy also lie in Ron.

To summarize, for n > (L + J) and n # oo, on A, x V, the set of individual consumption and

portfolio plans and their integrals lies in X, X Z, and the set of potential loss, potential debt and
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their integrals lies in R X R

Consider the correspondence ¥, on A, x V x X, X Z, x R, % 7A€n given by ¥, = ¥l x U2 x U3,
where, UL : A, xV — X, X Zy x Ry X Ry, is given by UL (p, ¢, o = [; Di(p,q,)di, U2 s Xp X Zp —
A, is given by U2 (z,z) = ©,(z,z) and ¥3 : R, x R,, — V is given by ¥3(8,7) = ®,(8,7). The
properties of the three correspondences given earlier imply that ¥, satisfies the hypotheses of
Kakutani’s theorem. For each n > L + J and n # 00, let (P, Gn, Qns Tn, Zn, B, In) be a fixed
point of ¥,. Let us check that we can get a convergent subsequence from this sequence of fixed
points and the limit of this subsequence gives us an equilibrium.

Obviously, (pp, gn, o) is a bounded sequence. Since (zy,, 2, ﬂn,'yn €[,D i (Pn, Gn, 0t )di, there

exists, for almost every i, (z%,2%) € D*(py, qn, ) such that
(Tn,2n) = /(zﬁl,zﬁl)dz B = /B}ldz and An = /fﬂldi.
I I I
Here, (B;L)t(s)] is short for B%(pnaQRaaﬂasz)t(s)j and (’?;Lz)t(s)] for ’?%(pnaQRaanaz%)t(s)j- To see
that (Zn, Zn, Bn,Jn) is bounded, let us use the following lemma.
Lemma 3. (z,,2,) is a bounded sequence.

Proof. Let ¢} = z%, —w" and {,, = [; {{di. Then, it is sufficient to check that ({,,zn) is a bounded
sequence. As (! > —(sup; w') and 2%, > —2, ¢! and 2! are uniformly (for almost every i) bounded
below, (¢, z,) is bounded below. For upper bounds, we can use induction on {1,... ,T} as follows;

Step 1: t = 1. We want to see that, for every s, (((,)1($), (2n)1(8)) is bounded above. Notice

that, by U2, for every ((p},)1,(q})1) € An1 and every s,

(Pr)1(8)(Gn)1(8) + (gn)1()(2n)1(s) < /T(pn)l(S)(Ci)l(S)+(qn)1(8)(zf;)1(8)di = 0

Fix s arbitrarily and let ((p},)1(s), (¢,)1(s)) = (M L Ll 1) Then,

n

n_(L::J_l)(Cn)l(S)l < - H/le dz||1+||/ il

Thus, ((,)1(s)1 is bounded above. Using the same argument with different indices we see that, for

every £,7, ((n)1(s)e and (2zy)1(s); are bounded above. Since s is arbitrary, step 1 is complete.
Step 2: Induction. Suppose that for every s, (((,):—1(5), (2n)t—1(s)) is bounded above. We want
to see that for every s, ((¢n)e(s), (2)¢(s)) is bounded above. Notice that the disposable income in

period t, state s, of almost every agent satisfies

W (P, Gy s 20)e(s) < (pu)e(s)wi(s) + [Ae(s) + (n)e(8))(20)e-1(5)+-
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Again, by U2 for every ((p),):, (¢,)) € An, and for every s,

(Pr)()(Gn)e(8) + (an)e(s)(zn)e(s) < [Ae(s) + (gn)e(s)] /I(Z%)t1(8)+di-
Fix s arbitrarily and let ((p],):(s), (¢5):(s)) = (M, 1. Ll 1) Then,

n—(L+J-1)
n

Gk < / wi(s)dilly + | / $)dill1) + [A1(5) + (gu)e(5)] /[ (ei)e1(s) 1 i

Thus, ((s)¢(s)1 is bounded above. Using the same argument with different indices we see that, for
every £,7, ((n)e(s)e and (zy):(s); are bounded above. Since s is arbitrary, step 2 is complete. I
From the boundedness of (z,,, z,), we can deduce that (8,,4,) is a bounded sequence. Therefore,
the sequence (pn,qn,an,a:n,zn,,én,'?n) is bounded. Replacing this sequence with a convergent
subsequence, suppose that this sequence converges to (p,q,a,z,z,3,7). The next lemma implies

that p > 0.
Lemma 4. The sequence (py,) is bounded away from 0.

