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A two-person game is of conflicting interests if the strategy to which
player one would most like to commit herself holds player two down to his
minmax payoff. Suppose there is a positive prior probability that player one is
a “commitment type” who will always play this strategy. Then player one will
get at least her commitment payoff in any Nash equilibrium of the repeated
game if her discount factor approaches one. This result is robust against
further perturbations of the informational structure and in striking contrast

to the message of the Folk theorem for games with incomplete information.
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1 Introduction

Consider a repeated relationship between two long-run players one of whom has some
private information about her type. A common intuition is that the informed player may
take advantage of the uncertainty of her opponent and enforce an outcome more favourable
to her than what she would have got under complete information. This intuition has been
called “reputation effect” and has found considerable attention in the literature. The
purpose of this paper is to formalize this intuition in a general model of repeated games
with “conflicting interests” and to show that the effect is robust against perturbations of

the informational structure of the game.

The first formalizations of the “reputation effect” in games with incomplete in-
formation have been developed by Kreps and Wilson (1982) and Milgrom and Roberts
(1982). They have shown that a small amount of incomplete information can be suffi-
cient to overcome Selten’s (1978) chain-store paradox. An incumbent monopolist who
faces a sequence of potential entrants may deter entry by maintaining a reputation for
“toughness” if there is a small prior probability that she is a “tough” type who prefers
a price war to acquiescence. Recently, this result has been generalized and considerably
strenghtened by Fudenberg and Levine (1989, 1992). They consider the class of all re-
peated games in which a long-run player faces a sequence of short-run opponents, each of
whom plays only once but observes all previous play. They show that if there is a positive
prior probability of a “commitment type”, who always plays the strategy to which player
one would most like to commit herself, and if player one is sufficiently patient, then she
can enforce at least her commitment payoff in any Nash equilibrium, i.e. she will get
at least what she would have obtained if she could have committed herself publicly to
this strategy. This result is very powerful, because (i) it gives a tight lower bound for
player one’s payoff in all Nash equilibria, (z7) it holds for finitely and infinitely repeated
games, and (i¢7) it is robust against further perturbations of the informational structure,
i.e. it is independent of what other types may exist with positive probability. However,
Fudenberg and Levine’s analysis is restricted to games where a long-run player faces a
sequence of short-run opponents. Qur paper provides a generalization and qualification
of their results for the two long-run player case. We show that a necessary and sufficient

condition for this generalization to hold is that the game is of conflicting interests.



The first who studied reputation effects in repeated games with two long-run players
were again Kreps, Wilson, Milgrom and Roberts (1982). They demonstrated that in all
sequential equilibria of the finitely repeated prisoner’s dilemma the cooperative outcome
will be achieved if there is a small prior probability that the players are of a type which
is committed to always play the “tit-for-tat” strategy. In the beginning of the 1980s
repeated games with incomplete information have been very popular to solve all kind
of puzzles in game theory, industrial organization, macroeconomics etc.. But the initial
enthusiasm has been considerably dampened by a Folk-theorem type result of Fudenberg
and Maskin (1986). They have shown that for any finitely or infinitely repeated game there
exists an e-perturbation of this game (in which each of the players has a different payoft
function with an arbitrarily small but positive prior probability) such that any individually
rational, feasible payoff vector of the unperturbed game can be sustained as the outcome
of a sequential equilibrium of the perturbed game, if the players are sufficiently patient
and if there are enough repetitions. But if any outcome can be “explained” by just picking
the right perturbation then the predictive power of the theory of repeated games is very

limited indeed.

However, before this message is accepted, we should have a closer look at what
Fudenberg and Maskin mean by an e-perturbation. They assume that with an arbitrarily
small but positive probability each of the players may be “crazy”, i.e. she may have
a completely different payoff function as compared to the original game. For any given
payoff vector Fudenberg and Maskin then pick one very specific type of “crazyness” which
is used to sustain this payoff vector as an equilibrium outcome. A perturbation of the
informational structure of a game should capture the idea that the players may be slightly
uncertain about what the exact payoff functions of their opponents are. This may include
the possibility that the opponent is actually crazy as in Fudenberg and Maskin (1986), but
it should not be restricted to only one (very particular) type of crazyness. We argue that
the modeller should allow for a broader class of perturbations, such that many different
payoff functions may have positive prior probability. Surprisingly, insisting on this kind of
robustness yields a result which is in striking contrast to the message of the Folk-theorem.
No matter what types may possibly be drawn by nature (including those considered by
Fudenberg and Maskin) and how likely they are to occur, if player one is sufficiently

patient, if the game is of “conflicting interests”, and if there is an arbitrarily small but
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positive probability of a “commitment” type, then we can give a tight prediction of the

equilibrium outcome of all Nash equilibria.

To make this more precise, consider a repeated game with complete information in
which player one would like to commit herself to take an action aj, called her “commitment
action”, in every period. If player two responds optimally to af player one gets her
“commitment payoff”. Assume that the game is of “conflicting interests” in the sense
that playing a} holds player two down to his minimax payoffl. Now suppose that the
informational structure of this game is perturbed such that player one may be one of
several possible “types”. Consider a type for whom it is a dominant strategy in the
repeated game always to play a} and call her the “commitment type”. Our main theorem
says that if the commitment type has any arbitrarily small but positive probability and
if player one’s discount factor goes to one then her payoff in any Nash equilibrium 1s
bounded below by her commitment payoff. This result is independent of the nature of
the other possible types and their respective probabilities. We generalize the theorem to
the case of two-sided uncertainty. Furthermore, we show that “conflicting interests” are

a necessary condition for our theorem to hold.

Our result highlights the importance of the relative patience of the two players.
Player one has to be sufficiently patient as compared to player two, i.e. for any given
discount factor 6, < 1 there exists a §,(6,) < 1 such that player one can enforce his
commitment payoff in all Nash equilibria if his discount factor satisfies 6; > §,(82). The
importance of the relative patience of the two players is most intuitive in the case of
a completely symmetric game with two-sided uncertainty. If this game has conflicting
interests, then it is clearly not possible that both players get their most preferred outcomes
at the same time. However, if one of them is sufficiently more patient (or if the prior
probability that she is the commitment type is sufficiently higher) then the reputation

effect works to her advantage.

A complementary analysis to ours is Aumann and Sorin (1989). For a different
class of repeated games, coordination games with “common interests”, they obtain a
similar result. However, they have to restrict the possible perturbations to types who act
like automata with bounded recall. They show that if all strategies of recall zero exist

with positive probability then all pure strategy equilibria will be close to the cooperative



outcome. In contrast to Aumann and Sorin we allow for any perturbation of playcr one’s
payoff function and for mixed strategy equilibria. Games of “common” and of “conflicting”

interests are two polar cases. We will discuss them in more detail in Section 5.

Finally, in a very recent paper Cripps and Thomas (1991) characterize the set of
Nash equilibria of infinitely repeated games with one-sided incomplete information in
which players maximize the limit of the mean of their undiscounted payoffs. Following
a different method pioneered by Hart (1985) they also find that in games of conflicting
interests the informed player can enforce her commitment payoff if there is an arbitrarily
small prior probability of a commitment type. Since there is no discounting their result
seems to indicate that the relative patience is not that important after all. However, as

we will show in Section 4, this interpretation is misleading.

