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Abstract

he pay-as-bid auction, also called the discriminatory price auction, is among the most

common auction formats to price and allocate assets and commodities. Trillions of

dollars each year are traded in pay-as-bid auctions. The format is the natural multi-
unit extension of the first-price auction of a single item. Bidders specify a price for each unit
they want to buy. The market clears at the price where supply intersects aggregate demand
and winning bidders pay their bids for each unit won. In the first chapter of my thesis,
I explain strategic differences and similarities between the single-item and multi-unit case.
In practice, it is rare that multi-unit auctions take place in isolation. The second chapter
introduces a model of interconnected pay-as-bid auctions. The auctions run in parallel and
offer perfectly divisible substitute goods to the same set of symmetrically informed bidders
with multi-unit demand. This connects the demand side of both auctions. The supply side
is linked because the total amounts for sale may be correlated. I show that there exists a
unique symmetric Bayesian Nash equilibrium when the marginal distributions of supply have
weakly decreasing hazard rates. I then develop practical policy recommendations on how
to exploit the interconnection across auctions to increase revenues. These theoretic insights
are the basis for the final chapter of my thesis. In collaboration with Jason Allen (Bank
of Canada) and Jakub Kastl (Princeton University) I use data from auctions of Canadian
debt to quantify the extent to which demands for securities with different maturities are
interdependent. Generalizing methods for estimating demand schedules from bidding data
to allow for interdependencies, our results suggest that 3, 6 and 12-month bills are often
complementary in the primary market for Treasury bills. We present a model that captures
the interplay between the primary and secondary markets to provide a rationale for our
findings.
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Chapter 1

AY-AS-BID VS. FIRST-PRICE AUCTIONS
SIMILARITIES AND DIFFERENCES IN STRATEGIC BEHAVIOR

1.1 Introduction

The pay-as-bid auction, also known as discriminatory price auction, is a popular mechanism
for allocating assets and commodities worldwide. It extends the rules of the well-known
first-price auction to the sale of multiple units of the same good: Bidders submit bidding
schedules which specify a price for each unit they demand. Individual demands are then ag-
gregated by the auctioneer to determine the market clearing price above which all bids win.
All winners pay “as-they-bid” for all units they won. The pay-as-bid auction is very popular
among governments and central banks. It is used to allocate Treasury bonds and implement
other operations such as Quantitative Easing on the open market. Outside the financial
sector it distributes carbon credits as well as electricity generation in several countriesE] In
total, trillions of dollars are transferred every year using this type of auction. Despite its
importance, we know little about strategies used by auction participants. Expect in special
circumstances we are even unable to compute best-response strategies (Woodward, (2015))).
To a large extent the literature focuses on the case of single-unit demand. Assuming that
each bidder wants at most one unit is a simplifying assumption that is violated in most
real-world applications. A bank bidding in a Treasury auction, for instance, clearly wants
more than just a single dollar worth of the offered Treasury bill. With multi-unit demand
bidding strategies in pay-as-bid auctions are, according to a common understanding of the
recent literature, more complicated than those in its single-unit counterpart, the first-price
auctionE] The reason is that changing one’s n’th bid may affect not only whether the n’th
unit is won, but also the bidder’s belief of where the market will clear. To optimize their
payoffs, bidders have incentives to shade their bids for each unit differently. This behavior,
known as “strategic bid shading” or “demand reduction”, is by design not present in auctions
of a single, indivisible object. It is seen as “the key to why the analogy between single-unit
and multi-unit auctions does not apply” (Ausubel et al. (2014)), p. 1367).

!For more details see [Brenner et al.| (2009), [Bartolini and Cottarelli (1997), Ghazizadeh et al. (2007),
Maurer and Barroso| (2011)).

Z“Except in the case where bidders have demand for only a single unit of the auctioned commodity, the
analysis of multi-unit auctions are [...] more difficult than that of single-unit auctions (Hortagsu| (2011), p.
345).”



