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3 The war of attrition

In the last chapter, I assumed that two ‘Doves’ competing for a
resource worth ¥ could share the resource. There will be many cases
in which it will not be worth while to share a resource. For example,
suppose two animals compete for a territory, and that there is no
asymmetry, such as prior ownership, which can settle the matter.

Let N = expected offspring to the owner of the territory,
kN = expected offspring to the owner of half the territory
k <1,
n = expected offspring to an animal who does not com-
pete but instead sets up a territory in a less satisfactory

habitat (n < N).

Ifn > kN, it would not pay either contestant to share the territory.
The payoff V for obtaining the territory is N —n; note that it is not the
expected fitness of an owner of the territory, but the chahge in fitness
for winning. ,

Suppose, then, that ¥ = N—n, and that the contest is settled
without escalation. That is, the contestants display, and the owner is
the one which persists longest. For how long should a contestant
persist? If displaying cost nothing, the contestant should persist for
ever, which is clearly absurd. In practice, to display must cost
something, if only because to display for a long time is to delay the
start of breeding. '

I assume, therefore, that the cost of displaying increases with the
length of the contest and is the same for the two contestants. The only
choice open to an individual is to select a le time for which he is
prepared to continueﬁnﬁ an associated 2ostj, he is prepared to
pay. Thus if the two cdftestants, A and B, select costﬁn\‘ and ég,

Té_s_ﬁéctively, the winner will be the one selecti& the igher cost;
however, he will not have to pay that cost, because the length of the

[1{//6’1»“‘\ contest is determined by the loser. Thus the payoffs are

1
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Player 4  Player B
my > mp V—my —mg
my =mg (V{2)—mg (V/2)—mp
my < mp —my V—m,.

This assumes that in the (infinitely unlikely) event that m,=mp, the
contest is decided randomly. Given these payoffs, what choice of m is
evolutionarily stable?

Before answering this question, one biological point must be made.
In assuming that the only possible choice of strategy is a choice of m,
made before the contest, I have assumed that no relevant information
(e.g. about what would happen in an escalated contest) is obtained
during the contest. The problem of information transfer is crucial; it
is discussed further on p. 35 and in later chapters.

Clearly, no pure strategy can be an ESS. Thus suppose the
members of a population play M. Their average payoff is (V/2)— M.
A mutant playing M +6M would have an average payoff ¥ — M, and
could invade. If M > (V/2),;a mutant playing 0 could also invade.

Hence, if there is an ESS, it must be a mixed one. Let I be a strategy
defined by the probability density function p(x). That is, the
probability of accepting a cost between x and x + 5x is p(x)éx. To find
p(x), we make use of the Bishop—Cannings theorem (Appendix C),
which in the present context states that, if m is a pure strategy in the
‘support’ of I (i.e. p(m)#0), then E(m,]) is constant.

Now

E(m,I) = §,"(V—x)p(x)dx— [ *m p(x)dx.

We have to find p(x) such that dE(m,I)/dm = 0, subject to the

constraint jowp(x)dx = 1. It is easy to confirm that

p(x) = (1/V)e=*¥ 3.1

is the required function. This shows that I = p(x) is an equilibrium

strategy; to show that it is stable, we must also show that

E(I,m) > E(m,m). 3.2)
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This can easily be done if m is a pure strategy (Maynard Smith,
1974); it has been proved by Bishop & Cannings (1978) for the case
when m can be any mixed strategy different from I.

The negative exponential form of equation (3.1) is intuitively
appealing for the following reason. Since no information is
exchanged, a contestant who has continued for time t, and whose
opponent is still displaying, is in exactly the same state as far as future
gains and losses are concerned as he was at tL&?r zero. Logically,
therefore, he should make the same choice of future expenditure at

time ¢ as at time zero; this requires a negative exponential distri-
bution. ’

If cost is a linear function of time, then the times for which an
individual is prepared to display will be distributed as a negative

exponential. A stay time with this distribution, however, is not

particularly strong evidence for a mixed-ESS, since all that is needed
to generate such a distribution is that the individual should have a
constant probability of leaving per unit time. It must also be shown
that the constant probability has the correct value — ‘correct’ here
means the value which equalises the fitnesses of individuals with
different stay times, as is true for the distribution given by equation
(3.1). The work of Parker (1970a,b) and of Parker & Thompson
(1980) on'the dung fly Scatophaga stercoraria affords two examples,
one of which may be a mixed ESS, and the other certainly is not.

Female dung flies come to fresh cowpats to lay their eggs. The
males congregate at cowpats, and attempt to mate with arriving
females. For how long should a male stay at a cowpat? Many females
arrive at a fresh pat, and progressively fewer arrive as the pat grows
stale. Therefore, a male which stays too long will meet few females.
However, if most males stay only for a short time, a male which stays
for a longer time will have a better chance of mating with those
females which do arrive. Hence, if other males move it pays to stay,
and vice versa. The contest is a frequency-dependent one similar, but
not mathematically identical, to the war of attrition.