The rest of the paper is organized as follows. In the next section we introduce the
model following closely Fudenberg-Levine (1989) and we briefly summarize their main
results. Then we give a counterexample showing that their theorem cannot carry over
to the class of all repeated games with two long-run players. This gives some intuition
on how this class has to be restricted. Section 4 contains our main results. There we
generalize Fudenberg-Levine's (1989) theorem to the two long-run player case, and we
show that the restriction to games with “conflicting interests” is a necessary condition for
this generalization to hold. Furthermore we extend the analysis to the case of two-sided
incomplete information. In Section 5 we give several examples which demonstrate how
restrictive the “conflicting interests” condition is. Section 6 concludes and briefly outlines

several extensions of the model.

2 Description of the Game

In most of the paper we consider the [oliowing very simple model of a repeated game
which is an adaptation of Fudenberg-Levine (1989) and Fudenberg-Kreps-Maskin (1990)
to the two long-run player case. The two players are called “one” (she) and “two” (he).
In every period they move simultaneously and choose an action a; out of their respective

action sets A;, 1 € {1,2}. Here we will assume that the A; are finite sets.? As a point of

2Gee Section 6 for the extension to extensive form stage games, continuous strategy spaces and more
than two players.



reference consider the unperturbed game (with complete information) first. Let gi(ay,az)
denote the payoff function of player : in the unperturbed stage game g depending on the
actions taken by both players. Let A; denote the set of all mixed strategies a; of player 1

and (in an abuse of notation) g;(a1, az) the expected stage game payoffs.

The T-fold repetition of the stage game g is denoted by G7, where T may be finite
or infinite. We will deal in most of the paper with the infinite horizon case but all of
the results carry over immediately to finitely repeated games if T is large enough. In the
repeated game the overall payoff for player i from period ¢ onwards (and including period

t) is given by
(1) V=) 6,
r=t

where &; denotes her (his) discount factor (0 < é; < 1). Our results are stated in terms of

average discounted payoffs v;, where

(2) v = (1-&)- V) = (1f51)'§:5179f-

7=0
After each period both players observe the actions that have been taken. They have
perfect recall and can condition their play on the entire past history of the game. Let A*
be a specific history of the repeated game out of the set H' = (A; x Az)* of all possible
histories up to and including period t. A pure strategy s; for player i in the repeated
game is a sequence of maps s : H'! — A;. Correspondingly, let o; = (o},07,--)
denote a mixed (behavioral) strategy of player 7, where o} : H'"! — A;. For notational

convenience the dependence on history is suppressed if there is no ambiguity. The set of

all pure (mixed) strategies is denoted by S; (X; respectively).

Let B: A; — A, be the best response correspondence of player two in the stage
game and define

3 7 = max min a, o
(3) 91 e 0’268(01)91( 1,02)

as the “commitment payoff” of player one. That is g7 is the most player one could
guarantee for herself in the stage game if she could commit to any pure strategy a; € A;.
Note that the minimum over all a, € B(a;) has to be taken since player two may be

indifferent between several best responses to a; in which case he may take the response
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player one prefers least.® Let a} (her “commitment action”) satisfy

(4) o:lénB}g;)gl(al7a2) = G -

Furthermore, let o3 € B(a}) denote any strategy of player two which is a best response
to a} and define
(5) 9: = g2(a3,03) .
So g3 is the most player two would get in the stage game if player one were committed to
a;. Suppose B(a}) # A; (otherwise the game is “trivial” because player one’s commitment
payoff is her maxmin payoff). Then there exists a @, ¢ B(a}) such that
(6) g2 = g2(af,@2) = max gofaj,a2) < g3 -

a2@B(a})
Note that the maximum exists because it is taken over the finite set of all (pure) actions
ay & B(a}). So §, is the maximum player two can get if he does not take an action which
is a best response against aj, given that player one takes her commitment action. Finally,
define the maximal payoff plaver two can get at all as
(7) g, = max max g92(a1,a2) -

Clearly, in the repeated game it must be true that

4 — T— -— g 7t
(8) vy < ;52 “gy = 1—25 =V,

for all ¢ and all At~! € H!"1,

Consider now a perturbation of this complete information game such that in period
0 (before the first stage game is played) the “type” of player one is drawn by nature out
of a countable set Q = (wo,w, - --) according to the probability measure u. Player one’s
payoff function now additionally depends on her type, so g1 : A, x A2 x @ — R. The
perturbed game G7 () is a game with incomplete information in the sense of Harsanyi

(1967-68). In the perturbed game a strategy of player one may not only depend on history

3Fudenberg and Levine (1989) refer to g} as the “Stackelberg payoff”. However, it is now customary
to use this expression only for max,, maxa,eB(a,) 91(a1, @2), that is for the maximum payoff player one
could get if he could publicly commit himself to any action a; and player two choses the best response
plaver one prefers most. See Fudenberg (1990). The analysis can be extended to the more general case
where player one would like to commit himself to a mixed strategy or to a strategy dependent on history.
See Fudenberg and Levine (1992) and the remarks in Section 6.
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but also on her type, so o} : H'"! x 2 — A;. Two types out of the set Q are of particular

importance:

e The “normal” type of player one is denoted by wy. Her payoff function is the same

as in the unperturbed game:
(9) g1(a1,a2,w0) = gi(ai1,az).

In many applications u(we) will be close to 1. However, we have to require only that

p(wo) = u° > 0.

¢ The “commitment” type is denoted by w". For her it is a dominant strategy in the
repeated game always to play aj. This is for example the case if her payoff function

satisfies
(10) gl(a’l.aa%w-) = gl(a;aa;aw-) > gl(alaagaw‘)

for all a; # a}, a; € A;, and all a,,a), € A;. The dominant strategy property in the
repeated game implies that in any Nash equilibrium player one with type w* has
to play aj in every period along the equilibrium path. This in turn implies that if
u(«™) = p= > 0 then with positive probability there exists a history in any Nash

equilibrium with s} = aj for all ¢. The set of all such histories is denoted by H~.

We will now restate an important lemma of Fudenberg-Levine (1989) about statis-
tical inference which is basic to the following analysis. The lemma says that if w* has
positive probability and if player two observes a] being played in every period then there
is a fixed finite upper bound on the number of periods in which player two will believe
aj is “unlikely” to be played. The intuition for this result is the following. Consider any
history h'~! € H* in which player one has always played a} up to period ¢t — 1. Suppose
player two believes that the probability of a} being played in period t is smaller than
7, 0 <7 < 1. If player two observes a} being played in t he is “surprised” to some extend
and will update his beliefs. Because the commitment type chooses a} with probability
1 while player two expected aj to be played with a probability bounded away from 1
it follows from Bayes’ law that the updated probability that he faces the commitment
type has to increase by an amount bounded away from 0. However, this cannot happen

arbitrarily often because the updated probability of the commitment type cannot become
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bigger than 1. This gives the upper bound on the number of periods in which player two
may expect a} to be played with a probability less than 7. Note that this argument is

independent of the discount factors of the two players.

To put it more formally: Each (possibly mixed) strategy profile (o1, 02) induces a
probability distribution 7 over (A; x A2)® x Q. Given a history A*~" let 7*(a]) be the
probability attached by player two to the event that the commitment strategy is being
plaved in period t, i.e. 7'(a}) = Prob(st = a} | h'~!). Note that since A'~! is a random
variable #(a]) is a random variable as well. Fix any 7, 0 < 7 < 1, and consider any
history h induced by (o7,03). Along this history let n(x'(aj)) < 7) be the number
(possibly infinite) of the random variables 7*(aj) for which 7(a]) < 7. Again, since h is

a random variable, so is n.

Lemmal Let 0 < 7 < 1. Suppose u(w") = p~ > 0, and that (01,02) are
such that Prob(h € H* |w") = 1. Then

)>10g#_ |he H| = 0.

log=

(11) Prob |n (='(a]) <

|

Furthermore, for any infinite history h such that the truncated histories hy
all have positive probability and such that aj is always played, p(w™ | he) is

nondecreasing in t.

