
Independent random variables

E6711: Lectures 3
Prof. Predrag Jelenković

1 Last two lectures

� probability spaces

� probability measure

� random variables and stochastic processes

� distribution functions

� independence

� conditional probability

� memoriless property of geometric and exponential distributions

� expectation

� conditional expectation (double expectation)

� mean-square estimation
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Let fXj; j � 1g be a sequence of independent random variables
and

Nn =

nX
j=1

Xj

be a partial sum of the first n of these r.v.s. In many applications un-
derstanding the statistical behavior of these sums is very important.
Thus, a big part of probability theory studies the characteristics of
Nn.

In this lecture we review some of the well-known theorems of
probability theory:

� Markov and Chebyshev’s inequalities

� Laws of Large Numbers

� Central Limit Theorem

2 Inequalities

Proposition 2.1 (Markov’s inequality) If X is a nonnegative ran-
dom variable, then for any a > 0

P[X � a] � EX

a
:

Proof: For a > 0, let us define an indicator function

1[X � a] =

�
1 if X � a

0 otherwise:

Then,

1[X � a] � X

a
;
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thus, by taking the expected value on both sides in the preceding
inequality we obtain

E 1[X � a] = P[X � a] � EX

a
:

3

Corollary 2.1 (Chebyshev’s inequality) If X is a random variable
with finite mean � and variance �2 = E (X ��)2, then for any � > 0

P[jX � �j � �] � �2

�2
:

Proof: Let Y = (X � �)2, then

P[jX � �j � �] = P[(X � �)2 � �2]

= P[Y � �2]

� EY

�2
=
�2

�2
;

where the last inequality follows from Markov’s inequality. 3

Corollary 2.2 (Chernoff’s bound) LetM(t)
def

= E etX <1 for some
t > 0, then

P[X � y] � e�tyM(t):

Proof: Let Y = etX and a = ety, then

P[X � y] = P[tX � ty]

= P[etX � ety]

= P[Y � a]

� EY

a
= e�tyM(t);
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note that the last inequality follows from Markov’s inequality. 3

3 Laws of Large Numbers: ergodic theorems

Ergodic theory studies the conditions under which the sample path
average

Y
def

=
X1 + � � � +Xn

n
(3.1)

converges to the mean � = EX1 as n!1.

Theorem 3.1 (Weak Law of Large Numbers) LetX1; X2; : : :, be a
sequence of independent random variables with finite mean � and
variance �2. Then, for any � > 0

P

�����X1 +X2 + � � � +Xn

n
� �

���� � �

�
! 0 as n!1:

Proof: Recall the definition of Y from equation (3.1), then

EY = E

�
X1 +X2 + � � � +Xn

n

�
= �

and

Var(Y ) = Var

�
X1 +X2 + � � � +Xn

n

�

=
Var(X1) + � � � + Var(Xn)

n2

=
�2

n

Thus, by Chebyshev’s inequality

P[jY � �j � �] � �2

n�2
! 0 as n!1;
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we conclude the proof of the theorem. 3

Now we know that

P

�����X1 +X2 + � � � +Xn

n

���� � �

�

converges to zero, however it is not clear how fast? This problem is
investigated by the theory of Large Deviations.

Recall M(t) = E etX1 and define the rate function

l(a)
def

= � log

�
inf
t�0

e�taM(t)

�
= sup

t�0
(ta� logM(t)):

Then

Theorem 3.2 For every a > EX1 and n � 1

P

�
X1 +X2 + � � � +Xn

n
� a

�
� e�nl(a):

Proof: For any t > 0

P

�
X1 +X2 + � � � +Xn

n
� a

�
= P

h
et(X1+X2+���+Xn) � etan

i

(Chernoff’s inequality) � e�tanE et(X1+X2+���+Xn)

=
�
e�taE etX1

�n
:

Thus,

P

�
X1 +X2 + � � � +Xn

n
� a

�
� inf

t�0

�
e�taE etX1

�n
= e�nl(a):

3
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The preceding two theorems estimate the probabilities that a sam-
ple path mean is close to the (ensemble) mean. The following the-
orem goes one step further in showing that for almost every fixed
omega the sample path average converges to the mean (in the ordi-
nary deterministic sense).

Theorem 3.3 (Strong Law of Large Numbers) Let X1; X2; : : :, be
a sequence of independent random variables with finite mean � and

K
def

= EX4

1
<1. Then, for almost every ! (or with probability 1)

X1 +X2 + � � � +Xn

n
! � as n!1:

Remark: For this theorem to hold it is enough to assume that the
mean � = EX1 exists (i.e., it could be even infinite). However, in
order to present a simpler proof, we impose a stronger assumption
EX4

1
<1.