In a simple theoretic framework in which bidders with multi-unit demand compete for shares
of a perfectly divisible good, I argue that the complexity of pay-as-bid auctions comes not
from demand reduction but more specifically type-dependent demand reduction. In my
benchmark model N > 2 risk-neutral bidders are symmetrically informed. They all share
the same type, known to them but not the seller, but are uncertain about the total amount
of the good that will be for sale)| I discover the following analogy between pay-as-bid and
first-price auctions: Each of N symmetrically informed bidders shades his bid in the sym-
metric equilibrium of the pay-as-bid auction for 1 of N shares of the perfectly divisible good
as if he competed with (N — 1)N bidders for one indivisible good in a canonical first-price
auction with independent private types. This analogy might break when bidders are not
symmetrically informed but have private information, i.e. types. Whether bidding in pay-
as-bid auctions is more complex thus depends on the source of uncertainty bidders face.
With private information it can be optimal for bidders of different types to reduce demand
in different ways. This suggests that it is not demand reduction (or differential bid shading)
per se that makes bidding choices in pay-as-bid auctions more difficult. What gives rise to
complicated equilibrium effects seems to be type-dependent demand reduction instead. Such
type dependency introduces asymmetric trade-offs not only across units of the good, but also
agents. It therewith generates complications that have no equivalent in single-unit auctions.

My findings build on an intuitive bid-representation theorem for pay-as-bid auctions. It
characterizes the functional form of the bidding schedule when bidders are symmetrically in-
formed (benchmark model) and - with some limitations - when they have private information
(model extension). In future work my theorem might serve as basis to construct equilibrium
strategies for other, potentially more general environments, with asymmetrically informed
bidders that have multi-unit demand. Computing such equilibrium strategies for pay-as-bid
auctions is still an open question in the literature (Hortagsu and Kastl (2012))). To illustrate
how to use my bid-representation theorem to construct equilibria, I conclude the article by
deriving an equilibrium in linear bidding strategies. This equilibrium is new to the liter-
ature. It is the counterpart to |Ausubel et al. (2014)’s linear equilibrium without private
information and helps us understand which role private information plays for strategic in-
centives in pay-as-bid auctions: In the symmetric equilibrium, privately informed agents bid
like symmetrically informed agents who all draw the the lowest type, but add a type-specific
discount factor.

More generally, my work could be a first step into establishing a more general theoretic
connection between bidding in first-price and bidding in pay-as-bid auctions with multi-

3This modeling assumption nicely reflects two common features of real-world pay-as-bid auctions. For
one, the amount to be allotted is in some cases, such as Treasury auctions in Germany, Greece, Belgium,
Turkey or Sweden (Brenner et al|(2009)), adaptable during the auction. Secondly, the total supply is often
shaped by so called “non-competitive” tenders. These are irregular bids in that only a quantity is specified.
The price is determined automatically. It is either the average price paid by (regular) bidders or the market
clearing price. How many non-competitive tenders will be served is unknown to the (regular) bidders so that
the total amount for sale that matters for them is random.



unit demand. Such a methodological link would increase our poor knowledge of pay-as-bid
auctions. We could re-visit the literature on first-price auctions. In contrast to pay-as-bid
auctions, first-price auctions have been at the core of auction theory since the very begin-
ning (Vickery| (1961)). They have been studied extensively and are well understood. When
bidders have independent private values, we know, for instance, that first-price auctions can
be revenue equivalent to second-price auctions, and that they are strategically equivalent to
the Dutch auction. For the pay-as-bid auction we know much less. We do not know whether,
and if so under which conditions, it might be strategically or revenue equivalent to another
auction format, for instance the uniform-price auction. It differs from the pay-as-bid auction
only in that bidders pay the market clearing price for all units they win, instead of their
individual bids. The existing literature has not come to a consensus on which of the two
auctions are more efficient or bring higher revenuefl] By finding conditions that influence the
distribution of winning quantities (which is at the center of my analysis) it might be possible
to distinguish cases under which either auction format dominates the other and explain why.