Proof: See Fudenberg-Levine (1989), Lemma 1.

One feasible strategy for player one with type wq is of course to mimic the commit-
ment type and always to play aj. Lemma 1 does not say that in this case p(w" | hy € h™)
converges to 1, i.e. that player two will gradually become convinced that he is facing w*
if he observes a} always being played. Rather it says that if he observes aj being played

in every period he cannot continue to believe that aj is “unlikely” to be played.

Suppose that player two is completely myopic, that is he is only interested in his
payoff of the current period. Fudenberg and Levine show that there is a ¥ < 1 such that
if the probability that player one will play aj is bigger than 7 then a short-run player
two will choose a best response against a}. Thus, if player one mimics the commitment

tvpe, then by Lemma 1 her short-run opponents will take a; € B(q]) in at most k = !f’fg“—?f



periods. The worst that can happen to player one is that these k periods occur in the
beginning of the game and that in each of these periods she gets

(12) g, = min gi(aj, a).

This argument provides the intuition for the following theorem.

Theorem 1 (Fudenberg-Levine) Let §; = 0, p(«°) > 0, and p(w*) = p* >
0. Then there is a constant k(u*) otherwise indepedent of (2, u), such that

(13) w(bute?) 2 (1-6%7) g, + 874,

where vy(6;, u*;w°) is any average equilibrium payoff of player one with type

wo in any Nash equilibrium of G=(u).

If 6; goes to 1 the “normal” type of player one can guarantee herself on average at
least her commitment payoff no matter what other tvpes may be around with positive
probabilty. The result is discussed in more detail in Fudenberg and Levine (1989). Note
however that Theorem 1 is crucially based on the assumption that player two is completely
myopic. If he cares about future payoffs then he may trade off short-run losses against
long-run gains. Thus, even if he believes that a] will be played with a probability arbi-
trarily close or equal to 1, he may take an action a; which is not a short-run best response
against a3. One intuitive reason for this could be that he might invest in screening the
different types of player one. Even if this yields losses in the beginning of the game the
investment may well pay off in the future. This leads Fudenberg and Levine to conclude
that their result does not apply to two long-run player games. The main point of our
paper, however, is to show that for a more restricted class of games a similar result holds
in the two long-run players case as well. Since player two’s discount factor is smaller than
1 the returns from an investment may not be delayed to far to the future. He will not
“test” player one’s type arbitrarily often if the probability that she will play aj is always
arbitrarily close to one. This idea will be used in Section 4 to prove an analog of Theorem

1 for two long-run player games.



3 A Game not of Conflicting Interests

Before establishing our main result let us show that Theorem 1 does not carry over to all
repeated games with two long-run players. We give a counterexample of a game in which
the normal type of player one cannot guarantee herself almost her commitment payoff in
all Nash equilibria. The example is instructive for two reasons. First, it shows how to
construct an equilibrium in which the normal type of player one gets strictly less than
her commitment payoff. This equilibrium is not only a Nash but a sequential equilibrium
which survives all standard refinements. Second, the construction leads to a necessary

and sufficient condition on the class of games for which Theorem 1 can be generalized to

the two long-run player case.

Consider an infinite repetition of the following stage game with three types of player

one:

L R L R L R
U 10 10 0 0 U 10 10 10 0 U 1 10 1 0
p|% o' p|% o' 1 p| ! o' 1
“normal” type “commitment” type “indifferent” type
u® =0.8 pr=0.1 gt =0.1

FiGURE 1 — A game with common interests.

Player one chooses between U and D and her payoff is given in the upper left corners of
each cell. Clearly the normal type of player one would like to publicly commit always
to play U which would give her a commitment payoff of 10 per period in every Nash
equilibrium. For the commitment type it is indeed a dominant strategy in the repeated
game always to play U. The indifferent type, however, is indifferent between U and D no

matter what player two does.

If 0.75 < 6, €1 and 0.95 < §;, < 1 then the following strategies and beliefs form a
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sequential equilibrium of G* which gives the normal type of player one

(14)

lim v;(w®) = 95 < 10 = g; .
61 —1
Normal type of player one: “Play U. If you ever played D, switch to playing D

forever.”
Commitment type of player one: “Always play U.”

Indifferent type of player one: “Always play U along the equilibrium path. If there

has been any deviation by any player in the past switch to playing D forever.”

Player two: “Alternate between 19 times L and 1 times R along the equilibrium
path. If player one ever played D, switch to R forever. If player two himself
deviated in the last period, play L in the following period. If player one reacted to
the deviation by playing U, go on playing L forever. If she reacted with D, play R

forever.”

Beliefs: Along the equilibrium path beliefs don’t change. If player two ever observes
D to be played he puts probability 0 on the commitment type. If player one reacts
to a deviation of player two by playing U the indifferent type gets probability 0. In
both cases the respective two other types may get arbitrary probabilities which add

up to 1.

Why is this an equilibirum? Consider the normal type of player one. Clearly she

would like to signal that she is the normal or the commitment type. Since all three types of

player one always play U along the equilibrium path the only way to transmit information

about her type is to play D. However, playing D “kills” the commitment type, because

for her it is a dominant strategy always to play U. But without the commitment type

it is impossible to get rid of the “bad” equilibrium (D, R). What about player two?

He expects U always to be played along the equilibrium path. Nevertheless he plays R,

which is not a short-run best response, in every twentieth period. His problem is that he

faces the indifferent type with positive probability. If he choses L when he is supposéd

to play R, then this might trigger a continuation equilibrium against the indifferent type
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which gives him far less than what he would have got {rom playing aga,ilbnst. the normal or

commitment type of player one. It is this risk which sustains the equilibrium outcome.

Note that there are very few restrictions imposed on the updating of beliefs in
information sets which are not reached on the equilibrium path. The example only requires
that if D is played for the first time the commitment type gets probability 0, which is
perfectly reasonable given that for her it is a dominant strategy in the repeated game

always to play U.

To what extend does the example rely on the existence of the indifferent type?
Without the indifferent type it is still possible to construct a Nash equilibrium which
gives player one less than her commitment payoff. Actually, this is very simple: The
normal and the commitment type of player one always play U along the equilibirum path.
After any deviation they switch to playing D forever. Player two alternates playing one
period L and one period R. If there has been any deviation, he plays R forever. Note
that the average payoff of the normal type of player one is only 5. This clearly is a Nash
equilibrium, but it is not sequential. It requires for example that the commitment type

plays D off the equilibrium path.*

What sustains both equilibria is the possibility of a continuation equilibrium which
punishes player two if he plays his short-run best response against aj in periods when
he is supposed not to do so. Note that this construction does not work if player two is
already hold down to his minimax payoff by the commitment strategy of player one, since
in this case nothing worse can happen to him. In the next section we show that this is the
only case in which Fudenberg and Levine’s result can be generalized to the two long-run

player case.

4\Whether there exists a sequential equilibrium in which player one gets substantially less than 10 if
there are only the normal and the commitment type around is an open question. Note, however, that we
want to characterize equilibrium outcomes which are robust to general perturbations of the informational
structure of the game. From this perspective it makes little sense to ristrict attention to two possible
types only.
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4 Main Results

4.1 The Theorem

Suppose that the commitment strategy of player one holds player two down to his minimax
payoff. In this case there is no “risk” in playing a best response against aj because
player two cannot get less than his minimax payoff in any continuation equilibrium. This

motivates the following definition:

Definition 1 A game g is called a game of conflicting interests with respect

to player one if the commitment strategy of player one holds player two down

{o his minimaz payoff, i.e. if

(13) 9; = g(aj,03) = minmaxgy(e,az).

