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This paper investigates the sensitivity of recent evolutionary models of learning
to the specification of the matching mechanism. We study a literally random matching
mechanism, combined with a process of strategy adjustment based on the realized
average performance of each strategy. In the key class of symmetric 2 x 2 coordination
games, the Pareto-efficient equilibrium, per se, is selected, rather than the risk-
dominant equilibrium, as the probability of experimentation {or “mutation™) goes
to zero. Furthermore, convergence to the equilibrium is relatively fast. We extend
these results, for example, to games of common interest. Journal of Economic
Literature Classification Numbers: C72, C73. € 1996 Academic Press. Inc.

1. INTRODUCTION

Kandori, Mailath, and Rob [9, hereafter KMR], building on work
by Foster and Young [ 6], consider experimentation (or “mutation”) in a
learning model as an intriguing basis for equilibrium selection. In
particular, KMR show that, in a central class of symmetric 2 x 2 coordina-
tion games, the risk-dominant equilibrium has the larger of the two basins
of attraction and, therefore, is selected in the limit of the invariant distribution
as the mutation rate tends to zero.

* This paper is based on a combination of two earlier papers—Robson [13] and
Vega-Redondo [15]. We are grateful to Glenn Ellison, George Mailath, an associate editor,
and a referee for their comments. Robson thanks the Social Sciences and Humanities Research
Council of Canada for research support. Vega-Redondo acknowledges financial support from
the Spanish Ministry of Education, CICYT Project No. PS90-0156.
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Such a risk-dominant equilibrium may, of course, be Pareto-dominated
to an arbitrary extent by the other equilibrium. (Risk-dominance is as
defined by Harsanyi and Selten [8].) A practical limitation of the KMR
procedure is that, for a small mutation rate, it readily generates an
extremely slow speed of convergence to the invariant distribution. (Ellison
[5] considers this issue in detail.)

The present paper explores the sensitivity of the above two key proper-
ties of the KMR model to the exact specification of the mechanism which
matches individuals in each stage of play. The KMR mechanism might be
interpreted as a round robin tournament, so each player confronts each
other player exactly once. This tournament mechanism is equivalent to
pairing the players randomly if players receive the expected value from this.
Random pairing is, of course, a familiar assumption in evolutionary game
theory, but there the large numbers of individuals is taken to justify the use
of the expectation. (See Maynard Smith [11, Chap. 2].) Thus, it is of interest
to investigate the implications of a literally random pairing mechanism."
This seems as inherently plausible an interaction structure as a round robin
tournament.

The adoption of a genuinely random pairing mechanism necessitates an
appropriate extension of the KMR adjustment process. An underlying
philosophy akin to the most naive of the interpretations offered by KMR
is adopted here. It is assumed that individuals are aware of the payofls just
generated by each of the strategies and tend to adopt that strategy which
led to the highest average payoff. They tend to emulate such success
blindly, on the basis of a naive view that this will persist into the next
period. In particular, they do not recognize that success may be based on
lucky pairings. Individuals are still assumed to experiment occasionally by
choosing an arbitrary new strategy.

In the model just outlined the conclusions of the KMR approach are
substantially modified. In particular, in the key class of 2 x2 coordination
games, the Pareto-superior equilibrium is selected, per se, even if it is not
also risk-dominant. Furthermore, convergence to the invariant distribution
is relatively fast.

Section 2 presents an example of a coordination game in which the
Pareto-superior equilibrium differs from the risk-dominant equilibrium.
The simplest fast version of the present adjustment process is considered,
together with a single round of matching per period. As long as the number
of players is large enough, the Pareto-superior equilibrium is assigned
probability one in the limit of the invariant distribution as the mutation
rate tends to zero.

! In general, this pairing is repeated a number of times in each period.
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Fig. 1. Example I.

Section 3 formalizes this argument for the entire class of symmetric 2 x 2
coordination games, under a general random matching mechanism and a
general random adjustment process. By allowing a variable number of
rounds every period, we obtain a sharp contrast between the present model
and that of KMR. The qualitative selection results here are independent of
the number of rounds in each period. Therefore, if we let the number of
rounds tend to infinity affer taking the limit on the mutation rate, the
Pareto-dominant equilibrium is still selected. However, if this limit is taken
before that on the mutation rate, the model becomes equivalent to that of
KMR, selecting the risk-dominant equilibrium, whether or not this is
Pareto-efficient.

Section 4 extends the coverage of the present model to other symmetric
2 x2 games. The most problematic type of game has a single symmetric
equilibrium involving mixed strategies. In order to select this equilibrium,
the speed of adjustment is limited, in a fashion analogous to KMR. In the
present model, as the population size tends to infinity, the limiting
invariant distribution converges in probability to the polymorphic strategy
profile matching the mixed strategy equilibrium, provided that the number
of individuals permitted to revise each period is bounded.? Overall, there-
fore, there is a reasonable sense in which the present model selects the
Pareto-efficient symmetric equilibrium in any symmetric 2 x 2 game.

Section 5 extends the analysis to common interest games, essentially as
defined by Aumann and Sorin [1]. These permit asymmetry between
players and allow each player to have an arbitrary number of strategies.
There is required to be an equilibrium whose payoffs Pareto-dominate
those at all other strategy pairs. It is shown that this equilibrium is selected
and that convergence is fast under a modified version of the present adjust-
ment process. Finally, in Section 6, we review other related literature.

2. AN EXAMPLE

Consider the bilateral symmetric game in Fig. 1. Under the KMR
tournament mechanism, the risk-dominant equilibrium (s,,5,) 18

2 A polymorphic profile is such that, although each individual plays a pure strategy. both
pure strategies are represented in the population.
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selected in the long run, despite the higher payoff available at the equi-
librium (s,, 5,). Consider the following alternative model with a genuinely
random pairing mechanism. There are a fixed even number, N, say, of
individuals who are randomly matched in pairs, once in every period, in
order to play the above game. At the start of period t=1,2, .., let z,>0
be the number of type 1 individuals who play s, and N — z,> 0 the number
of type 2’s who play s,. Suppose each of the possible ways of pairing up all
individuals is chosen with equal probability. This induces random average
payoffs for the type I’s, m,(z,, p,), and for the type 2's, m,(z,, §,), given by

m(z, P)=/3(z,—p)z, and  my(z,p)=1,

where j, is the induced random number of “cross-pairings” between type 1
and type 2. Let B(z,, p,) represent the number of individuals who are of
type 1 after they revise their strategy in period ¢, where p, denotes the
realized number of cross-pairings in this period. The analog of the fastest
type of adjustment process considered by KMR satisfies

N’ lf ”1(21,17[)>7T2(7-'npr),

0, if =z, p) <milz,, p,). H

B(Zt’ pl) = {

Note that the payoff \/g implies that tied payoffs cannot occur in this
example. When all agents play the same strategy, set B(N,0)=N and
B(0, 0) =0. (A rationale for a general version of this adjustment process is
offered in the next section.) Finally, assume that, after strategy revision has
taken place in each period 7, each individual independently changes her
strategy with a small probability &> 0.