Related Literature. Building on the literature of “share auctions”, put forward by Wilson
(1979) and further developed most notably by Back and Zender| (1993)) and Wang and Zender
(QOOQ)EI my analysis of the benchmark model with symmetrically informed bidders is com-
plementary to |Pycia and Woodward| (2017). In independent work, we derived the functional
form of the equilibrium bidding function under the simplifying assumption that bidders are
symmetrically informed. Relative to previous studies, such as Wang and Zender| (2002)) as
well as |Ausubel et al. (2014), our result is more general in that we neither impose marginal
utility to be linear nor total supply to be distributed according to the Pareto distribution.
Instead, our theorem holds under a very broad class of utility functions and distributions.
It is similar to Holmbergl (2009) who studies pay-as-bid procurement auctions with gen-
eral cost functions (here utility functions) and perfectly inelastic demand (here supply). He
shows that an equilibrium exists if the hazard rate of demand is monotonically decreasing
and bidders have non-decreasing marginal costs. Pycia and Woodward (2017) go one step
further in bringing attention to more general sufficient conditions under which equilibrium
existence is guaranteed. As such, their work has been acknowledged as the best unique ex-
istence result currently available for pay-as-bid auctions (Hortagsu and McAdams (2018))).
Before focusing on the design of pay-as-bid auctions by optimally choosing the distribution
of total supply and a reserve price, Pycia and Woodward| (2017) show that the equilibrium
is symmetric, strictly monotone and differentiable in quantity rather than assuming those
properties. Contrary to my work, they do not explain the shape of the bidding function in
any detail. This could come from a difference in the way we express the bidding function.
Their representation highlights that a “bid for any quantity is a weighted average of the

4See |Ausubel et al. (2014), Pycia and Woodward| (2017) for theoretic contributions and Février et al.
(2004), Kang and Puller| (2008), |Armantier and Sbai (2006, 2009)), [Hortagsu and McAdams| (2010) for
empirical comparisons.

® Earlier contributions with indivisible goods include |Katzmann| (1995), Engelbrecht-Wiggans (1998)),
Swinkels| (2001)), [Engelbrecht-Wiggans and Kahn| (2002)), Lebrun and Tremblay| (2003)), |(Chakraborty| (2004,
2006)), | Anwar| (2007)).



bidder’s marginal values for this and larger quantities, where the weights are independent
of the bidder’s marginal values” (p. 4). Mine, instead, underlines the direct connection of
bidding behavior to the first-price auction. Therewith I am, to the best of my knowledge, the
first to discover this particular linkage. As my main goal is to work out this correspondence
rather than to solve the most general model of pay-as-bid auctions, I will make more strin-
gent technical assumptions that simplify the mathematical derivations than I would need to.
I invite who is interested in a more general framework with symmetrically informed bidders
to consult Pycia and Woodward, (2017)).

In contrast to Holmberg| (2009) and |Pycia and Woodward| (2017) I make first steps towards
an auction environment in which bidders are asymmetrically informed. In a model extension,
each bidder draws an independent private type. While the benchmark model with identical
bidders is helpful to fix ideas and identify key factors that drive bidding behavior in the
multi-unit auction, it is not so useful for evaluating performance. Auctions are typically
run to extract individual information from agents, so as to allocate resources to those who
benefit the most at the highest price possible. Only a framework with private information
allows us to analyze information aggregation and efficiency. Furthermore, the extension to-
wards a framework with independent private values helps to close the gap between theoretic
and related empirical work which tends to build on models with private values. Starting
with [Hortagsu (2002) researchers have estimated the bidders’ private, marginal willingness
to pay in multi-unit auctions (see also |Février et al. (2004)), [Hortacsu and McAdams| (2010)),
Kastl (2011} 2012)), [Hortagsu and Kastl (2012), (Cassola et al.[(2012), Hortagsu et al.| (2018))).
The structural estimation approach is based on an implicit characterization of the bidding
function in form of the first-order conditions. For each unit-bid, these necessary conditions
have been recognized to capture a similar trade-off to the one in a first-price auction, where
bidders trade-off the probability of winning against their gain from it (Kastl (2017))). Unfor-
tunately, these first-order conditions are not informative for a theorist. The reason is that
they depend on the distribution of the market clearing price. When bidders have private
types it can be defined only implicitly (for any given set of strategies) via market clearing.
The econometrician is able to simulate this distribution from the data. The theorist is not.
Woodward| (2016) nicely reflects the state of the art on pay-as-bid share auctions with pri-
vate types. He proves equilibrium existence in pay-as-bid auctions with private types without
specifying the equilibrium bidding function. He shows that bidders might have incentives to
“iron”, that is flatten, their bidding functions for small amounts which they are certain to
win.