1 2

“Conflicting interests” are a necessary and sufficient condition for our main result. Note
that the definition puts no restriction on the possible perturbations of the payoffs of player
one. It is a restriction only on the commitment strategy and on the payoff function of
player two. We will discuss this class of games extensively and give several examples in
Section 5. Clearly, in a game with conflicting interests player two can guarantee himself

in any continuation equilibrium after any history A, at least

1

e Lt
(16) ‘2 1_52 g, -

This is crucial to establish the following result:

Lemma 2 Let g be a game of conflicting interests with respect to player one
and let p(w*) = u* > 0. Consider any Nash equilibrium (61,52) and any his-
tory h! consistent with this equilibrium in which player one has always played
a;. Suppose that, given this history, the equilibrium strategy of player two pre-
scribes to take syt' & B(a}) with positive probability in period t + 1. For any
82, 0 < 63 < 1, there exists a finite integer M,

no2
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and a positive number e,

1—-685)2(g5—3
(18) e = "’_) (?2 92)-5{,"-(1-52)>0,
92— 92
such that in at least one of the periods t + 1,t +2,---,1 + M the probability

that player one does not take a}, given that he always played a} before, must

be at least €.

Proof: See appendix.

Let us briefly outline the intuition behind this result. Because g is of conflicting
interests player two can guarantee himself at least Vit! = T—g_l‘g in any continuation equi-
librium after any history h;. Therefore, if he tries to test player one’s type and takes an
action st € B(a}) in period ¢ + 1 this must give him an expected payoff of at least vitt
for the rest of the game. If player one chooses a] with a probability arbitrarily close or
equal to 1, then choosing an action a; ¢ B(aj) yields a “loss” of at least g5 — g > 0 in
this period. Recall that §, is defined as the maximal payoff player two gets if he does not
take a best response against aj. On the other hand, g, is an upper bound on what player
two may get in any period in which player one does not take her commitment action, and
- of course - he cannot get more than g; if she plays a. But if future payoffs are bounded
and &, < 1 then the compensation for an expected loss today must not be delayed too
far to the future. The numbers M and ¢ are constructed such that if player two takes
a strategy si' € B(a]) in period t + 1 then it cannot be true that in each of the next
M periods the probability that player one takes her commitment action is bigger than
(1 — €). Otherwise player two would get less than his minimax payoff in equilibrium, a

contradiction. Note that this argument also holds for finitely repeated games if T is large

enough.

Lemma 2 holds in any proper subform of G as long as player one always played af
in the history up to that subform. Thus if player two chooses actions a; € B(a]) along A~
in n - M periods, then in at least n of these periods the probability that player one does

not play a] must be at least e. Together with Lemma 1 this implies our main theorem:

Theorem 2 Let g be of conflicting interests with respect to player one and let

p(w®) > 0, and p(w*) = p* > 0. Then there is a constant k(u~, 82) otherwise

14



independent of (2, i), such that
(19)  w(Ebwne?) 2 (1-8%) g + 6V g

where v1(6;, 82, pu*;w°) is any average equilibrium payoff of player one with type

wp in any Nash equilibrium of G=(yu).

Proof: Consider the strategy for the normal type of player one of always playing aj. Take
the integer M = [N] + 1, where [N] is the integer part of N, and a real number ¢ > 0,
where N and € are defined in Lemma 2. By Lemma 2 we know that if player two takes
an action a; € B(a]) then there is at least one period (call it 7) among the next M
periods in which the probability that player one will play a] (denoted by =7 ) is smaller
than (1 —¢). So

(20) T, < l—-€e=T7.
However, by Lemma 1 we know that

I‘ =
(21) * |n(z] <7) > s

| B = 0.

In7w

That is, the probability that player one takes her commitment action cannot be smaller

than 7% in more than ll"n‘; periods. Therefore, player two cannot choose actions a; € B(a7)
more often than
In u~
22 L= M. ———
(22) In(1 — ¢)

times. Substituting M = [N]+ 1 and € from Lemma 2, we get

In u*

In (1 _ (1=8)(93-52) + 5£N]+1) '
92—92

(23) K, 62) = (IN]+1)-

In the worst case player two chooses these actions in the first k(u*, 8,) periods. This gives

the lower bound of the theorem. Q.E.D.

If 6; — 1 (keeping &, fixed) then the equilibirum payoff of the normal type of player
one is bounded below by her commitment payoff. Thus, in the limit our theorem gives
the same lower bound as Fudenberg and Levine’s theorem does for the case of a long-run

player facing a sequence of short-run opponents. Their result can be obtained as a special



case of Theorem 2 for the class of games with conflicting interests. Note that if é; goes

to 0 then N goes to 0. So

. . In u* Inp®
(21 Jim k&) = ——tos = =
In (1 B 5:—5n> In (52—52)
In a game with conflicting interests a short-run player two will play a best response against
aj if
(25) 9 > 7 G2+t (1-7)-7,
or, equivalently, if
(26) r> 279N =%
92— 92

Using (26) in Lemma 1 immediately implies Theorem 1.

It is important to note that the lower bound given in Theorem 2 depends on the
discount factor of player 2. If §, increases, so does k(u*,é,), and the lower bound is
reduced. Hence, to obtain his commitment payoff in equilibrium player one has to be
sufficiently patient as compared to player two. The following corollaries elaborate on the

importance of the relative patience of the players.

Corollary 1 Forany 8, <1, u* > 0 and € > 0 there ezists a §,(é,. 47, ¢) < 1,
such that for any & > §,(62, 17, ¢) the average payoff of the normal type of

player one is at least g7 — €.
Proof: Choose ¢, such that

= k(u®,5 k(u*,b =
(27) gi—e= (1-80"7). g +8¢% g .

Solving for §, yields

1—g. —¢€
(28) 8 = 6,(u,6re) = ot/ hT0 o
91— 9,

Clearly, if 63 > §,(u", b2, €) then
vi(61, 85, 4% 0°%) 2 (1 - 55(”"52) g9, t 5:.(“"62 A
(29) 2 (1 - éf(”"h) g, + & g =gi -

Q.E.D.
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Corollary 2 Consider any sequence {65}, 83 < 1, limy—oo 83 = 1 and fiz
¢ > 0. Then there exists a sequence {67}, 67 < 1, lim,o 6} = 1, such that
for any {87,683} the average payoff of the normal type of player one is bounded
below by g7 — €.

Proof: Take any {67} and fix € > 0. Choose {67} — 1 such that 67 > §,(é2, 4", ¢€) for
all n, where §,(6,, 1", €) is given by (28). Then the result follows immediately from the
previous corollary. Q.E.D.

Corollary 2 shows that there is an area in the §; — 8, space such that for any
sequence {67,65} — (1,1) in this area player one gets at least her commitment payoff
(up to an arbitrarily small €) for any pair of discount factors along this sequence. Note,
however, that limn_.w%: =0, i.e. in the limit player one is infinitely more patient than
player two. This observation helps to understand a related result of Cripps and Thomas
(1991) who consider repeated games without discounting, in which players maximize
the limit of the mean of their payoffs. Under slightly stronger conditions on the possible
perturbations they show that if the game has conflicting interests and if there is a positive
prior probability of a commitment type, then player one gets at least her commitment
payoff as the Banach limit of the mean of her stage game payoffs. However, the case of no
discounting obscures the role of the relative patience of the players. We can give examples
of equilibria in games with conflicting interests where é; — 1, 6, — 1, limn_ooi%f% > 0,
and player one’s equilibrium payoff is bounded away from her commitment payoff for any
{67,673} along this sequence. Thus, if player one is not patient enough as compared to

player two our lower bound does not apply.