To simplify the discussion of the present example, consider the state of
the system at time =1, 2, ..., immediately following the process of strategy
revision.? The only such states which can be observed are w, =0 or w,= N,
so the system is a two-state Markov chain. Whatever the value of N>2,
for all small enough &, we have

¢(0, N)=Prob{w, ., =N |w,=0} > fe?, for some £>0, (2)

since, if two type 2 individuals mutate to type 1’s, and these two individuals
happen to be paired by the next random pairing, they will obtain the
highest possible payoff of \/5 On the other hand, if N>8, and there
are no more than two type 2’s, so that N —z,<2, then it follows readily
that 7,(z,, p,)>m,(z,, p,), for all possible realizations p, of the random

3In the general treatment of the present paper, the state of the system is taken to be that
at the start of each period. If an equilibrium is selected in the sense of the present example,
it is selected in this second sense.
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iable j,. Hence strictly more than two mutations are needed to induce
a transition from w,=N to w, ., =0. Thus, if

¢(N,0)=Prob{w,,,=0|w,=N}, then g(N,0)/e* =0, ase—0.

For such a two-state Markov chain, the invariant distribution g {0, N} —
i1). 1) is given by:

W(N)=q(0, N)/[q(0, N)+¢(N,0)]  and  p(0)= 1 —p(N).

It follows that u(N) — 1 as ¢ = 0. In other words, the invariant distribution
of the process is arbitrarily concentrated on the efficient equilibrium for
any sufficiently small mutation rate.

Given that z = N is selected in this fashion, a natural way of viewing the
speed of adjustment issue can be introduced as follows. Suppose that
the system is initially in the “wrong” equilibrium with z=0. What is the
expected time until it first attains the “right” equilibrium, that is, until
-— N7 Given that the transition probability is ¢(0, N) in each period this
expected time is 1/¢(0, N). Thus the magnitude of ¢(0, N) is relevant not
only because it overwhelms g(N, 0) in the limit, but also in the absolute
sense that it determines this expected first passage time* from z=0 to
-=N. In the present example, this expected time is no greater than 1/( pe).
This contrasts with the KMR model which, for this example, involves a
transition probability of an order in & which is, approximately, a given
fraction of N. Hence the expected first passage time in KMR may increase
much more rapidly as ¢ > 0.°

What if the number of players, N, is less than 8 in the present example?
If there are four or six players altogether, both equilibria are assigned
positive probability in this construction. Only if there are just two players
will the risk-dominant equilibrium be selected. Now the off-diagonal
payoffs result when there is a single individual of each type. Since these
payoffs favor type 2, the transition from w= N =2 to w=0 requires only
a single mutation whereas the reverse transition requires two. Therefore,

4 First passage times for such regular Markov chains are discussed, for example, in Kemeny
and Snell (10, Chap. IV].

S For the more general games considered here, results will be given concerning the maximum
expected first passage time from any z€Q ~ {N} to z=N. This direct approach to the issue
of the speed of convergence yields equivalent results to those of Ellison [5] for any
asymmetric 2x2 coordination game under the KMR matching mechanism and rapid
adjustment. That is, [5, Theorem 2, p. 10597 shows that the exponential rate of convergence
of the distribution of the stochastic process to its invariant distribution is determined by the
minimum number of mutations it takes to go from the “wrong” equilibrium to the basin of
attraction of the “right” equilibrium. This number of mutations also determines the maximum
expected first passage time.
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FiG. 2. General 2 x 2 Games.

the risk-dominant equilibrium captures all of the long-run probability in
the invariant distribution, as ¢ = 0.

3. GENERAL 2 x 2 COORDINATION GAMES

Consider the general class of 2 x2 games in Fig. 2. Attention is initially
limited to games which are symmetric in the sense that the payoff to a
particular agent depends only on that agent’s action and on the action of
her opponent but not on the names of the agents. (Section 5 relaxes this
restriction.) It is assumed in this section that both (s, s,) and (s,, 5,) are
strict Nash equilibria, so that a>c and d>b. In addition, (s, s;) is taken
to be strictly Pareto-superior to (s, 5,), so that a >d°

The population is composed of N individuals. In each period =1, 2, ..,
they are randomly and independently matched in pairs for a total of v
rounds to play the above game. (The integer N =2 is taken to be even so
that there are no “odd men out”) In each round of play, there are
(N—1)-(N—=3)-----3.1 possible ways of forming these N individuals
into pairs and each of these is assumed to be equally likely. As before, let
z, denote the number of individuals playing s, (individuals of “type 17),
N —z, being the individuals playing s, (that is, individuals of “type 27).
It is assumed that players do not change their actions across the rounds
in each period. The state of the system at time ¢ is identified with
z,€Q2=1{0,1,.., N}, as observed at the start of each period. (This then
incorporates mutation occurring after the previous period’s adjustment
process.)

Given any z, € £2, let j; be the random variable representing the number
of cross-pairings between type 1’s and type 2’s in any given round at t. The
support of 5! is denoted by P'(z,), where’

Pz = {0,2,..,min[z,, N—z,1}, if z,iseven,
! {1,3,...,min[z,, N—z,]}, if z,isodd.
6 The case where a =d is discussed in Section 4, Example 2.

7 In particular, of course, if z=0 or z=N, then P'(z)={0}, whereas, if z=1 or z=N—1,
then P'(z)={1}.
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Define the random variable j, as the toral number of cross-pairings taking
place across all v rounds of period ¢ and let P(z,) denote its support.
The random average payoffs for type 1 and 2, m,(z,, p,) and my(z,, P}
respectively, are then

ﬂl(znﬁl):[‘l(vzr_ﬁt)+bp~t]/uzl and

T[Z(Znﬁr) = [Cﬁ1+‘i(U(N_ZI) —ﬁ,)]/[U(N—Z,)],

(3)

provided z,>0, or N—z,> 0, respectively.

Since® E(p,)=v-E(p})=v-2(N—z,)/(N~ 1), it follows (again, provided
2, >0 or N—z,>0, respectively) that the expected payoffs obtained in
period 7 by each action are given by

E(n,(z,, p)) =m(z) = [alz, = 1) + BN =2) J/LN — 1],
E(nz(zlsﬁl))znz(zl) = [CZI +d(N_Zz_ 1)]/[N_ 1]

In the KMR model, the revision of player strategies is directly linked to
these expressions 7,(z,) and 7,(z,), which could derive there from play of
a round-robin tournament in each period.

In the present model, payoffs are random variables. Given any realization
p,eP(z,) and associated realized average payoffs, the distribution of
revised strategies is described by an additional iid. random variable
B(z,,p)eR=1{0,.., N}. This is the number of individuals playing strategy
s, in period 1, right after strategy revision. It is required to satisfy the
following restrictions, for z, € {1, . N— 1},

if 771(31’1’:)>712(Zn171),

, (4)
it m(z,,p) <7z, Po)s

~ ZZz,
Biz.p)§

where each of these weak inequalities is strict with positive probability.”
It is unnecessary to restrict the dynamics in the case that both strategtes
yield identical average payoffs. It is further required that,

B(0,0)=0 and  B(N,0)=N, (5)

with probability one.'’