Proof: To begin, assume that � = EXj = 0; then

EN 4

n = E [(X1+� � �+Xn)(X1+� � �+Xn)(X1+� � �+Xn)(X1+� � �+Xn)]:

Now, expanding the right-hand side of the equation above will result
in terms of the form (i 6= j 6= k)

EX4

i

E [X3

i Xj] = EX3

i EXj = 0 by independence

EX2

i X
2

j

E [X2

i XjXk] = EX2

i EXjEXk = 0 by independence

E [XiXjXkXl] = EXiEXjEXkEXl = 0 by independence:
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Next, there are n terms of the form EX 4

i and for each i 6= j there are�
4

2

�
= 6 terms in the expansion that are equal to EX 2

i X
2

j . Hence,

EN 4

n = nEX4

1
+ 6

�
n

2

�
(EX2

1
)2

= nK + 3n(n� 1)(EX2

1
)2: (3.2)

Also, K <1 implies EX2

1
<1, since

0 � Var(X2

1
) = EX4

1
� (EX2

1
)2 ) (EX2

1
)2 � K (3.3)

Now, by replacing (3.3) in (3.2), we obtain

EN 4

n

n4
� K

n3
+

3K

n2
� 4K

n2
:

Thus,

E

1X
n=1

N 4

n

n4
=

1X
n=1

EN 4

n

n4
�

1X
n=1

4K

n2
<1:

Therefore, with probability 1
1X
n=1

N 4

n

n4
<1;

which implies that, with probability 1

lim
n!1

N 4

n

n4
= 0;

or equivalently

P

�
lim
n!1

Nn

n
= 0

�
= 1:

This concludes the proof of the case � = 0. If � 6= 0, then define
X 0

j = Xj � EXj and use the same proof. 3
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4 Central Limit Theorem

Central Limit Theorem, Similarly to the Large Deviation Theorem,
measures the deviation of the sample mean from the expected value
�.

Theorem 4.1 (Cental Limit Theorem (CLT)) Let Xj; j � 1 be a
sequence of i.i.d. r.v.s with mean � and variance �2 <1. Then, the
distribution of

Zn
def

=
X1 + � � � +Xn � n�

�
p
n

tends to standard normal distribution as n ! 1, i.e., for any real
number a

P

�
X1 + � � �Xn � n�

�
p
n

� a

�
! 1p

2�

Z a

�1
e�x

2=2dx as n!1:

First, we state the following key lemma that will be used in the
proof of CLT.

Lemma 4.1 Let Z1; Z2; : : :, be a sequence of r.v.s having distribution
functionsFZn

and moment generating functionsMZn
(t) = E etZn ; n �

1; And let Z be a random variable having distribution FZ and mo-
ment generating function MZ(t). It MZn

(t) ! MZ(t) as n ! 1,
for all t, then

FZn
(x)! FZ(x) as x!1:

Proof: Omitted. 3
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Proof of CLT: Assume that � = 0 and �2 = 1. Then, moment
generating function (m.g.f.) of Xj=

p
n is equal to

E

h
etXj=

p
n
i
= M(t=

p
n) where M(t) = E etXj :

Thus, the m.g.f. of
Pn

j=1
Xj=

p
n is equal to�

M

�
tp
n

��n
:

Now, if L(t) def

= logM(t), then

log

�
M

�
tp
n

��n
= nL

�
tp
n

�
=
L(t=

p
n)

n�1
:

Thus

lim
n!1

L(t=
p
n)

n�1
= lim

n!1

�L0(t=
p
n)n�3=2t

�2n�2
(by L’Hospital’s rule)

= lim
n!1

�L0(t=
p
n)t

�2n�1=2

= lim
n!1

�L00(t=
p
n)n�3=2t2

�2n�3=2
(by L’Hospital’s rule)

= lim
n!1

L00(t=
p
n)
t2

2

Next, note that

L(0) = 0 L0(0) =
M 0(0)

M(0)
= � = 0

L00(0) =
M(0)M 00(0)� (M 0(0))2

(M(0))2
= EX2 = 1:

Hence, for any finite t

lim
n!1

L00(t=
p
n) = 1
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and, therefore

lim
n!1

nL(t=
p
n) =

t2

2
;

or, equivalently

lim
n!1

�
M

�
tp
n

��n
= et

2=2:

On the other hand, if Z is a standard normal r.v., then

E etN = et
2=2;

which, by Lemma 4.1, concludes the proof of the theorem for � = 0

and �2 = 1.
For the general case � 6= 0 and �2 6= 1, we can introduce new

variables

X�
j

def

=
Xj � �

�
;

clearly
EX�

j = 0 and Var(X�
j ) = 1;

and, therefore, we can use the already proved case. 3
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