Proof. Let

F = {z el ‘for all n, (z¢,2%) € Di(pn,qn,an)} and Fy = {z el

for all £,s,t, sup(z’)s(s)s < 0o } .
n

Then p(Fy N Fy) = p(I). Fix s,t arbitrarily. Then it is sufficient to prove that (p,):(s) is bounded
away from 0.
Suppose (p,,)i(s) = 0. Then, because ||((pn)(8), (gn)¢(s))||l1 = 1, it must be that ¢ < T —1 and

also that there is j and a (relabeled) subsequence such that for all n, (gn):(s); > Therefore,

1.
F; = {7, el |infn Ci(qn,ﬁn)t(s)j > 0} satisfies p(F3) > 0. This implies that F; N Fy N F3 is not
empty. For each 7 in this intersection, agent ¢ can buy one unit more of each good in period t,
state s by giving up an arbitrarily small amount of consumption in period ¢ + 1, state s. But
then, by strong monotonicity and continuity, for all n sufficiently large, we get a contradiction to
(zt,2%) € D(pn, qn, ). Therefore, (py)i(s) /4 0. In this case the income of almost every agent is
bounded away from zero. Using the same argument as in the standard Arrow-Debreu model, we
conclude that (p,):(s) is bounded away from 0 as desired. I

This lemma implies that p > 0. Combined with the fact (see proof of the following lemma)
that for every j,s,t, if g;(s); = 0 then [(2{(s)+);di = [;(2{(s)-)jdi = z(s); = 0, it follows that
(wg), zg), B&'),&,ﬁ')) is a uniformly bounded (for almost every z) and uniformly integrable sequence

so that, using Lemma D.IL.3 in Hildenbrand (1974) (p.69), we conclude that there is an integrable
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function (£, £%, 8%, 4%)scs such that, for almost every i,
(@2, B, 4) € Lon(al 2ho B0, 30) and [ (@8, F,4)di = (@28,
I

Here, Ls,, is the set of cluster points of the sequence (z%, 2%, ﬂn,fyn) From properties of the n-
extended demand correspondence, we conclude that (£, 7%, 5, 4) € Di_(p,q, ) from which it fol-
lows that for almost every i there exists (z', 2) € D'(p, ¢, @) such that (z*, 2%, 5°,~%) = (&', %, A, )
and [;(a", 2", B, 7" )di = (2, 2,8,7).

Let us check that (p,q,a; (z?,2%);cr) is an equilibrium. Since, for almost every i, (z',2%) €
D'(p, q, ), the first condition in the definition of equilibrium is satisfied. To see that the second

and third conditions in the definition of equilibrium are satisfied, let us use the following lemma.

Lemma 5. For everyt <T —1 and every j,s, (i(s) =0, z(s)=0 and o1(s)jv+1(s); =
Bit1(s)j. Fort =T and every s, (r(s)=0 and =zp(s)=0.

Proof. Let us use induction on {1,... ,7 — 1} as follows;
Step 1: t = 1. We want to see that, for every j,s, (i(s 0, z1(s) = 0, and as(s);72(s); =
) <0 and 2 (s) <0.
Also, p1(s)¢i(s) +q1(s)z1(s) = limp [;(pn)1(8)(¢8)1(s) + (gn)1(s)(2%)1(s)di = 0. Combined with
p1(8) > 0,q91(s) > 0,(1(s) <0 and 2z1(s) <0, we have (1(s) =0
z1(s); = 0. Also, if gi(s); = 0 then for almost every i, (2%(s)_); = 0 so that 0 < [;(2%(s)4);di =

[; #4(s)di < z(s); <0.

) =
Ba(s);. Fix s arbitrarily. From Lemma 3, we see that (;(s) <

and for every j, if gi(s); > 0 then

To deduce that for every j, aa(s);v2(s); = B2(s);, notice that 0 < Ba(s); < y2(s);j. Therefore, if
Y2(s); = 0, then as(s);v2(s); = Ba(s);. Otherwise, a(s); € doo(B2(5)j,72(5);) = {%} Since s
is arbitrary, step 1 is complete.

Step 2: Induction. Suppose that for every j,s, (;—1(s) =0, z—1(s) =0, ai(s);7e(s); = Be(s);-

We want to see that for every 7,s, (i(s) = 0, z(s) =0, and ay1(8);vi+1(s); = Bey1(s);. Fix s
arbitrarily. Let ((p},):(s), (gh,):(s)) = (%, 1. 4L 1) Then, by U2, we have,

(Pr)e(s)(Cn)e(s) + (gn)e(s) (2n)e(s)
< J WHPn, Gny an, 24,)1(8) — (Pn)1(s)wi(s)di
= f[ m&X((6 - f)z(pn, Gn, O, z%)t(S) 0) + fi(pn, Gn, Oy 23)1(8) — ()i (8)w)(s)di
P A 8)j J;(Pn Ae(8)j + (an)e(s)5)((2)e—1(8)4) i ]
+(Pn)t(3)1[At(3) ((Jn) ( ) i) (2n) - 1( )
=22 (Br)e(s); — (an)e(8)j(m)e(s); + [1 — (an)e(s)1(Pn)e()1[Ae(5); + (gn)e(s);](zn)e-1(s);-
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It follows that (;(s)1 = lim,({,):(s)1 < 0. Using the same argument with different indices we see
that ((s) < 0 and z(s) <O0.