8 Lemma S in the Appendix proves this.

9 The restriction that z, € {1, .., N— 1} ensures that the payoffs are well defined and that
strict inequalities are feasible.

19 That is, mutation is needed to introduce a new strategy. This assumption is maintained
throughout the present paper, in contrast to KMR.
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As in the KMR model, our players are naive about the dynamics in that
they evaluate future payoffs in terms of present realizations. Furthermore,
they are unaware of the role that luck might have played in the matching
outcome realized. Given this assumption, however, the above specification
is quite general. It would be satisfied, for example, if no individual who
plays a strategy yielding a higher average payoff ever abandons it, and
there is a positive probability that at least one new individual adopts such
a strategy.''

After the completion of the process of strategy revision, each individual
independently changes her strategy with a .small probability ¢>0.
This ensures that there exists a unique invariant distribution u: £ —
[0, 1], summarizing the long-run behavior of the system, regardless of
initial conditions. We are interested in exploring such long-run behavior in
the limit as ¢ » 0. This is captured by the stochastically stable distribution
p* =lim, _ o, which is shown to be well defined.'?

KMR analyze an analogous evolutionary process where, as mentioned
above, the deterministic payoffs 7(z,) and 7,(z,) play the role of the
random variables 7,(z,,p,) and 7my(z,p,). In their model, the risk-
dominant equilibrium is selected by the stochastically stable distribution,
whether or not this is also the Pareto-efficient equilibrium. That is, if
(a—c¢)<(d—Db), then the state In which all individuals play strategy s, 18
assigned probability 1 by this distribution. Furthermore, the speed of
convergence, as measured by the maximum expected first passage time, is
approximately of order ¢~ "N where ye (0, 1) is determined by the game’s
payoff structure. Of course, yN grows without bound as N becomes large.
The conclusions should be contrasted with the following.

Tugorem 1. Consider any 2x2 coordination game and evolutionary
process as described above. There exists some N> 0 such that if N> N then
(*(N) = 1. Moreover, there is some x> 0 such that the expected first passage
time 1o z=N from any state z€ 2~ {N} is no greater than ae™*, for all
small enough ¢, where ke {1,2, ...} is independent of both v and N.

Proof. See the Appendix.

The intuition underlying the above result extends that for the example in
Section 2. Again, the stochastically stable distribution puts all its weight on
the stochastically stable states z= N and z =0.!* The basin of attraction of
each of these two states is the set of states from which a transition to the

11 Note that only the individuals who adopt new strategies need to be aware of the random
average payofls.

12 This term is inspired by Foster and Young [6] and is used, for example, by Samuelson
[14].

13 The term stochastically stable state is due to Foster and Young [6].
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given state occurs with positive probability in a finite number of periods
without mutation. These two basins of attraction may overlap. To evaluate
the probabilities of the two stochastically stable states, it is sufficient to
consider the number of mutations required to induce a transition into these
two basins of attraction. Keep in mind that (s;,s,) yields the highest
possible payoff of all strategy combinations. The transition into the basin
of attraction of z= N from z =0 can occur with k mutations of type s,, for
some k which is independent of N. That is, if sufficiently many type I’s are
matched among themselves to the maximum extent possible,'* they must
obtain a payoff higher than that for the type 2 players, regardless of the
number of type 2’s. If k mutations are sufficient with a single round of
matching, this number remains sufficient with any fixed number of rounds,
since the appropriate matching occurs with positive probability in every
round. Consider, however, the reverse transition. For any m =k, the pro-
cess requires more than m type 2 mutations to go from z = N into the basin
of attraction of z=0, if N is chosen large enough. That is, if there are m
type 2’s and N is large enough, most type 1I’s must be matched with other
type 1I’s and the average type 1 payoff always exceeds the average payoff for
the type 2’s. If this situation holds for a single round of matching, it also
holds for any number of rounds. If N is large enough, then, the transition
into the basin of attraction of z =N becomes arbitrarily more likely than
the transition into the basin of attraction of z=0, as ¢~ 0. It follows
that the state z= N is given probability one by the stochastically stable
distribution.

Theorem 1 allows a clear-cut comparison between our approach and
that of KMR. Consider the consequences of increasing v, the number of
rounds per period. On the one hand, since the conclusion of Theorem 1 is
valid for all v, the Pareto-efficient equilibrium is selected even if the limit
as v— oo is taken after the limit on & Alternatively, we could invert the
order of these limit operations and take the limit on v first. By the strong
law of large numbers, j,/v— E{p}} =z,(N—z)/(N—1), almost surely,
as v— oo, and we would then obtain the KMR model, for each given
e>0. If the limit as ¢ — 0 were then taken, of course, the risk-dominant
equilibrium of the game, whether or not this is Pareto-efficient, would be
selected.'”

14 That is, except only for one mutant when the total number of mutants is odd.

15 Given a fixed &, increasing v reduces dramaticaily the probability of the string of luck
needed to induce a transition to z = N. A similar effect occurs as N increases. Ultimately, the
procedure of taking the limit as ¢—0 is empirically meaningful only to the extent that
mutation rates can be safely considered small relative to the various other probabilities
involved here. If the mutation rate and the other probabilities are small in absolute value, but
the relative magnitudes are not specified, the present paragraph illustrates why there is no
uniquely defined limit for the model.
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4. OTHER SYMMETRIC 2 X 2 GAMES

To -complete our analysis, we now turn to the study of other symmetric
2 x 2 games. Besides coordination games, there are two other generic types
of such games, those with a dominant strategy and those for which the
only symmetric equilibrium is in mixed strategies. KMR show that these
equilibria are selected under suitable conditions. The motivation in the
present section is to verify that the present evolutionary approach is also
able to provide sensible answers even when there is a unique symmetric
equilibrium. If this were not so, it might cast doubt on the results already
obtained for coordination games.

For games having a strictly dominant strategy, where a>c¢ and b>d,
for example, it is straightforward to show that the dominant strategy
equilibrium is selected by the stochastically stable distribution, if N is
large enough. Furthermore, the maximum expected first passage time is of
order ¢ .

The analysis of games where ¢>a and b>d, for which the unique
symmetric equilibrium is in mixed strategies, is more involved. As in KMR,
adjustment must be sufficiently slow to rule out overshooting of the equi-
librium. To illustrate this, suppose that the process of strategy revision is
the fast one of Section 2, satisfying (1) in particular. Now, whenever the
random matching produces average payoffs which are not exactly identical
for the two strategies, the adjustment process jumps to one of the two
monomorphic or pure states. In general, that is, the system will oscillate from
one extreme state to the other, following the arrival of mutations. Since the
random matching mechanism is an additional source of noise here, it is
perhaps less clear than in KMR that slowness of the adjustment process is
sufficient to approximate the mixed strategy equilibrium. However, such
approximation is still obtained if the size of the population is large.