In the remainder of the article, Section sets up the benchmark model with symmetri-
cally informed bidders and states the bid-representation theorem. It builds the basis for
the comparison of bidding in the pay-as-bid auction to bidding in the canonical first-price
auction (Section[1.3)). I then provide an extension of the main result to an environment with
independent private values (Section [1.4)). Before concluding in Section Section [1.4.1]
focuses on a linear example. All proofs are given in Appendix [A] Random variables will be
highlighted in bold throughout the article.



1.2 Benchmark Model

N > 2 risk-neutral bidders participate in a pay-as-bid auction. They share the same type
t drawn from some commonly known distribution. It is unknown to the seller. From the
perspective of the bidder this common type has no strategic relevance because it is known
to all of them. It is fixed at some value ¢ throughout the analysis. Instead, bidders are
uncertain about the total amount of the perfectly divisible good that is for sale, @. Inde-
pendent of the bidders’ type, it is drawn from some commonly known, non-degenerated and
twice-differentiable distribution F(-) with bounded support [0, @ > 0] and strictly positive
density fQ(-).E] Imposing a zero lower bound will simplify the analysis later on. It will rule
out that bidders have incentives to iron their bids when they have private types (see [Wood-
ward| (2016)). In practice the zero lower bound could come from a non-zero probability that
the auction is cancelled.

Consuming quantity g generates utility for each bidder. The marginal utility v(q) represents
the bidder’s true marginal willingness to pay for this amount. w(-) is strictly decreasing,

and twice differentiable. Agents can have a satiation quantity, ¢°.

This is the amount at
which the agent’s marginal valuation turns 0: v(q) = 0 for ¢ > ¢*. It is assumed to be large,

¢® > Q/N, for simplicity. If ¢° — oo, winning some more at a price of zero is always better.

Based on his true marginal willingness to pay each bidder submits a weakly decreasing and
differentiable bidding function: b;(-) : R* — RT. It is an inverse demand, mapping from
the quantity-space into the space of prices. The corresponding demand function maps from
prices to quantities. It is denoted by z;(+) : RT — R*.

Once all bidders have submitted their individual demands, each market clears at the minimal
price for which the aggregate demand of all bidders meets the realized total supply Q). If the
aggregate demand exactly equals the total supply at the market clearing price p¢, each bidder
i wins the quantity he demanded at this clearing price: @ = ), z;(p°) with p® = b;(¢f). In
that case, all winners pay what they were willing to pay for all units won, abbreviated by
q@ = ;(p°): Oq"c b;(x)dzx. Otherwise, if the aggregate demand at the clearing price is higher
than the total supply, bidders have to be rationed according to some tie-breaking rule. In
equilibrium no one will have to be rationed because bidding function will be strictly decreas-
ing. This ensures that the market always clears exactly. Which tie breaking rules is used is

therefore irrelevant.