Parker (1970a) found that male stay times are exponentially
distributed. Further, if female arrival rates are measured, it is found
that male stay times are so distributed as to give the same expected
success to males adopting different strategies (Figure 2). To get equal
success rates, Parker had to suppose that the time required to find a
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Figure 2. Estimated mating success of male dqng ﬁies, asa
function of their stay times at cowpats, assuming it takes four
minutes to find a fresh pat. (After Parker, 1970a.)

new pat, after leaving an old one, was four minutes. This was not an
arbitrary choice made only to get a good fit; four minutes is the
average time it takes males to arrive at a freshly deposited pat.
Parker’s data, therefore, provide a striking fit with the theory.

The mechanism by which this is achieved, however, is not known.
There are at least three possibilities. First, the population may be
genetically variable, with each male having a different genetically
determined stay time. Secondly, all males may be alike, with an
individually flexible stay time; since the distribution is, approxi-
mately, a negative exponential, all that this requires is that each male
should have the same constant probability of leaving per unit time.
Thirdly, and perhaps most plausible, males may adjust their stay
times in the light of experience. It will be shown in Chapter 5 that
learning can take a population to the ESS frequencies in a single
generation, without genetic evolution. A learning mechanism would
have the advantage of enabling males to adjust their behaviour as the
density of cowpats changes.

It may not be accidental that Parker’s data refer to a contest in
which individuals are playing the field. In pairwise contests, asymme-
tries of size, ownership, sex, age etc. are likely to be perceived and to
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influence strategy choices. An example, also from Parker’s dung fly
study, will now be given, but first we must derive an expression for the
lengths of contests to be expected in a war of attrition.

The expression p(x) = (1/V) (—x/V) gives the length of time.
for which an individual is prepared to/continue (or, more precisely,
the cost it is prepared to accept). Often, what we can actually observe
is the duration of the actual contest. How are these durations

distributed? Perhaps the easiest way of seeing the answer is as follows.

In a time interval &z, the chance that a particular contestant will leave
is 8¢/V. Since the two contestants are independent, the chance that
one or other will leave is 26¢/V. Hence the distribution of contest
length is

P(x) = (2/V)e~>". (3.3)

Thus_contest lengths are also eéxponentially distributed, but with
mean V/2 instead of V.

Parker & Thompson (1980) derived this result and applied it to a
later stage of the contest between male dung flies. After mating,
females stay on the dung laying eggs. The male remains on the back of
the female during this period. In this way, he prevents a second male
from copulating with the female; if a second copulation does occur,
the second male’s sperm fertilise 80 % of the eggs laid subsequently.

While a female paired in this way is laying eggs, unmated males
attempt to displace the male in possession (Parker, 1970b). Usually,
an approaching male is deflected by the owner without a struggle. If,
however, the approaching male manages to touch the female, a
struggle often ensues, in which the intruder attempts to displace the
owner. Parker & Thompson (1980) analyse these struggles. The
durations are, approximately, exponentially distributed. Further, the
relation between mean duration and estimated costs is at least
consistent with a ‘war of attrition’ interpretation, although costs
cannot be measured with any precision. The authors point out,
though, that it would be quite wrong to interpret the contests in this
way. Thus if, as in Figure 3, a distinction is made between those won
by owners and by intruders, the contests are seen to be quite different,
and the latter are far from exponential in distribution. Yet in the
symmetric war of attrition the two distributions should be the same,
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Figure 3. Observed lengths of contests between male dung flies.
Open histogram, all data; cross-hatched histogram, contests in
which the attacking male won. (After Parker & Thompson, 1980.)

and both exponential. The contest, clearly, is an asymmetric one, and
should be analysed as such; this will be done on p. 121. It has been
mentioned here as a warning; an exponential distribution of contest
durations is an insufficient reason for regarding a contest as a
symmetric war of attrition.

It may be that cost is not a linear function of time. 1If so, the contest

~ can still be analysed in the same way, but its duration will no longer be

exponentially distributed (Norman, Taylor & Robertson, 1977).
Thus suppose the cost Q is $ome function g(x) of the time x for which
the contest lasts. The contestants can be thought of as choosing an

acceptable cost, and, by exactly the same argument as that leading to

equation (3.1), the stable distribution of choices will be

p(Q) = (1/V)e2. G349

What, then, will be the distribution of x? The probability that an
individual will select a time between x and dx is the same as the
probability that it will accept a cost between g(x) and g(x+ 6x).
That is
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p(x)ox = p(Q)6Q
or

d
P = MO,

For example, suppose costs were proportioned to the@uare of the
duration; i.e. O = kx2. Then

P(x) = p(Q)-2kx = (2kx/V)e=¥

This gives a yery different form for the expected duration of
contests (see Eigure 4). This is a further reason for not treating the
dlstnbutlon o‘lcentest durations as evidence for or against a war of
attrition interpretation. The critical evidence required is an equality
of payoffs for different choices, as shown for dung flies in Figure 2.