Consider then the limit as N — co, while dampening the tendency of the
system to oscillate by fixing the size of the support of the revised strategy
distribution. More precisely, suppose the adjustment mechanism still
satisfies (4) and (5), but the maximum change in the number of individuals
choosing either strategy is 1.'6 As a minor technicality, it is also assumed

16 1t is always necessary to pay close attention to the transitions involving the
monomorphic states. To prevent these states from acquiring positive probability under the
stochastically stable distribution, in particular, it should not be possible to enter them without
mutation. It can be shown that the maximum change induced by the adjustment process must
then, in general, be no greater than 1 near the two extremes. This is less restrictive than it
might seem at first in the sense that a change of 1 near the endpoints is still large in percent-
age terms. Moreovey, there seems no reason to expect the present result to be substantially
affected if this maximum change is permitted to be greater than 1 away from the two extremes,
as long as it remans bounded.
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that the probability of a revision toward a favored strategy is uniformly
bounded away from zero in N. Thus there is some 4> 0 such that, for all
z,e{l, .., N—1} and all p, € P(z),

|E(Z,,p,)—~2,| < 1»
bUt Pr{B(zlaP:):5/+l}'>A’ lf 7'51(51»[71)>7z2(:1’171)~ (6)
and Pr{B(z,,p)=z,—1} >4, if 7z, p)>m(z,, 00

for all N.

Given the model otherwise as in Section 3, we then establish that the
stochastically stable distribution, x*, converges in probability to the sym-
metric mixed strategy equilibrium, as N — co.

TuEOREM 2. Consider any 2x2 game, as in Fig. 2, where ¢>a and
b>d. so that there is a symmetric mixed-strategy equilibrium (x, 1 —a),
where o= (b—d){((b—d)+(c—a))e(0,1) is the probability of playing s,.
Suppose the evolutionary process now satisfies (6) but is otherwise as in
Section 3. Then, ¥n, 6 >0, AN >0, such that, if N> N, then p*{z e : |(z/N)
—al<n}>1-4.

Proof. See the Appendix.

The intuition here is as follows. The crucial new feature of the present
model is the random nature of the processes of matching and adjustment
in the absence of mutation. If the number of individuals playing both
strategies is large, however, the present random matching process still turns
out to imply that the type in short supply relative to the symmetric mixed
strategy equilibrium is likely to do better than the other.!” If the magnitude
of the change in the population under the adjustment process is also
restricted, such change is again likely to lead closer to this equilibrium.

This completes the examination of the class of generic symmetric 2 x 2
games. Overall, it has been shown that there is a reasonable sense in which
the efficient symmetric Nash equilibrium is selected for these games, even
when mixed strategies are allowed.'® The next section considers more
general two-person games.

17 This remains true even if the number of one of the two types is small, so that it is enough
that the total number of individuals be large.

18 Note that, in the case of a symmetric 2 x 2 coordination game, the (symmetric) mixed
strategy equilibrium is Pareto-dominated by the efficient pure strategy equilibrium, so the
selection of this efficient equilibrium is consistent with this claim.
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Before addressing these, we illustrate some issues ari.sing ir} non-generic
games. Suppose, in particular, that efficiency does not discriminate between
the two coordination equilibria, as 1n Fig. 3. Assume thgt a> b >¢, 80 that
both (s,,s,) and (s2, s,) are strict Nash equilibria, with 1Qent1ca1 pgyoff
vectors, but (s;, $1) risk-dominates (s,, $2). A natural quest}on then is: Is
the tie in terms of Pareto-efficiency between the two equilibria now broken
in favor of the risk-dominant equilibrium?

Take the model as in Section 3, but take the number of rounds, v, as
one, for simplicity. In the previous notation,

[(2a—b—c)z,—(a—b)N1p:
nl(ZnP:)—nz(Zzap:): Z,(N—Z,) .

Define z*=(a—D) N/(2a—b—c)<Nj2. Tt follows that m,(z,,p.)>
n,(z,, p,), whenever z,>z*, for all p,>0, and 711.(21,17,).< Az, Do)
whenever z, < z*, for all p.>0. However, if p,=0, as 18 possible for any
even z, €42, . N -2}, but impossible for any odd z,e{l, ., N— 1}, then
=7,(z,, p,) =0 .
nl("lfgeps’t)ocha_ética‘llylg)/ stable distribution now depend.s on .the details of the
adjustment process. Suppose, for example, that this adjustment process,
as in (4) and (5), also changes z, by at most l. Sgppgse it generates a
movement in either direction with positive probapllxty in the case gf ties
when z,€{2, .. N —2}. Without mutation, it is 1.mp0551ble to avoid the
odd states, and these push the process towards 0.1f z,<z* bgt towards N
if z, > z*. It follows that the situation is quite similar to that in Il(gMR and
the risk-dominant equilibrium is selected, if N is large enough. On the
other hand, suppose that, in the case of ties.wheq z,€ {2, s N—. 2}, the
adjustment process generates a change of 2 in z, in either direction W}th
positive probability. Now it is possible to use the even states, which
generate ties with positive probability, as stepping stones over the odd
states, which cannot generate such ties. Only two mutations are then

19 The proof of Theorem 1 can be adapted to show that g*(N) = 1, if N i§ large enough.
Note that there are more odd states in the basin of attraction of z= N than in that of z=0,

when N is large enough.
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sufficient to induce a transition from either equilibrium to the other, so that
the stochastically stable distribution puts positive probability on both
equilibria, if N is large enough.*

5. GAMES OF COMMON INTEREST

The approach proposed in the previous sections can be extended beyond
symmetric 2 x 2 games to games which may be asymmetric and involve
more than two strategies. For some such games, our previous conclusions
may be significantly altered. For example, a Pareto-efficient Nash equi-
librium in a symmetric 3 x 3 game may be given a limiting probability less
than one. Consider Example 3 in Fig. 4.

This example is derived from Example 1 by adding an additional strategy,
s3, which is strictly dominated by both s, and s,. Hence (s,, 5,) remains
the unique Pareto-efficient Nash equilibrium. Consider, for simplicity, a
natural generalization of the rapid process of strategy revision proposed in
Section 2 and take the state of the system as that observed in each period
immediately after the adjustment process. The strategy s, can never survive
this adjustment process, when any other types are present. Ties between
strategies s, and s, are still impossible, and so the evolutionary process
of strategy revision and experimentation remains essentially a two-state
Markov chain.*!

Suppose, however, that an s, mutant and an s; mutant arise in a popu-
lation of size N >4 originally all playing 5,.>> If these two mutants are

2 N> (2a — b — c)/{a—b), then a single individual of either type must do worse than the
remaining (N — 1) individuals of the other type, so that neither monomorphic state can be left
with a single mutation.

21 To be more precise, it is possible to observe the monomorphic state “all s;” after
adjustment. However, although it cannot be left without mutation, a single mutation is suf-
ficient to accomplish this. On the other hand, to enter this state N mutations are required,
given that the two other monomorphic states are the only other states possible after
adjustment. The monomorphic state “all s;” is then given zero weight by the stochastically
stable distribution.

22 The restriction that N 34 ensures that a single s, mutant cannot invade a population of
type 1's:

LA LA
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paired, the s, mutant obtains a higher payoff than that obtained by the
remaining type 1’s, thus inducing a switch to the state in which all play
s,.2% The reverse transition to (s, ;) still requires two s, mutants. Hence
the state where all play s, and the state where all play s, are both given
positive probability by the stochastically stable distribution.”