If player one has to be much more patient than player two the reader might be left
with the impression that we are essentially back to Fudenberg and Levine (1989) where
a long-run player faces a sequence of short-run players. However, this is not the case.
First, Fudenberg and Levine’s result requires é, = 0 while here §; may be arbitrarily close
to 1. Second, we are going to show in the next subsection that whenever the game is
not of conflicting interests it is possible to find an equilibrium which violates Fudenberg
and Levine's lower bound no matter how much more patient player one is as compared
to player two. Thus, there is a fundamental difference between repeated games in which

one player does not care at all about her future payoffs and games in which she does care
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~but is less paticut than her opponent. Finally, the importance of the relative patience
of the two players is very intuitive as will be shown after we have introduced the case of

two-sided uncertainty in subsection 4.3.

4.2 Necessity of the “Conflicting Interests” Condition

The question arises whether Theorem 2 also holds for games which are not of conflicting
interests. If the game is not “trivial” in the sense that player one’s commitment payoff is

equal to her minimax payoff® the answer is no:

Proposition 1 Let g be a non-trivial game which is not of conflicting inter-
ests. Then for any € > 0 there isann > 0 and a §, < 1 such that the following
holds: There is a perturbation of g, in which the commitment type of player 1
has positive probability and the normal type has probability (1 — €), and there
is a sequential equilibrium of this perturbed game, such that the limit of the
average payoff of the normal type of player one for §, — 1 is bounded away
from her commitment payoff by at least n for any 62 > §,.

Proof: See appendix.

Proposition 1 shows that the condition of conflicting interests is not only sufficient
but also necessary for Theorem 2 to hold, in fact, it is a little bit stronger than that
in two respects. First, it says that if the game is not of conflicting interests, then it
is not only possible to find a Nash equilibirum which violates Fudenberg and Levine’s
lower bound, but also to find a sequential equilibrium. As has been indicated in Section
3, the construction of a Nash equilibrium using threats which are not credible is much
simpler. Secondly, Theorem 2 only requires that g(w®) > 0 in the perturbed game. So
we could have established necessity by constructing a perturbation which gives a high
prior probability to an “indifferent” tyvpe who credibly threatens to punish any deviation
of player two from the equilibrium path we want to sustain. However, in many economic

applications it is natural to assume that p(wP) is close to one. This is why we provide a

®It is well known that a player can always guarantee herself at least her minimax payoff in any Nash-
equilibrium.



stronger proposition which says that even if u(w°) is arbitrarily close to one it is possible
to construct a sequential equilibrium in which the payoff of the normal type of player one

is bounded away from g¢;.

Note that in Proposition 1 §; — 1 while é; is fixed, so player one may be arbitrarily
more patient than player two. Thus, Proposition 1 shows that there is an important
difference between games with two long run players, one of whom is more patient than
the other, and games in which a long-run player faces a sequence of short-run players. In
the latter Fudenberg and Levine’s bound holds for for all stage games, in the former it

only holds for games with conflicting interests.

4.3 Two-sided Incomplete Information and Two-sided Conflicting Interests

If there are two long-run players it is most natural to ask what happens if there is two-
sided uncertainty. Our result can be extended to this case in the following way. Suppose
the game is perturbed such that there is incomplete information about both the payoff
functions of plaver one and player two. Let w; denote player i’s type which is drawn by
nature in the beginning of the game out of the countable set §); according to the probability
measure g;, ¢ € {1,2}. Let w? and w] represent the normal and the commitment types,
respectively. Finally, suppose that the game is of conflicting interests with respect to
player i, i.e. player :’s commitment strategy holds player j down to his minimax payoff.
Without loss of generality let : = 1. Now consider the normal type of player two. In
the proof of Lemma 2 we didn’t say why player two might choose an action which is not
a best response against player one’s commitment strategy. He might do so because he
wants to test player one’s type or because he wants to build up a reputation himself. No
matter what the reason is, Lemma 2 states that if he takes a; ¢ B(aj), then he must
expect that player one choses s} # a} in one of the following periods with strictly positive
probability. This holds for the normal type of player two no matter what other possible
types of player two exist with positive probability.

A possible strategy of player one still is to play a] in every period. If she faces
the normal type of player two, then by Theorem 2 there are at most k(u7, 62) periods in

which player two will not play a best response against aj. In the worst case for playver
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one this happens in the first k periods of the game. On the other hand, if she does not
face the normal type of player two her expected payof is at least g in every period. This
argument establishes a lower bound for the expected payoff of the normal type of player

¢ which is given in the following theorem:

Theorem 3 Let g be of conflicting interests with respect to player i and let
pi(w?) = p? > 0 and pi(w?) = p; > 0, 7 € {1,2}. Then there are constants
ki(p7,8;) otherwise independent of (Q;,Q;, u;), such that

- kl '151 ki :v6 =
(30) Ui(5i76j7/‘n#?;w?) 2 (1 - #35;' e )) g;+ l‘?& v J)gi

where vg(51,52,y;',p?,w?) is any average equilibrium payoff of player 1 with

type w? in any Nash equilibrium of G*=(u).

Thus, if the probability of the normal type of player two is close to 1 and if player one is
very patient, then the lower bound for her average payoff is again close to her commitment

payvoff.

What can be said if g has two-sided conflicting interests, i.e. if each player would
like to commit to a strategy which holds his opponent down to his minimax payoff. Of
course, if there are two-sided conflicting interests and if both players are equally patient
it is impossible that each of them gets his most prefered payoff. But suppose that §; and
4; differ. The bigger player j’s discount factor the bigger is k;(u7,6;), i.e. the number of
periods in which player 7 must expect that a strategy other than the best response against
her commitment strategy is played, and the lower is her lower bound. On the other hand,
if é; is kept fixed and §é; goes to 1 then this k periods become less and less important, and
in the limit player : will get his commitment payoff. This is very intuitive. In a symmetric
game with conflicting interests reputation building has an effect only if one of the parties

is sufficiently more patient than the other.

Theorems 2 and 3 are in striking contrast to the message of the Folk theorem for
games with incomplete information by Fudenberg and Maskin (1986). The Folk theorem
says that any feasible payoff vector which gives each of the players at least his minimax

payoff can be sustained as an equilibrium outcome of the perturbed game if the right

20



perturbation is chosen.® Theorems 2 and 3 show that this result is not robust against
further perturbations. If one of the players is patient enough and if her commitment
type has positive probability then - no matter what other types are around with positive
probability - Theorem 2 imposes a tight restriction on the set of equilibrium outcomes in

any Nash equilibrium.’

We have to be very precise here in what is meant by robustness. Fudenberg (1990)
argues that the Folk theorem is robust against a further perturbation of the informational
structure in the following sense: Consider a sequential equilibrium which has been con-
structed using an € probability of a “crazy” type as the Folk theorem suggests. If for a
given time horizon of the game other types are introduced with a probability which is
small as compared to ¢, then this is still an equilibrium. However, if the time horizon
goes to infinity the equilibrium must break down. We have shown, that if the game is of
conflicting interests and if there is an arbitrarily small probability of a commitment type,
then the commitment type will dominate the play as T becomes large enough. Thus, if we
are interested in the set of equilibria for T — oo, the Folk theorem is not robust against

small perturbations of the informational structure.