Analogous to step 1, we have pt(s) > 0,q:(s) >0, (s ) <0,2(s) <0, pe(s)Ce(s) +qe(s)ze(s) =0
and qi(s); = 0 = z(s); = [;(2i(s) = [,(zi(s)_);di = 0. Thus, ;(s) = 0 and z(s) = 0. As
in step 1, we see that for every j, 0 < ﬂt+1( )i < Yi+1(s); and that ayr1(s)ve+1(5); = Bi1(s);-
Since s is arbitrary, step 2 is complete. Finally, the argument showing (;(s) = 0 and z;(s) = 0 also
works for t =T. 1

This lemma implies that the second and third conditions in the definition of equilibrium are
also satisfied. Therefore, (p,q,q; (%, 2")icr) is an equilibrium. To see that the second theorem

is true, let us use the following lemma.
Lemma 6. Suppose there is s,t such that e;(s) < inf; wi(s). Then for every j, au(s); < L.

Proof. Since p;, is bounded away from zero, (py):(s)(inf; wi(s) — es(s)) is also bounded away from
zero. Let 0 < § < 1 be such that for all n, (p,,)¢(s)(inf; wi(s)—e(s)) > d. Then A(pn, Gn, an, 25)i(s) <
max( (pn)e(s)1[A(s) + (gn)e(s)](2%);_1(s)- — &, 0) and for every n such that the denominator of

the following fraction is not zero,

ax((pn)i(s)1[Ae(s) + (an)i())(zp)1-1(s) - = 6,0)  _  max(k —§,0)
(Pn)e(s)1[A:(s) + (gn)e(s)](2h)e1

where k = sup,,(pn)t(s)1[A:(s) + (gn)e(s)]21—1(s) + 1. Therefore, for every j, almost every i and
every n > L4+ J, (BL)i(s); < (1— 9)(4%)4(s); whence ay(s); < 1—2.1

)
(s)— - K - 1_;

Now suppose there is j,s,t such that e;(s) < inf;wi(s) and A(s); > 0. Then ¢t > 2 and
ay(s); < 1 so that if ¢;—1(s); = 0 then the demand set of almost every agent is empty which
contradicts the definition of an equilibrium. Thus, ¢;—1(s) > 0, a¢(s) < 1 and the equilibrium is

non-trivial.

5 Extensions and Conclusion

In this section, I point out some ways in which we may modify and extend the model.

In the model, a credit limit is specified in units of the asset or in units of good £ = 1 (depending
on the asset return matrix). However, we sometimes observe that a credit limit is specified in units
of value. It is easy to modify the model to allow for admissibility of a portfolio plan to depend on
value of promised delivery instead of quantity. If we rename admissibility in the model as quantity

admissibility and call by value admissibility the admissibility of a portfolio plan depending on value
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of promised delivery and use these concepts to redefine the budget and demand sets, we get two
definitions of equilibrium. However, every equilibrium with quantity admissibility is also an equilib-
rium with value admissibility and vice versa. (This is because strong monotonicity and continuity
of preferences implies that in every equilibrium — whether with quantity or value admissibility —
the price of every good is positive. Therefore, the budget set with quantity admissibility and the
one with value admissibility coincide and hence so do the demand sets.)

We can also extend the model to include assets which promise to pay in more than one good.
This can be done as follows. The basic concepts, except the assumptions about payoffs of as-
sets, remain the same. The payoffs of the assets in period ¢, state s are summarized by a L X J
matrix Ay(s). Its £j-th component, Ai(s)g;, specifies the (non-negative) payoff of asset j in pe-
riod t, state s in terms of good £. As in the model, assume that for every s, A;(s) is the zero
matrix and to reflect the dependence of asset returns on the information available, assume that
for every t, As(-) is S;-measurable. An asset structure is a collection of asset return matrices,
A = (Ay(s))s,t- The rights of creditors and debtors remain the same. To determine the financial
position of an agent, in all the definitions, pre-multiply A:(s) by pi(s) instead of pi(s);. A credit
limit for agent i is a continuous function C* : Q x R;’L — Rf;] that is weakly decreasing in f3.
As in the model, assume the measurability and boundedness conditions and assume that for every
0,5t witht <T —1, u({i € T|infeq,s), pers CHa: Pils)ey > 0}) > 0 and if g(s); = 0 then
,u({z el |Ci(q, 0)¢(8)e,; = 0}) = u(I). A portfolio plan 2z is (C*,p,q,a)- admissible if for every