The following restricted class of two-person games might suggest itself.
Suppose there is a strict Nash equilibrium which strictly Pareto-dominates
all other strategy combinations, but there may be other strict equilibria.
Does the result of Theorem 1 then extend?

A two-person game in which there is a feasible payoff vector which
strictly Pareto-dominates every other payoff vector is a game of common
interest, as this concept is defined by Aumann and Sorin [1]. Their
definition permits the Pareto-efficient payoff vector to be attained by more
than one strategy vector. However, in order to avoid the complications
introduced by Example 2 above, it is assumed here that there is a single
pure strategy vector which generates the Pareto-efficient payoff vector.

As in Aumann and Sorin, asymmetry between the players is permitted,
each player having available an arbitrary number of pure strategies. This
potential asymmetry is treated by considering two different populations.”
Consider then two separate populations, population 1 and population 2,
each composed of N individuals. In each period ¢, there is a given number
of independent matchings, v, in which individuals of both populations are
randomly paired up, one player from each population, to play a bilateral
game of common interest. Let the strategy spaces of each population be,
respectively, S'={1, .., n,} and $*={1, .., n,}. Correspondingly, denote
the payoff functions by u;: S'x S25 M, i=1,2. There is assumed to be
some SeS! x §2 such that Vse S x S2 ~ {5}, u,(8) > u;(s), i=1, 2. Without
loss of generality, take §=(1, 1).

Suppose that the profile of types in population i=1,2 at the start of
period ¢ is given by zi=(z} .., z,, ), Where zi ,€{0, ... N} denotes the
number of individuals in population i who then play strategy k. Given that
each population has N members, the (finite) state space here is, say,

QE{(ZI,ZZ)G{O, 1., Nym+m= | Y z;=N, i=1,2}-
k=1

23 The role of the dominated strategy s; is then to be a sacrificial lamb for s,.

24 However, it the probability of introducing s; were proportional to &%, as suggested by
the notion of properness due to Myerson [127, this would restore (s,,s,) as the unique
stochastically stable state.

25 This two-population structure permits additional asymmetric outcomes even in symmetric
games. The results of Section 3 can also be generalized to a situation where individuals drawn
from a single population are randomly matched to play a symmetric game. This game should
have a symmetric pure strategy equilibrium strictly Pareto-dominating all other outcomes.
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For each z, =(z;, z,z)eQ, define an associated random variable 7, to
describe the matching process at time f between populations 1 and 2
consistent with z,. Every possible matching outcome in each independent
round of play is assumed equally lkely. A realization r, of 7, specifies the
set of numbers r, , =0, fork=1, 2, .0, f=12,.,n,, representing the
total matchings, in all v rounds at time 7, between individuals from popula-
tion 1 playing strategy k and those from population 2 playing /. The
support of 7, is denoted P(z,). Of course,

n2 ]

_ 1 — 2
2 Froc,e = VZk s Z Fr,c, i = V24 45
=1 k=1

k=1,.,n, £=1,.,n,, r=1,2,..

For any r,, denote the associated realizations of the random average payoff
functions by 7z, r), i=1,2, k=1,2,...n, defined whenever zj_,>0.
These are analogous to the payoffs in (3) and are given by

na

7zlk(zl’ rt)= z rk,/.lul(ka /)/(UZII\-Vx)’kZIa"-a ny, fOI‘ zZ |

=1

X
\%
&

ni

Tc’ll(zl’rl)z Z rk,/‘lu’l(ka/)/(vzi,l)af:la"'s Ry, for z

k=1

> 0.

N

I

Consider now a suitable extension of the adjustment process used in
Section 3. Define Bi(z,, r,) as the random variable representing the number
of players in population i who play strategy k k=1,.,n,i=1,2, after the
process of strategy revision at ¢ has taken place, given the population
vector z, and the realization r, € P(z,) of the matching mechanism. These
random variables are independent across the two populations, iid. for
each population over time and satisfy

IFie{l,2} and ke {1,.,n;} arest (i) zj € {l,.. N— 1} and
(i) 7l 2,0 1) > (2, 1) VO ELL, n} ~{k} stz >0, (7
THEN Pr{Bi(z,,r) >z, } =1and Pr{Bi(z,,r) >z, .} >0.
Furthermore, for all z, € Q, all r, e P(z)), and i=1, 2, it is assumed that
Pr{Bi(z,,r)=2, >0 (8)

As before, the process of strategy revision does not introduce new strategies
so that Bi(z,, r,) =0 with probability 1 whenever zi,=0forallk=1,..mn

and i=1,2. Of course, Y7_, Bifz,,r,)=N, for i=1, 236

26 Thus the Bi(z,.r,) cannot be independent across strategies for a given population at a
given point in time.
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In other words, consider the set of active strategies, those for which
z >0, in a given population i=1 or 2. If a particular strategy k, say,
uniquely realizes the highest average payoff of these active strategies, then
the number of individuals playing k has a positive probability of strictly
increasing and cannot decrease. This seems the weakest possible natural
generalization of (4). The further assumption that, in all cases, there is a
positive probability that the revised number of players of any type remains
constant is a technicality which simplifies the proof. It requires that the
adjustment process has a minimal level of inertia.”” Again, the adjustment
process need not be restricted in situations not covered above.”®

Finally, at the end of every period t, each individual independently:
changes her strategy, adopting each other strategy with probability & >0.%
Denoting the state

n entries na entries
———

———
(N, 0,..,0,N,0,..,0)

by N and the stochastically stable distribution by 4%, the follgwing result
shows that Pareto-dominance is sufficient here to ensure that N is selected.

TugrorReM 3. Consider any game of common interest and evolutionary
process as defined above. There exists some N> 0 such that, if N>N then
A*(N)=1. Moreover, there exists o> 0 such that the expected first passage
time to N from any ze@~{N} is no greater than ae ™2, for all small
enough &.

Proof. See the Appendix.

Note the sharper result here concerning the expected first passage times
than held in Theorem 1. Indeed, the two-population structure facilitates
coordination, implying that the basin of attraction of N includes all profiles
with at least one type 1 from each population. The intuition for this claim
is as follows. Suppose, for example, that there is a positive number of
type 1I’s in population 1 and this is no greater than the number of type
I’s in population 2. It is then possible to match all of the type 1’s in

27 The present assumption helps, in particular, to tighten the bound here on the expected
first passage times. It is not, by any means, the only assumption which yields the desired
result. In fact, a natural extension of the fast adjustment process of Section 2 produces similar
conclusions.

28 |y is irrelevant, for example, if the strategy with the second highest realized average payoff
fares worse than the strategy with the lowest such payoff. Furthermore, it is unnecessary to
restrict the adjustment process in the case of ties, even if there is such a tie for the highest
realized average payofl.

29 This could be generalized so that cach transition was just first-order in &
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population 1 with type 1's from population 2. Given an adjustment process
satisfying (7) and (8), there is then a strictly positive probability of the
total number of type 1’s increasing, in the absence of mutation, as is
sufficient to establish this claim.