5 Examples

5.1 The Chain Store Game

Consider the classical chain store game, introduced by Selten (1978), with two long-run

players. In every period the entrant may choose to enter a market (1) or to stay out (0),

SFudenberg and Maskin’s Folk theorem for games with incomplete information considers only finitely
repeated games without discounting. However, the extension to discounting and an infinite horizon is
straightforward.

"Note that even if the game is not of conflicting interests we can still impose some restriction on the
set of Nash equilibrium payoffs, although the bound will be weaker than Fudenberg and Levine’s. To see
this suppose that the game is not of conflicting interests, but that there is a positive prior probability of
a type who is committed to hold player two down to his minimax payoff. If the normal type of player one
mimicks this type, then she can guarantee herself on average at least the payoff she would have got if she
were publicly committed to this strategy. This doesn’t give her her most prefered payoff but it may still
be more than her minimax payoff and thus reduce the set of Nash equilibrium payofls as compared to the
Folk theorem. I am grateful to Drew Fudenberg for this observation. A companion paper will generalize
and elaborate this idea.



while the monopoliét has to decide whether to acquiesce (A) or to fight (F). Assume that

the payoffs of the unperturbed stage game are given as follows:

I 0] 92

2

Al 9%
1

0 3

F -1 0 97
OVié/a 2
1

Ficure 2 — The chain store game.

The monopolist would like to commit to fight in every period which would give her a
commitment payoff of 3 and which would hold the entrant down to 0. Since 0 is also
player two's minimax payoff the game is - according to our definition - of conflicting
interests with resprect to the monopolist. Kreps and Wilson (1982) have analyzed finite
repetitions of this game with some incomplete information about the monopolist’s type.
For a particular perturbation of player one’s payoff function they have shown that there
are sequential equilibria in which the monopolist gets on average almost her commitment
payoff if her discount factor is close enough to one and if there are enough repetitions.
However, Fudenberg and Maskin (1986) demonstrated that any feasible payoff vector
which gives each player more than his minimax payoff, i.e. any point in the shaded area
of figure 2, can be sustained as an equilibrium outcome it the “right” perturbation is
chosen. Thus, our Theorem 2 considerably strenghtens the result of Kreps and Wilson
(1982). It says that the only Nash equilibrium outcome of this game which is robust
against any perturbation gives the monopolist at least her commitment payoff of 3 (note

that she cannot get more), if she is sufficiently patient as compared to the entrant.®

8] am grateful to Eric van Damme for the following observation: Theorem 2 does not imply that the
average payofl of player two is 0. Recall that player one is more patient than player two. So it may be
that in the beginning of the game, say until period L, she gets less than 3 and player two gets more than
0, but after period L payoffs are always (3,0). For player one the first L periods do not count very much
because she is very patient, so her average payoff is 3. However, player two puts more weight on the first
L periods and less on everything thereafter, so her average discounted payofl may be considerably bigger
than 0.

(V]
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Furthermore it shows that this result carries over to the infinitely repeated game.

Now suppose that there is also incomplete information about the payoff function
of the entrant. He would like to commit to enter in every period which would give him
a commitment payoff of 2 while it would hold the monopolist down to 1, her minimax
payoff. So the game is also of conflicting interests with respect to the entrant and our
theorem applies. If there is two-sided uncertainty Proposition 2 says that it all depends
on the relative patience of the two players and the prior probability distribution. If player
one is sufficiently more patient than player two and if the probability of the normal type
of player two is close to one, then player one will get her commitment payoff in any Nash

equilibrium, and vice versa.

5.2 A Repeated Bargaining Game

Consider a buyer (b) and a seller (s) who bargain repeatedly in every period on the sale
of a perishable good. The valuation of the buyer is 1 and the production costs of the
seller are 0. Suppose there is a sealed bid double auction in every period: Both players
simultaneously submit bids p, and p,, pi € {1,2,---2}, and there is trade at price
p = 22E if and only if p, > p,. Consider the commitment strategy of the buyer. She
would like to commit herself to offer p; = % in every period. The unique best reply of the
seller is p, = =, which gives him g = %, his minimax payoff. Suppose the payoff function
of the buyer is perturbed such that with some positive probability she will always offer
p;. Then Theorem 2 applies and the buyer will get almost her commitment payoff of -’-‘;—1

on average in any Nash equilibrium if her discount factor is close to one.

Note however, that this example is not as clear-cut as the chain store game. We
have to assume that there is a minimal bid + > 0. If the buyer could offer p, = 0 she could
hold the seller down to a minimax payoff of 0. But if he gets 0 the seller is indifferent
between all possible prices, so he might choose p, > 0 and we end up with no trade. The
point is that bargaining over a pie of fixed size is not quite a game of conflicting interests.

Some cooperation is needed to ensure that trade takes place at all.

In Schmidt (1990) we considered a more complex extensive form game of repeated

bargaining with one-sided asymmetric information, which confirms the above result that
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the informed player can use the incomplete information about his type to credibly threaten
to accept only offers which are very favourable to him. There, however, we took a different
approach and it is interesting to compare the two models. In Schmidt (1990) we did
not allow for “all possible” but only for “natural” perturbations of player one’s payoff
function, i.e. we assumed that there may be incomplete information about the seller’s
costs, ¢ € [0,1]. The problem is that in this case there is no commitment type since none of
the possible types of the seller has a dominant strategy in the repeated game. However, if
the game has a finite horizon it can be shown that in any sequential equilibrium satisfying
a weak Markov property the seller with the highest possible type will accept an offer if
and only if it covers at least his costs. This type plays the role of the commitment type
who is mimicked by all the other possible types of the scller. We show that the buyer will
try to test the seller’s type at most a fixed finite number of times and that this will happen
only in the end of the game. Surprisingly (from the point of view of Theorem 2) we can
show that the seller will get his commitment payoff even if he is much less patient than
the buyer, so the relative discount factors are not crucial. Furthermore the bargaining
game we consider there is not of conflicting interests.® There are common interests as
well, because players have to cooperate to some extend in order to ensure that trade takes

place.

5.3 Games with Common and Conflicting Interests

“Pure” conflicting interests are a polar case and in most economic applications there are
both - common and conflicting - interests present. Consider for example the repeated
prisoner’s dilemma depicted in Figure 3. In a formal sense this game is of conflicting
interests, but our theorem has no bite. Given that player two takes a best response against
her commitment action player one would like most to commit herself to play D(efect) in
every period. This holds player two down to his minimax payoff, but it only gives player
one her minimax payoff as well. So, trivially she will get at least her commitment payoft
in every Nash equilibrium. In this game the problem is not to commit to hold player two

down to his minimax payoff, but to commit to cooperate.

9Note that not all possible perturbations are allowed for. This is why conflicting interests are not a
necessary condition for the result in Schmidt (1990).
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FiGURE 3 — The prisoner’s dilemma.

Another interesting example is a repeated Cournot game. Firm one would like to
commit to choose the “Stackelberg-leader” quantity, which maximizes her stage game
profit given that firm two chooses a best response against it. However, the “Stackelberg-
follower” payoff of firm two is positive and thus greater than his minimax payoff since he
can be held down to zero profits if player one gluts the market. So our result does not
apply. Again the problem of player one is not to hold player two down as far as possible.
Both players have the common interest to maximize joint profits, but interests are also
conflicting in the sense that each of them would like to get more for himself at the expense

of the other.