Bishop & Cannings (1978) point out that the war of attrition model
can be applied in a wide range of contexts, provided that:

(1) No relevant information is received during the contest, so that
an action (i.e. a persistence time) can in effect be made at the start.

(i1) The winner is the contestant prepared to accept the higher cost.

(iii) The actual cost to both contestants is equal to the cost
acceptable to the loser.

(iv) The range of possible actions must be a continuous one; the
significance of this is discussed further on p. 105.

For example, cost might be measured by injury received during the
contest. Such injury might be proportional to the length of the
contest; alternatively, the strategy choice might be of a level to which
the contestant would escalate, the amount of injury increasing as the

level was raised. It need not even be the case that actual injury
received is a function of duration or level of escalation, provided that
the risk of injury (i.e. the ‘expected’ injury) is such a function. It i 1s,
however, a necessary feature of the model that i injury should not be so
great as to prevent a contestant from continuing. A crucial difference
between the war of attrition and the Hawk-Dove game is that, in the
former, an animal can almost guarantee victory by choosing a
sufficiently high risk (although, of course, it cannot guarantee a

positive payoff), whereas a Hawk meeting another Hawk has only an
even chance of victory.
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Figure 4. The war of attrition. Distribution of acceptable
durations (B), and durations of contests (D), when (a) cost, C, is
proportional to time, and (b) cost is proportional to the square of

the time.

When discussing the persistence times of male dung.ﬁieSf at
cowpats, the point was made that this is a contest in VthCh each
individual is playing the field, and that the reasonable fit with th'e war
of attrition model is probably dependent on this fact; in_pairwise
contest, information transfer is likely to influence behaviour. The
time has now come to discuss information transfer. It is convenient to
start by considering two extreme models.

1) There are no differences in size or weapons which can be
detected by the contestants. There are, however, differences in
motivation, leading contestant A4 to choose cost m, and B to choose
cost mg, where m, > mp, say. Would it not pay them both to signal the
level they have chosen, and for B then to retreat at once? Indeed, both
would be better off; 4 would gain V¥ instead of ¥ —ms, and B would
gain 0 instead of — m;p. Unfortunately, this signalling bchaviour. is not
proof against ‘lying’. Thus suppose we start with a population of
individuals which select a value of m according to equation (3.1),
signal it accurately, and retreat at once if their opponent signals ?1
higher value. A mutant which signals a large value M, but retrea.ts if
its opponent does not retreat at once, can invade such a population.
Soon the population would consist of individuals signalling high
values of M which did not correspond to their actual future
behaviour. At this stage, a mutant which ignored the signal it
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received, which gave no signal, and which followed equation (3.1),
could invade the population. That is, we end with a population not
giving any information.

(ii) Now consider a model in which there are detectable differences
of size, such that the larger animal would certainly win an escalated

—contest. It would be evolutionarily stable for animals to convey
information about their size, and to retreat if smaller than their
opponents. Thus a mutant which either ignored information it
received, or which did not itself transmit information, would engage
in unnecessary fights. The essential difference between this and the
preceding model is that I am now assuming that it is impossible for an
animal to give false information about its size.

This distinction is crucial to an understanding of animal contests in
general, and information transfer in particular. In the first model, it is
possible for an animal to transmit any signal, at little or no cost,
except in so far as there might be a cost exacted in the subsequent
course of the contest. In the second model, it is impossible for an
animal to transmit false information about its size, although there
will certainly be selection for animals to appear as large as possible.
Also, since larger animals win contests, there will be strong selection
for increased size. There are also likely to be counteracting disadvan-
tages to large size. An analysis of this situation is given in Chapter 11.

The problems of information transfer are discussed further in
Chapters 9 and 12. For the present, the essential point is to
distinguish two cases: h

(i) Information about ‘motivation’ or ‘intentions’. Because any
message about motivation can be sent, with little cost, there is no
reason why such messages should be accurate, and therefore no
advantage in paying attention to them.

(i) Information about ‘Resource-Holding Power’, or RHP
(Parker, 1974b); RHP is a measure of the size, strength, weapons etc.
which would enable an animal to win an escalated contest. It can be
evolutionarily stable to transmit information about RHP, and to
accept such information to settle a contest, provided two things are
true. It must be impossible to transmit false information about RHP,
and it must be expensive to acquire high RHP in the first place.