6. OTHER RELATED LITERATURE

A key additional paper related to the present work is Young [16].
Young considers an n-person game, which may be asymmetric, and which
is played once in each period by a randomly drawn set of players. Each of
these players knows only a sample of the history of the game and even then
may choose the wrong strategy with a small probability. Each player may
die after playing the game and be replaced by a naive newcomer. The
sampling procedure allows relatively fast convergence when the sample size
is small. Young’s model also casts doubt on the generality of the KMR
result for symmetric 2 x 2 coordination games, presenting an example of a
symmetric 3 x 3 game where an equilibrium which is both Pareto-dominant
and risk-dominant is not selected.® This example also serves to highlight
how Young’s results differ from those of the present paper. That is, the
example is a common interest game in which the approach of Section 5
would select the common interest equilibrium.

Also related to the present work are papers by Binmore et al. [4] and
Binmore and Samuelson [ 3]. Both of these papers consider a model in which
the adjustment process is noisy, for reasons differing from the random
matching considered here. In the first of these papers, the interpretation is
literally biological. Selection is noisy in that a particular pair of strategies
determines survival probabilities rather than survival itself In the second
paper, learning is similarly noisy. For example, an individual may obtain a
new strategy by copying that used by a randomly chosen other individual. In
either case, the term mutation is reserved for changes in strategy beyond
those arising from the adjustment process. These models may generate rapid
convergence to equilibrium. Furthermore, there are circumstances under
which the Pareto-efficient equilibrium, per se, is selected.

Bergin and Lipman [2] provide a different cautionary message from
that of the present paper, also concerning the evolutionary approach to
equilibrium selection. In general, that is, it seems reasonable that mutation
rates might differ according to the particular transition involved. However,
Bergin and Lipman prove the stark result that any invariant distribution of
the mutationless process can be approximated by an invariant distribution
of the process with suitably chosen small mutation rates.

30 Gee [ 16, Example 3, p. 73].
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APPENDIX

Proof of Theorem 1. Let Q be the transition matrix of the complete
process of adjustment and mutation of Section 3, so Q(z,2') is the
probability of transition from z to z/, for all z, z' e Q. Let T be the Markov
transition matrix representing this process excluding mutation. Note that N
is an absorbing state of T in that, Vze 2~ {N}, T(N,z)=0. Define its
basin of attraction under T, A7(N), says, as follows:*!

A (N)={zeQ|T"(z, N)>0 for some n=1,2, e} (9)

A technique due to Friedlin and Wentzell [7] and applied by KMR [9]
can be used to prove Theorem 1. To this end, define for each z € £, a z-tree
H, as a collection of ordered pairs z’' — s(z') such that (i) every z' € 2 ~ {z}
is the first element of exactly one such ordered pair and (ii) from every
7 eQ~{z} there exists a sequence of such ordered pairs leading to z.
(That is, s(z') denotes the end-point of the unique arrow exiting z'.) The set
of all such z-trees is denoted by .. Now consider, for each z e £,

q(z)= Y 11 Q(z', s(z')) >0.

Hex, (= —>s(z'))eH

The key result

q(z)

#(Z) :ZZEQ q(2)>0

then holds, where 4 is the unique invariant distribution associated with the
matrix Q.

Each ¢(z) is a polynomial in ¢ so that u* =lim,_ op is well defined. In
addition, the state or states assigned positive probability by u* are
precisely those whose polynomials involve the lowest powers of &.

To amplify this last observation, consider the following definitions.
The set of states accessible in one period from a given state z € Q with no
mutations is

T(z)={zeQ]| T(z z') > 0}.

Now the minimum number of mutations needed to induce a given
transition from any z € to any z” € Q in one period 1s

o(z, z"y=min{|z' = 2"| | Z' € T(z)}.

31 Recall that the probability that a Markov process represented by T is in state z’ after n
periods, given that starts in state z, is T"(z, z'), where T" is the n th power of the matrix T.
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The total number of such mutations, taken as the “mutation cost” of a
given tree, H, is then

(H)y= Y dz,s(2)),

(' —=s(z'eH

which is the lowest power of ¢ in the polynomial expression

[T o, sz

(= —»s(='))e H

(Note that a similar argument applies, in particular, to an arbitrary path,

P, yielding its cost, (P), say.) It follows that the lowest power of ¢ in ¢g(z)

is min . ,. c(H). Hence the state or states z € Q given positive probability

under u* are precisely those for which min, . ». c( H) attains its minimum.
The proof of Theorem 1 then relies on four Lemmas.

LemMma 1. Jke{l,2,...} such that {7eQ:72k} cA;(N), VNe
{2,4,...}. It follows that, Vz € ~ {N}, 3z’ € Ar(N) such that c(z, zy<k.

Proof.?> Choose k as the smallest integer such that

‘ﬂ_—lj—)i—bzmax{d, o =f (10)

Note that k& depends only on the payofls of the game and not on N. The
assertion of the Lemma is trivial if N <k. Thus, take N> k. If z, > k at any
time ¢, it follows that there is positive probability that 7,(z,, P >7nz,, P,)
If z, is even, this is immediate since the agents playing s, are with positive
probability matched only among themselves in every round at ¢, thereby
obtaining a > d. (That is, with positive probability, p,=0¢€ P(z,))). On the
other hand, if z, is odd, (10) ensures that the average payoff of s, exceeds
that of s, in the positive probability event that only one of the players of
type 1 is not matched to a player also of type 1 in every round. (That is,
in the event that p,=ve P(z,).)

32 Note that two s, mutants might not suffice to induce a transition to z=N. There is a
positive probability that two such s; mutants are paired and receive the unmatchable payoff
of a, and this does generate a positive probability of increasing the number of s, players. It
is the next step which might be problematic. For example, there might now be three s,
players, at most two of which can be paired up. The cross-matching of one of the three s,
players could then lower the average payoff of the s; players below that of the s, players,
preventing -any further increase in the number of s, players.
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By (4), if n,(z,, p)>maz,, P)s there is a positive probability that
z, 1> 2,. It follows that

(ZeQ:7 2k} €A7(N),

so at most k mutations always suffice to enter the basin of attraction of N,
from any state ze 2~ {N}. |

Lemma 2. Vme{1,2,...}, IN >0 such that, YN>N and Vze {N—m, ..,

=

N-—1}, n,(z, p) > naz, p)s Vpe P(z). It follows that c(P)>m, where P is
any path from N to any z¢ Ar(N).

Proof. Define
= (2a—b—f)-m1
=S

where f=max{c, d} and [x7] denotes the smallest integer greater than or
equal to x. It follows that, if N> N, then N/2>m and

a(N—2m)+b-m

11
> (1

Hence, if z= N—m, then n,(z, p) > mylz, p), Vp e P(z). It followg, in the
light of the adjustment dynamiss (4), that more than m mutations are
needed altogether on any path P from N to any z¢ Ar-(N). 1

Given the observations preceding Lemma 1, the following completes.the
proof that the stochastically stable distribution selects the Pareto-efficient

equilibrium.

Lemma 3. 3N such that

min c(H)< min c¢(H"),
He #n H' e x:

YN >N and ze Q2 ~ {N}.