From an ex-ante perspective agents do not know how much they will win nor at which price

6Relying on an idea by [Pycia and Woodward| (2017) Appendix shows that results extend to distri-
butions with unbounded support in presence of an arbitrarily small but positive reserve price. Since the
agents’ true marginal willingness to pay is decreasing by assumption, it will drop below the reserve price at
some point. The support of the quantity that will matter for bidding decisions is therefore bounded endoge-
nously. Without positive reserve price and unbounded support, the bidder’s objective functional might not
be well-defined because the expectation of the bidder’s total surplus might not exist.



the market will clear. Both the clearing price p¢ and the clearing price quantity ¢f depend on
how much there will be for sale . This amount is random. The adequate solution concept
is therefore Bayesian Nash Equilibria. I focus on equilibria in pure-strategies. They consist
of a set of bidding functions {b?(-)}%, that maximize each bidder i’s expected total surplus
from winning the ex-ante unknown clearing price quantity ¢f given all others j # i choose
b(). This total surplus is the difference between the bidder’s total utility from winning the

clearing price quantities fof v(x)dx and his total payments fof b;(x)dx

Definition 1. A pure-strateqy Bayesian Nash Equilibrium (BNE) is a set of bidding func-
tions such that b} (-) € argmax, ) E [fo"c v(x) — bi(x)dx} Vi e N.

Given the symmetric environment it is natural to restrict attention to symmetric equilibria.
In such equilibria bidders share the total supply equally. Later on, it will be convenient to
work with the agent’s “equilibrium winning quantity”, instead of the total supply:

q = @ {0,% =[0,7"].

N
Its marginal distribution and density will be denoted by F«(-) and fg«(-).

Having introduced the environment, I turn to the core of the article. I first derive my
main result for the benchmark model before generalizing it to an environment with private
information.

1.3 Pay-As-Bid vs. First-Price Auctions

My goal is to highlight differences and similarities in bidding strategies between pay-as-bid
and first-price auctions. The following bid-representation theorem will serve as basis for
the discussion. The Appendix shows that the bidding function is equivalent to [Pycia and
Woodward| (2017))’s Theorem 3.

Theorem 1. Consider distributions of total supply with weakly decreasing hazard rate.
There exists a pure-strateqy Bayesian Nash equilibrium in which all bidders submat

(q) = 0(g) - ( / ' i = (52) dx) on 0.7 (11)

and b* (q) = v (q) for q € (7", 00).

The equilibrium exists if total supply is drawn from a distribution with weakly decreasing
hazard rate which implies that the distribution of winning quantities Fi- has this property.
This existence condition is known in the literature (see Holmberg (2009)). It ensures that
bidders do not have incentives to deviate from the equilibrium strategy. Technically it is a



sufficient condition in the maximization problem that each bidder solves to determine his best
reply. Recently, Pycia and Woodward (2017)) have derived a weaker condition. They also
show that is the only function that can arise in any (not necessarily symmetric) equi-
librium on the domain of relevant quantities ¢ € [0,g*]. Higher amounts are unachievable.
Since no agent ever wins these high amounts nor pays for them, they are out of equilibrium.
The bidder’s choice for those high amounts is irrelevant as long as his bidding function is
decreasing on the whole domain R*. Here I consider the most natural equilibrium in which
the agents bid truthfully for unfeasibly large quantitiesﬂ

For attainable quantities, the bidding function (|1.1) is surprisingly simple. Because the
bidder “pay-as-he-bids” he understates his true marginal willingness to pay for each unit
that he might purchase in equilibrium: v(g). This is similar to an independent private-value
sealed-bid first-price auction, where bidders shade their true types.

The symmetric equilibrium of a canonical first-price auction with N > 2 bidders, each draw-

ing an independent private value s € [0,.S] from a common distribution Fj(s), is well known.
Given his true marginal willingness to pay for the indivisible object, v(s) = s, the bidder

B(s) = v(s) — </O [%1 o (ag_i@) dx> on [0,5]. [CIp)

The strategy function maps the agent’s true type into his price offer. Whoever offers the

submits

highest price wins the object.