period £,7,s,t witht <T — 1,

if there is s € Ey(s) and £/ > 1 with A;11(s")p j >0 then

Ar1(8)e(2(s)-); < C'a,B'(p a4 @, 2"))e(5)e,; otherwise, (24(s)-); < C¥ (g, B'(p,q; @, 2°))e(8)e-
The lemma on bound on asset sales remains true as stated. Its proof needs an obvious modification.
The budget set, demand set, economy and equilibrium are defined as in the model. Theorem 1
remains true as stated. Theorem 2 is true if, everywhere in its statement, we replace j by £,j. The
proofs require minor and obvious modifications. The example obviously remains true. Thus, we
can extend the model to include assets which promise to pay in more than one good.

We can also combine these modifications and extensions to derive a model in which assets
promise delivery of many goods and in which admissibility of a portfolio plan depends on value
of promised delivery. A version of the two theorems is true for any economy represented by this
derived model and the example given in the chapter is valid.

To conclude, let us recall that using more realistic legal and economic institutions, the model

36



in this paper incorporates bankruptcy in general equilibrium. In this model, there is unsecured
lending, the rights of debtors and creditors are derived from the existing legal framework, an agent’s
default history affects his future trading opportunity and bankruptcy arises in a manner similar to
what we observe. Every economy represented by this model has an equilibrium and with minor
additional assumptions, every economy has a non-trivial equilibrium. This model is robust in the
sense that using it, we can easily see well-known welfare effects of bankruptcy.

In future work, using this model and building on it, we can investigate in more detail the
effects on competitive markets of different bankruptcy rules (exemptions, recovery rules, priority
rules), of different credit limit systems (the weight that should be put on an agent’s default history,
on (expectations of) his future income, on riskiness of assets) and of chain reactions (the role of
pessimistic expectations, controlling and mitigating the effects of such reactions, the role of credit
limits and exemptions in propagating and controlling such reactions). This model puts us on the
path to a better understanding of bankruptcy in general equilibrium and sends us on our way to a
better understanding and design of financial and legal institutions that facilitate smooth functioning

of competitive markets.
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6 Appendix

Ul = 21 + 29(1) + 10022(2) ; (1,10,1)
U? = 21+ 100z2(1) + 22(2) ;  w? = (1,1,10)
Market Variables Agent 1 Agent 2
Utility Plan Utility
21 x2 22 U2
Endowment (1,1,10) 111
GEI 111 | (1,1,10) 0| 111
e(1) =1, e(2 (q) = C%(q)
Bankruptcy 2.3 111 | (0,2,10) 1| 210
2.3 210 (2,1,9) -1 111
1<e(l) <6, e(2) =1,
Bankruptcy 2.5 111 | (0,2,10) 1| 210
2.3 210 (2,1,9) -1] 111
6 <e(l) <10, e ct q) = CQ(q)
Bankruptcy 210
10 < e(1), 10 <

(2,1,9) -1 111

Bankruptcy

111

(1,1,10) 0

111




Table 2

U! =100z1 + z2(1) + 5022(2) ;  w! = (1,10,1)
U? = 21+ 100z2(1) + 22(2) ;  w? = (10,1,0)
Market Variables Agent 1 Agent 2
Prices | Default Plan Utility Plan Utility
Rate z! 2! Ut z? 22 U?
Endowment (1,10,1) 160 | (10,1,0) 110
Arrow-Debreu | (2,2, 1) (11,0,1) 1150 | (0,11,0) 1100
GEI (&, D) (11,9,0) -1 | 1109 | (0,2,1) 1 201

e(l) =1, e(2) =1, O'(q) = 9%, C*(q) = g

Bankruptey | (3,19) | (0,1) | (11,1,1) -9 | 1151 | (0,10,0) 9| 1000

e(1) =0, e(2) =1, C'q) =20q, C*(q) = 2q

Bankruptcy (3.3) (0,1) | (11,0,1) -10 | 1150 | (0,11,0) 10 | 1100

The different parameterizations given in the text are summarized in the next page.
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Parameterizations:

e Lete(l) =1, e(2) =1 and for £ €1

(p1,9) = (% ﬁ)
= (11,10 — &,1), 2

79]7

is an equilibrium with utilities (U*,U?) =

let Cl(q) = (10+§) q, C?*(q) = 10+£q Then

a= (0,1),

=(0,1+¢£,0), 22

(1160 — &,100 + 100€).

e For £ €[0,1],let e(1) =¢, e(2) =1, C'(q) = &=, c2(g) =

is an equilibrium with utilities (U, U?) =

40
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