Proof. Choose m >k and N> N as in Lemmas 1 and 2. If ze 2~ { N}
and H' e # are arbitrary, the result follows if H e #, can be found such
that ¢(H) <_c(H "). Note, for future reference, that there exists an N-tree ¥,
say, defined only on Ar(N), such that (Y)=0.2

3 Samuelson [ 14, Lemma 3, p. 45] presents a result based on Young [16, Theorem 4,
p. 78] that basins of attractions can effectively be suppressed for the present purpose. The
costless tree Y associated with the basin of attraction of N is considered here for completeness.
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Suppose first that z¢ A,(N). Now, in any given H'e #., there must
exist, in particular, a path leading from N to z. Label the “subpath” which
leads from N to the first point not in A-(N) as P, taken to be composed
of points P < Q. The desired N-tree H can be obtained from H' by the
following two alterations. First, switch arrows from each z'€ A7(N)n
P~ {N} to its immediate successor on the corresponding costless path to
N in Y.** Furthermore, as required, switch all subsequent arrows along
each such path appropriately. Note that each such switch preserves the
“tree” property that each point have a unique successor point. Delete
entirely the arrow from N itself. This first step reduces overall cost by more
than m, from Lemma 2. The resulting graph links every point via a unique
path either to z or to N. Second, add the arrow z — z', where z' € A(N) is
as in Lemma 1 and also switch arrows, as necessary, at subsequent points
on the costless path in Y from z' to N. This second step increases cost
by at most k. It also produces a graph which is the required N-tree H,
recalling that k <m.

Suppose now that ze A(N)~ {N}. Construct H in a similar fashion to
that above. However, in the first step, take the entire path from N to z in
the role of P. This first step reduces cost by at least 1, since ¢(N, z) > 1, for
all z# N. As the second step, introduce the costless path in ¥ from z to N.
Since this cannot increase cost, the result that ¢(H)<c(H') again
follows. |

The assertion concerning the expected first passage times to z=N can
now be derived from Lemma 1 to complete the proof of Theorem I:

LemMa 4. Let 1(z) denote the expected first passage time from any
e Q~{N} to N. Then 3o >0 such that t(z) <ae ™%, for all small enough ¢,
where k is as in Lemma 1.

Proof. Lemma | implies that the transition probability, Q(z, z'), from
any ze Q ~ { N} to some z' € A;(N), is no less than fe*, for all sufficiently
small ¢, for some > 0. By the definition of this basin of attraction, there
is some rie {2,3,...} and some (€ (0, 1/2] such that T Yz', Ny 2 2, for
all z' € A (N). It follows that Q" '(z', N) = (>0, for all z’ € A () and for
sufficiently small . Hence Q7(z, N) = fe*{ =¢, say, for all ze 2 ~ {N} and
for sufficiently small &. Define Q as the associated Markov process which
samples every 7 periods and makes z=N absorbing. That is, define
O(N,N)=1 and Q(N, z) =0, for all ze @ ~ {N}, but (=, z') = Q"(z, '), for
all ze 2~ {N} and all 2’ €. The expected time to absorption at N for 0

* The set A(N)n P~ { N} may be empty, in which case this sentence and the one following
are vacuously satisfied.
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is the expected first passage time to N for Q7, which is no less than the
expected first passage time to N for Q. Furthermore, the expected time to
absorption for ¢ is finite, for all initial ze Q.3 Setting 0%z, N)=0, note
that Q'(z, N)— 1, as i — co. Define p'(z) as the probability of absorption
under Q at time 7 = if1, given state z at =0, and given that absorption did
not occur at or before ¢ = (i —1) 1. It follows that

QEM-07EN)
-0~ N

pi(z)= g i=L2.,
for all ze @~ {N} and all sufficiently small ¢. It also follows that there
exists 7€ [7, 00) such that, for all ze Q~{N},

i[Qi(za N)—— Qiﬁl(z’ N)] Sf’

(z)<n
i=1

1

I ™18

where the middle expression above represents the expected time to
absorption under 0, given state z€Q ~ {N} at t=0.
We now show, by induction, for i=1,2, .., that

o(z) SAE+A(1 =) E+ oo (1= &) E+(1-8)"7'(2),

where, for i=0, 1, ..,

ti(z)=n

o8

U DYz N) =0z, N)I/[1 = Q'(z N)]

J 1

represents the expected time of absorption under Q, given state z at =0
and given that such absorption has not occurred at or before 7=in.
Recall first that t(z) <t%2).*® For i=0,1,.., it can be shown that
ti(z)e[A(i+1), Ai+ 7] and that

d(2) =i+ 1) p )+ (1= p T () TTH),

which is maximized over p'*'(z) at p'Tl(z)=¢, given that 7' *'(z) >
(i + 1). Hence, as suffices to complete the proof by induction,

<+ DE+(1=8 T (2), =01,
Since
0<(1—¢&) t(z)<(1 =& (ni+7)—0, as - o0,

35 This follows since Q" is regular. See Kemeny and Snell [10, Chap. 1V}, for example.
% Note that 2%(z) =a 3=, i[0(z, N)— 0"~ (z. N)].
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it follows that

o

Wzy<i ¥ il —&) ' E=nfE=npef{=ac™,

i=1
say, for all ze @~ {N} and all small enough ¢, as required. |

The following preliminary result is useful in the proof of Theorem 2.

LEMMA 5. Suppose an even number, N >4, of individuals are paired at
random for v independent rounds, where every pairing in edach round is
equally likely, and where z>0 of these individuals are of type 1 and
N—z>0 are of type 2. Then the random total number of cross-pairings, p,
has mean and variance as follows:

Z(N —z)
(N—-1)

AN—2)[z(N-z)—(N-1)]
(N—-1)*(N-3)

E{p}=v and  var{p}=2v

Proof. Without loss of generality suppose that the individuals of type 1
are labelled i =1, .., z. Consider first the case v=1 and define the following
random variables, for i=1, .., z,

5= {1 if individual i is cross-paired,
0 otherwise.
Clearly, then,
= . ., #N-—z)
= é; nd E =zFE =
p igl ! a {p} 4 {el} (N_l)
Furthermore,
1’52_ §1~j: 2 E?+ é.;z’é/a
ij=1 i=1 i#j i j=1
so that®’

E{p*} =zE{&}} +2(z — 1) E(é,&,)
—zPr{é, =1} +2(z—1)-Pr{&, =1} -Pr{&;=1 &, =1}

=Z(N_Z)+z(z—~1)-(N_Z) (N—Z—-l).

(N—1) (N—1) (N=3)

37 The formula to follow is formally valid for z=1 and for z=N— 1, when var{ g} =0.
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The result for the variance then follows, after some algebra, from
var{ p} = E{ p*} — (E{ p})*. For arbitrary v, the desired expressions follow
immediately from the independence of the matching across rounds. |l

Proof of Theorem 2. The stochastically stable distribution x* can be
shown to exist as in the proof of Theorem 1. Let # and & be as in the state-
ment of Theorem 2, and denote the integers by Z. It will first be shown
that

Y ,u*(z)<g—.