T turn now from the problem of information transfer to discuss
cases in_which the value of winning is not the same for the two
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Table 7. Supposed breeding success, in -offspring
successfully reared, of young and old birds

Favourable Unfavourable
habitat habitat
First-year bird 2 1
Old bird 4 2

contestants. Anexample is a contest for food between a hungryanda

well-fed animal. To take a more complex example, suppose that two

kinds of birds compete for a territory in a favourable habitat, and
that the loser can establish a territory in a less favourable habitat
without further contests. The two birds may be of different ages: for
example, a first-year bird and an older bird. Suppose that expected
breeding success is as shown in Table 7. The payoff for winning is then
2 to the older bird and 1 for the first-year bird.

Suppose first that the difference between young and old birds can
be recognised unambiguously. Then, as Hammerstein (1981) pointed
out, the contest should be analysed as three separate games: youngv.
voung, old v. old, and young v. old. In the first two games, there 'are
no payoff differences to worry about. The third game is a typical
asymmetric game of the type discussed in Chapters 8 to 10; almost
certainly, the age difference would be used as a cue to settle the
contest.

Suppose, however, that the age of an opponent cannot be detected,
so that a bird’s behaviour can be influenced by its own age status, but
not by its opponent’s. This is an example of a game of imperfect
information (discussed further in Chapter 12); each contestant has
some information not available to its opponent. The earlier example
of a contest between a hungry and a well-fed bird would be logically
similar if a bird knew only its own state of hunger.

The problem of the war of attrition in which an individual knows

the valye of the resource to itself, but knows only the probability
distribution of the value to its opponent, is analysed in Appendix G.
Applied to the example of a territorial contest, the conclusions are as
follows. Younger birds will select an acceptable cost, m, from a
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probability distribution ranging from zero to some threshold value,
T, and oider birds from a distibution ranging from T'to co. Thus, old
birds will always win against young ones, but symmetric contests-will
be settled, as in a typical war of attrition, by the charce selection of a
value of m from the same distribution.

If there are only two categories of individual, there is a single
threshold value 7. If there are N categories, for which the values of
winning are V,<V,< ... <Vy, there will be N non-overlapping
probability distributions separated by N—1 threshold values. Con-
tests will be won by the animal with the larger value.

What is the average payoff per contest in the war of attrition? For
the simple case, with an ESS given by equation (3.1), it is easy to see
that the average payoff is zero. Thus the defining characteristic of
equation (3.1) is that the payoff for all values of x is the same. This
includes the payoff for x = 0, which is clearly zero. In other words,
the average cost of a contest is equal to V]2, the average gain. This
may at first sight seem an odd result. It does nor mean, however, that
animals have, on average, zero fitness. Thus suppose, for example,
that all territorial contests were symmetric ones between older birds.
The value of winning is 2 offspring, so the average cost will be 1
offspring, compared to an average breeding success of 3 in the
favourable habitat and 1 in the unfavourable one.

Things are different, however, if the rewards are variable. It is still
true that the average payoff is zero for that category with the lowest
value for winning; it is positive for all other categories.

The essential feature of the ‘variable rewards’ model is that animals
know the value of the resource to themselves, but not to their
opponent. There is one rather strange example which may illustrate
this model. This concerns the digger wasp Sphex ichneumoneus.
Females of this species dig holes, which they then provision with
katydids, before laying a single egg and sealing the burrow.
Sometimes, instead of digging a burrow, a female will enter a burrow
already dug by another wasp. The choice between these strategies is
analysed (pp. 74-5) as an example of a mixed ESS. For the present,
however, I want to concentrate on the fights which occur if two wasps

who are provisioning the same burrow actually meet. Dawkins &

Brockmann (1980) analyse Brockmann’s data on 23 such fights
observed in the field.
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For each fight, itis known how long it lasted, who won_, which wasp
dug the hole, which was larger, and how many katydids each had
supplied. Surprisingly, there was no signiﬁcar?t .advantage for the
larger of the two, nor for the owner over the joiner. Eleven wasps
fought more than once; there was no significant tendency for some
wasps to be winners and others losers. What then does deten:nme the
outcome of fights? The hypothesis which best fits 'the facts is that a
wasp fights for a length of time which increases with thc.num‘t?er of
katydids it has brought to the nest, and hence that t'he winner is the
wasp which has brought most katydids. There is, of course, a
correlation between the number of katydids brought-b).r the loser and
the total number present, but analysis shows tha.t it is the number
brought by the loser which is relevant in determining the length of a
fight. N
These results are what would be expected from a war of attrition
with random rewards, provided that we assume that a wasp 1.(nov'vs
how many katydids it has supplied (presumably, b)./ rflomtormg its
own activity) but not the total number present. If this is so, then the
value of a burrow is indeed an increasing function of what t}}e
individual has supplied, and the length of time the in('iividual ‘w111
fight should likewise increase with the number of katydids supplied.