6 Extensions and Conclusions

To keep the argument as clear as possible we considered a very simple class of possible
stage games with only two players, finite strategy sets, a countable set of possible types,
and commitment types who always take the same pure action in every period. All of
these assumptions can be relaxed without changing the qualitative results. Fudenberg
and Levine (1989) provide a generalization to n-player games in which the strategy sets
are compact metric spaces and in which there is a continuum of possible types of player
one.’® In Fudenberg and Levine (1992) they show that the argument can be extended

to the case where the commitment types play mixed strategies and to games with moral

19]f n > 3, the definition of a game of conflicting interests requires that aj holds all other players
i=2,..,n down to their minimax payofls simultaneously.
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hazard, in which not the action of player one itself but only a noisy signal can be observed
by player two. Since the technical problems involved in these generalizations are the same

as in our model we refer to their work for any formal statements and proofs.

What happens if player one would like to commit hermself to a more complex
strategy which prescribes to take different actions in different periods and which may be
conditional on player two’s past play? It is easy to check that replacing aj by aj(h:)
doesn’t change anything in the proofs of Lemmata 1 and 2 and Theorem 2. However, in a
game with conflicting interests very little is gained by this generalization because aj(he)
has to hold player two down to her minimax payoff in any period and after any history

hy.

Fudenberg and Levine (1989) also demonstrated that the assumption that the stage
game is simultaneous-move cannot be relaxed without an important qualification of their
Theorem 1. The problem is that in an extensive form game player two may take an action
after which player one has no opportunity to show that her strategy is the commitment
strategv. Consider for example a repeated bargaining game in which in every period the
buyer has to decide first whether to buy or not and then the seller has to choose whether to
deliver high or low quality. If the buyer decides not to buy then he will not observe whether
the seller would have produced high quality. This is why the seller might fail to get her
commitment payoff in equilibrium. Note however that this problem does not arise in our
context. The definition of a game with conflicting interests assumes that the commitment
strategy of player one holds player two down to his minimax payoff. Therefore, if player
two takes an action a, in equilibrium after which player one’s commitment strategy aj
is observationally equivalent to some other strategy a; # aj, then player two cannot get
more than his minimax payoff. So a; must have been an element of B(aj). However
player one’s commitment payoff is defined as g; = maxa, ¢4, MiNg,eB(as) 91(a1, @2). So if
player two chooses a; € B(a}) player one cannot get less than g7. Therefore, following
Theorem 2 of Fudenberg and Levine (1989) it is straightforward that our result holds

without qualification if g is any finite extensive form game.

To conclude, this paper has shown that “reputation effects” can explain commitment
in a repeated game with two long-run players if and only if the game is of conflicting

interests. If one of the players is very patient as compared to the other player, then
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any Nash equilibrium outcome which is robust against perturbations of the information
structure gives her on average almost her commitment payoff. This indicates that the
message of the Folk theorem may be misleading. However, we still know very little about
the evolution of commitment and cooperation in games in which both - common and
conflicting - interests are present, which clearly is one of the most important issues of

future research.

Department of Economics, Massachusetts Institute of Technology, Cambridge, MA
02139, U.S.A.
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vAppendix

Proof of Lemma 2:

Consider any equilibrium (oy,0;) and fix a history A' up to any period t along which
player one has always played aj, such that h' has positive probability given (oy,03).
Such a history exists because pu* > 0. Suppose that according to the (possibly mixed)
equilibrium strategy o3t! player two chooses .s"H ¢ B(aj) in period t + 1 with positive
probability. Suppose further that the probability of player one not playing aj (given that
he always played a] before) in each of the periods ¢t + 1,t +2,--+,t 4+ M is smaller than
e. It will be shown that this can’t be true in equilibrium because then player two would

get less than his minimax payoff.

Note that € is independent of ¢t and that M has been chosen in a way to guarantee
that € > 0. Define 77(a;) = Prob(s] = a; | A""?) and let V7 (s],07) be the continuation
payofl of player two from period 7 onwards (and including period 7) given the strategy
profile (s7,07) in period 7. The expected payoff of player two from period ¢ + 1 onwards

is given by:

Vit o 00) = Y 7% ar) - 13 (ans5) + 77 (a)) - {92( sy )

ay#aj

+ & Z 7*2ay) Vit (ar, 05t?) + & - 72 (a}) - {92( ort)

ay #a;

(31) +

+ 52 Z at Vr+M(a1 t+M)+6 t+M {92 al,U; M)
ay#a]

+ 6 xg+M+l}...}}.

It will be convenient to substract §, from both sides of the equation in every period.
(Recall that g, is the maximal payoff for player two if he takes an action which is not a

best response against aj.) Then we get:

-~

&2 g2
V2:+1(01’0,2) - 5 — g. Trt“(al) . [‘/2t+1(a1,3‘2+1) 1-6,
21749,

+ 7% (a] {[92(01 s§*1) = ga]

28



5o - t+2 R VAZY] 1+2 572
+ 6 ;w (a1) {xz (ar,08") - 705
1

+ 8 73 (a})- {[gz(al,a;“)—gg]
(32) Foo
t+M t+M g2
Z ! [V (ar,097") — 1—62]

ay#a}
+ 6, 7Tt+M( 1) {[92(01’02+ ) = ]

» g2
+62.[V21+M+1 1-—52]} }}

By assumption the conditional probability that player one does not take her commitment
action given that she always played a before is smaller than ¢ in any period from t +
1,---,t+ M, so
(33) Y @) <«

a1#a}
and, of course, we can use that ='*(aj) < 1. Since g, is the maximal payoff player two

can get at all, it has to be true that

(34) V2t+a(ah05+:) < g2 and VzH'M'H < _g__2___
- 1_62 - 1—62

Furthermore, sit! is supposed not to be a best response against aj, so
(35) 92 (a;7st2+1) S .62-

Finally we can use that gy(a],02) < g;. Substituting these expressions yields:

Vi) ~ ;2g < e Tt 4 1-{(92—52)

+52.€.g12:6g: +621.{(g;_§2)++

+52'6 gz g2 + 521{( g2)+62 g2} }}

1—52 62
92 — .
6 = ¢€-
(36) ‘ 1-—52 St 1—52+52( -9
4o M e 912_52 4 M1 (g7 — Go) + 6M - gz 55;2
= ¢ 6o o M1 92~ 92 + 6. 92— 02
e-(1+b+--+87)- 1_52 T
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+ (1484 +8") (95— §2) — (95— 32)
92 — g2 M 92 g2 95 — §2
LI 92 g _ :
(1= 6,)2 T, Rty

Recall from the statement of Lemma 2 that

< €

— 2 . b — pt
(37) e U8V l-8) o q_g) 5 0.
92— 92
It is easy to check that € has been chosen such that

9, — G2 M 92— 02
DL I 5
1 =6,)2 + 1- 6

(38) = 9; —§2 .

Therefore we get:

\Viad! _ g2 92 g2 _
(39) 2 () =T p <15, T 1o

However, since g; is player two’s minimax payoff this is a contradiction to the fact that

we are in equilibrium. Q.E.D.

Proof of Proposition 1:

The proof is similar to the construction of the counterexample in Section 3. Perturb the
game g such that there are three types of player one, the normal type, the commitment
type and an indifferent type, whose payoff is the same for any strategy profile, with

probabilities (1 —€), %, and £, respectively. Let §,(¢) = ;_%_—( <1 and suppose &; > 8,(¢€).

Define
2(1-62)
In [1 - ——6262 ]

in 62
and let m = [n] + 2, where [n] is the integer part of n. Given the restriction on é; it is

(40) n =

straightforward to check that n is well defined and positive.