-e(0, Na—qInZ

In particular, the following considerations apply at z = 0. A single mutation
induces a transition from z=0 to z= 1, but a strictly larger number of
mutations is required for a transition to any other z€ 2 ~ {0}. At least one
mutation is required to induce any transition to z=0 from any ze 2 ~ {0},
if

N> N, =1+max{(c—d)/(b—d),0}, (12)

which ensures that a lone s, player must do better than the other s,
players. A single mutation might then induce the transition from z=1 to
- =0, given the adjustment process as in (4), (5), and (6).*® Indeed, a single

mutation might also induce the transition from z=2 to z=07° On the"

other hand, a single mutation cannot suffice for the transition from any
other ze 2~ {0} to z=0. The definition of the invariant distribution x in
terms of the transition matrix Q implies that

N N
w(0) Y 00,2)= Y wuz) 2z 0).
z=1 -=1

Taking the limit as ¢ — 0, assuming N> N, and considering further details
of the previous claims, it follows that

p*(0) <p*(1) +1*(2). (13)

If it can be shown that x*(1) and (*(2) are small, then so is 1t*(0).

3 This would be if the adjustment process left = =1 unaltered, so that this solitary s, player
could then mutate. :

3 This would be if d > @, so that a pairing of the only two s, players would yield a positive
probability of a transition to only one. A single mutation of that s, player would then
complete the transition to z=0.

EFFICIENCY WITH RANDOM MATCHING 89

With # still as in the statement of Theorem 2, take

o Aa—d)
N>N,=1+max (H[(C_cz)+(b_d)],0>

and consider all integers z > 1 such that z/N <o —n/2. 1t follows that
E(n\(z, p) — 7oz, p)) > [(e—a) + (b —d) ] n/4>0.

In addition, since

>

var{m,(z, p) — (2, P)} = <(b —a) (c— d)>2 4 varv{zﬁ}

z N-—z

it follows readily from Lemma 5 that, if N =4, then

2 (N—z2)¥

var{p} var{p and var{p} __2v
(N—z)z (N=3)

Chebyshev’s inequality now implies that the probability that 7,(z,p) —
7,(z, p) >0 can be made arbitrarily high, uniformly in z€[ 1, N(a—n/2)),
by choosing N large enough. If N>2/y, then (z+ 1)/N <a—n/2, for all
ze[1, N(a—n)]. Hence, in the light also of (4) and (6), there exists N3 >
max{4, 2/, N>} such that, if N> N,, then 0 < T(z + 1, 2) < 46/(2(4 +9)),
whereas T(z, z+ 1) > 4/2 >0, for all integers z € [1, Nla—m].

From the definition of the invariant distribution g, it follows that, for all
z€ L2,

Soue) Q= §os) oEn (1)

2o+l o4l U

Now, for all integers ze[1, N(x —#)]. in particular,

T(z,z+ Lyp*(z)=T(=+ Loy p*(z+1),
as follows by taking the limit of (14), since the mutationless adjustment
process as in (4) and (6) changes z by at most | in each period. Hence, for

N> N, and for all integers ze [ 1, N(a =1} ],

0
4+0

w¥z+1).

In particular, this implies x*(1) and p*(2)—0, as N— oo, so that
N(a—n)— oo. Hence, from (13), there exists N,>N,, where N, is as in
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(12), such that, if N>N,, then u*(0)<d/4. It follows that, if N>
max{ N5, N}, then, as required,

iad o N & ¢

S K<y <—-> 022

ze[0, Nle—m)1nZ i=1 4+5 4 2

Entirely analogous considerations apply for the integers z € [ Ne+17), N].
Altogether, it follows that there exists N such that N> N implies

O E D MR O B

ze [0, Na—m)InZ ze[Na+n) NInZ
completing the proof of Theorem 2.

Proof of Theorem 3. Define 0 as the Markov matrix on Q for the two-
population model of Section 5, with T as the associated Markov matrix for
the process excluding mutation. Retain the notation for the mutation cost
of a transition from z to z' as ¢(z, z’). Recall the notation for the common
interest equilibrium,

n) entries 12 entries
P e —

N=(N,0,..,0,N,0, .., 0),

which is an absorbing state with a basin of attraction, A #(N), say, defined
in the analogous fashion to (9) under T. The key to the present proof is
then:

LeMMA 6. In the two-population model of Section 3,
ApN)={z=(z',2)eR|z;>0 and z2>0}.

Hence, Vze @~ {N}, 3z’ € A#(N) such that ¢(z,z')<2.

Proof. Consider any z such that z} >0 and z3 >0 and suppose, without
loss of generality, that z}>z? and zi <N. Under the random matching
mechanism, there is a positive probability that all these z7 “type 17 players
in population 2 will be matched only within the set of z, “type 17 players
of population 1 in every round within the period. It follows that, in this
event, the type 1 players in population 2 must attain the highest average
payoff in population 2 and there is a positive probability, given (7), that
the number of type 1 players in population 2 increases. By (8), there is an
independent positive probability that the number of type 1 players in
population 1 remains at z|. Altogether, there is then a positive probability
that the total number of type 1 players in both populations strictly
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increases.®® It follows that 72V ~2(z, N) >0, so that ze 4 #(N), as required.
Hence two mutations always suffice to reach Az( N), from any

ceQ~{N}. 1

Analogous to Lemma 2 is that, if the total number of individuals who
are not of type 1 is bounded above while the total number of players is
large enough, then the average payoff for type 1 in each population is
strictly higher than for any other active strategy, regardless of the outcome
of the matching mechanism.

LemMa 7. For m=1,2, ., define Z(m)={zeQ~{N} | p_,z; +
S, z2<m}. Then Vme {1,2, ...}, AN such that, VN> N, and Yz, € Z(m),
then 28 >0 and my(z,, 1) >7y(z,.r,), for all k#1 for which zj_,>0, for

all v, e P(z,), and for i=1, 2.

Proof. Recall that the payoff functions for each of the two populations
are given by

"y

Tz b)) =Y re ok, O)f(vz ), k=1,.,n,, for =z,

=1

>0,

iy
2

nzz(zn”z)= Z ”k./.:uz(k’ /)/(UZ;‘,), /:la9 n,, fOr Z’;’,)‘>O’

k=1

where r, , , stands for the number of total matchings between type k
players of population 1 and type ¢ players of population 2 at ¢, so that

na

"y

— 1 — -2 — I

Y o=V, Y Fe=0Z k=1,.,n,, £=1, .., 1.
=1 k=1

In addition, u,(1,1)>u;(k, ), for all (k,/)#(1,1), i=1,2. Note that
z",‘,>0, i=1,2, whenever N>N>m. The stated result is then
immediate. |

“Tree surgery” as in Lemma 3 again establishes that the tree or trees
with the lowest mutational cost are N-trees, for all N> N, taking m =2 in
Lemma 6 and N as in Lemma 7. This completes the proof that the
common interest equilibrium, N, is selected by the stochastically stable

distribution, given that N> N.

40 There are clearly alternative assumptions to (8) which would serve to ensure that there
is a positive probability of the total number of type 1 players increasing for all such initial
population vectors.
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The assertion concerning the expected first passage times is then a
consequence of Lemma 6. This follows from Lemma 4, which applies
equally as well to the Markov processes given by 0 and T as to those given
by Qand T. 1
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