Since the commitment payoff of player one is strictly greater than her minimax payoff
there exists an action @, such that §; = g1(a}, @) < ¢} and g2 = gz2(aj, @2) < g5. Suppose
that § > minmaxg, and §, > minmaxg,.!! We will now construct an equilibrium such
that the limit of the average equilibrium payoff of the normal type of player one for 6; — 1

is bounded away from her commitment payoff by at least 7, where

1 .
(41) n = ;‘[QI—gll > 0.

111f for any of the players §; < minmaxg; the construction of the “punishment equilibria” which are
used below to deter any deviation form the equilibrium path are slightly more complex. In this case
players have to alternate between the outcomes g~ and § such that both get on average at least their
minimax payoffs.
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Suppose 1 > 6; 2> 1/3,—-_-%11%:.—_;, where g, is the maximum payoff player one can
get at all. Along the equilibrium path all types of player one play aj in every period,
while player two plays a3 € B(aj) in the first m — 1 periods, then he plays @, in period
n, then starts again playing a] for the next m — 1 periods and so on. If player one ever
deviates from this equilibrium path player two believes that he faces the normal type with
probability 1. In this case we are essentially back in a game with complete information
where the Folk theorem tells us that any individually rational, feasible payoff vector can
be sustained as a subgame perfect equilibrium. So without writing down the strategies
explicitly we can construct a continuation equilibrium, such that the continuation payoff
is (ﬁgl, 1_17252). Clearly, the commitment and the indifferent type of player one have
no incentive to deviate since aj is at least weakly dominant for both of them. It is easy

to check that - given m > 2 and the restriction on é; - the normal type of pléyer one will

not deviate either.

Now suppose player two ever deviates in any period ¢. In this case the normal and
the commitment type are supposed to play a} in period ¢ + 1, while the indifferent type
switches to another strategy 3*! # a;. If player two does not observe aj being played in
period t+1 he puts probability one on the indifferent type. Using the Folk theorem e can
construct a continuation equilibrium in this subform which gives player two -1-_1—6252 and
which would give the normal type of player one 1—}5_511. If, however, player two observes
a} being played in period t + 1 he puts probability 0 on the indifferent type. In the
continuation equilibrium of this subform (a}, a}) are always played along the equilibrium
path. If there is any deviation by player one, player two believes that he faces the normal
type with probability one and - using the Folk theorem again - the continuation payoff
is (]—_lg-l-_c}l, 1—_15‘(}2). Clearly, always to play aj is a best response of player two against
always a} and always aj is a best response for the commitment type against any strategy.

It is easy to check that it is also a best response for the normal type of player one, given

the “punishment” after any deviation.

We have already shown that the strategies of the players form an equilibrium after
any deviation from the equilibrium path and that given the continuation equilibria player
one has no incentive to deviate from this path. We still have to check that player two’s

strategy is a best response along the equilibrium path. The best point in time for a
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deviation is when player two is supposed to play a,. Il it does not pay to deviate in this

period, it never will. Suppose player two does not deviate. Then his payvoffl is given by:

m-—1 2m-1
Va(as) = G2 + 3 83 + 670 + Y Sigs + oo
t=1 t=m+1
. 62 . o7 . -
(42) = &+ gy — ——(g; = 32) -

1-68 % " 1—¢
However, if he deviates, the best he can do is to play a3 in period ¢. In this case his payoff
is given by
W v =g+ e {05yt k)

1-6; 2 1-46
It is now easy to check that e and §(¢) have been constructed such that Vz(az) > Va(a3).

Thus we have established that this is indeed an equilibrium path.

We now have to show that along this equilibrium path the average payoff of the
normal type of player one is indeed smaller than g; — n when 6§, — 1. The equilibrium

payoff of the normal type is given by:

m-1 2m-1
Vio= Y 8T+ e+ Y &+
t=1 t=m+1
1 1 om
44 — ———— = — —-—-—1—_. -— pt .
( ) 1— (51 91 51 1— 6{71 [gl gl]

Therefore the difference between her commitment payoff and her average payoff in this

equilibrium is

G- 0-8) % = gimgit gt o -5
- G5 i
(5 - T il
= i%;—:&'[gf—fh] > 5;:: o1 — @l
Taking the limit for §; — 1 we get
(46) e S R

Q.E.D.
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Footnotes

This paper is based on Chapter 3 of my PhD thesis which was completed within the
European Doctoral Programme at Bonn University. I would like to thank David
Canning, In-Koo Cho, Benny Moldovanu, Georg Noldeke, Ariel Rubinstein, Avner
Shaked, Joel Sobel, Monika Schnitzer, Eric van Damme and in particular Drew Fu-
denberg for many helpful comments and discussions. Financial support by Deutsche

Forschungsgemeinschaft, SFB 303 at Bonn University, is gratefully acknowledged.

See Section 6 for the extension to extensive form stage games, continuous strategy

spaces and more than two players.

Fudenberg and Levine (1989) refer to g} as the “Stackelberg payoff”. However, it
is now customary to use this expression only for max,, maXa,eB(a;) 91(a1,@2), that
is for the maximum payoff player one could get if he could publicly commit himself
to any action a; and player two choses the best response player one prefers most.
See Fudenberg (1990). The analysis can be extended to the more general case
where player one would like to commit himself to a mixed strategy or to a strategy
dependent on history. See Fudenberg and Levine (1992) and the remarks in Section

6.

. Whether there exists a sequential equilibrium in which player one gets substantially

less than 10 if there are only the normal and the commitment type around is an
open question. Note, however, that we want to characterize equilibrium outcomes
which are robust to general perturbations of the informational structure of the game.
From this perspective it makes little sense to ristrict attention to two possible types

only.

It is well known that a player can always guarantee herself at least her minimax

payoff in any Nash-equilibrium.

Fudenberg and Maskin’s Folk theorem for games with incomplete information con-
siders only finitely repeated games without discounting. However, the extension to

discounting and an infinite horizon is straightforward.

Note that even if the game is not of conflicting interests we can still impose some
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10.

11.

restriction on the set of Nash equilibrium payoffs, although the bound will be weaker
than Fudenberg and Levine’s. To see this suppose that the game is not of conflicting
interests, but that there is a positive prior probability of a type who is committed
to hold player two down to his minimax payoff. If the normal type of player one
mimicks this type, then she can guarantee herself on average at least the payoff she
would have got if she were publicly committed to this strategy. This doesn’t give her
her most prefered payoff but it may still be more than her minimax payoff and thus
reduce the set of Nash equilibrium payoffs as compared to the Folk theorem. I am
grateful to Drew Fudenberg for this observation. A companion paper will generalize

and elaborate this idea.

I am grateful to Eric van Damme for the following observation: Theorem 2 does
not imply that the average payoff of player two is 0. Recall that player one is more
patient than player two. So it may be that in the beginning of the game, say until
period L, she gets less than 3 and player two gets more than 0, but after period L
payoffs are always (3,0). For player one the first L periods do not count very much
because she is very patient, so her average payoff is 3. However, player two puts
more weight on the first L periods and less on everything thereafter, so her average

discounted payoff may be considerably bigger than 0.

Note that not all possible perturbations are allowed for. This is why conflicting

interests are not a necessary condition for the result in Schmidt (1990).

If n > 3, the definition of a game of conflicting interests requires that aj holds all

other players i = 2,...,n down to their minimax payoffs simultaneously.

If for any of the players §; < minmaxg; the construction of the “punishment equi-
libria” which are used below to deter any deviation form the equilibrium path are
slightly more complex. In this case players have to alternate between the outcomes

g~ and § such that both get on average at least their minimax payoffs.
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FIGURE 1 — A game with common interests.
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FicURE 2 — The chain store game.
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Ficure 3 — The prisoner’s dilemma.