Comparing the bidding functions with ) reveals the close similarity between bid-
ding behavior in the pay-as-bid and first-price auction. To see it, however, one must eliminate
two differences that distinguishe the two functions due to differences in the two set-ups. First,
the uncertainty that bidders face comes from different sources. In the first-price auctions
agents have private types. The bidder wins if he has the highest private value: s > s; Vj # ¢.
In the stylized pay-as-bid auction there are no private types. The equilibrium quantities,
each representing a share of the perfectly divisible good, take their place. A bidder now
wins ¢ when the market has not cleared yet: Ng < @Q = Ng*. To draw the analogy between
both auction formats one must compare the type s with the equilibrium share ¢* and the
corresponding probabilities that determine whether the agent wins or not:

s q" and Fi(-) <> 1 — Fi«(-). (1.2)

Second, the agent’s true valuation for the object is strictly increasing in the first-price auc-
tion, while it is strictly decreasing in the pay-as-bid auction. This inverts the bounds of

"One other alternative is to submit a flat function at value v (g*) for unattainable quantities. This
equilibrium, however, is not robust to bidders trembling. In case some agent makes a mistake which leads
some other other to win such large amounts, the later would make a loss winning as he would pay a higher
price than he truly values these additional units.



the integrals. In the pay-as-bid auction the integrals go from the realization ¢ to its largest
possible value; in the first-price auction, from the smallest value 0 of the realization to the
draw s:

/05 L (2)dw /qq* (=1 (z)da. (1.3)

Bearing and in mind, the two bidding functions differ in one element only: The
exponent of the bidding function of the pay-as-bid auction is %, the one of the first-price
auction is N — 1. In case N — 1 would equal (N —1)N the bidding function of the first-price
auction would be analogous to the one in the pay-as-bid auction. This gives rise to the

following observation.

Main Result 1. In the symmetric equilibrium of the pay-as-bid auction with symmetri-
cally informed bidders, each bidder shades his bid for 1 of N shares as if he competed with
(N—=1)N bidders for 1 indivisible good in a first-price auction with independent private values.

The result is intuitive: In a single good first-price auction, uncertainty over types can be
aggregated. A bidder effectively bids against one other bidder whose type is a random
variable with the same distribution as the highest order statistic of the common distribution
of types. In this sense he chooses his bid given the residual demand curve. Crucially for a
first-price auction, he bids as if he wins the auction because he pays his bid if and only if he

wins. What about a multi-unit pay-as-bid auction? Here he also takes the residual demand
Q
N
bids as if he wins % Now, @ is uncertain, so we have to think of it slightly differently. More

of all others as given. In a symmetric equilibrium, he is guaranteed to win so he always
precisely, it is optimal to bid as if he wins the marginal share. In this regard the bidder is
playing like in a single item first-price auction “on the margin”. Low supply looks like a high
type aggregate opponent; the math doesn’t distinguish where this uncertainty comes from.
A natural question to ask is whether this result holds when bidders have private information
in both auction formats.

1.4 Extension: Private Information

I make the following adjustments in the set-up: Each bidder now draws an independent
private type from the same, commonly known distribution with twice differentiable distribu-
tion on bounded support [t > 0, ] and strictly positive density. Bidder type t; derives a true
marginal value v(g, t;) from amount q. As above, it is strictly decreasing and twice differen-
tiable in quantity, plus integrable in the type. If it hits the zero line at some finite satiation
quantity it remains zero. Having observed their type, all agents submit a type-dependent
bidding function b;(-,¢;) : Rt — R*. It is weakly decreasing and differentiable in quantity.
With these adaptations, a BNE in pure strategies is defined analogously to Definition [1]



Theorem 2. In a symmetric pure-strateqy Bayesian Nash equilibrium bidders submit

o) =i [ [T (B g gy

and b*(q,t;) = v(q,t;) on q € (GF,00). This equilibrium exists if

(1) distributions of total supply and types are such that the amount an agent wins in the
symmelric equilibrium g; is drawn from a distribution Fy« with weakly decreasing hazard
rate and strictly positive density on support [0,q;] and

(ii) the corresponding demand schedule x*(-,t;) = b= (-, t;) is additively separable in t;.

In the symmetric equilibrium with private information, agents no longer split the total sup-
ply equally, ¢* = % The amount an agent wins now depends on his type: ¢*(¢;) abbreviated
by q;. The equilibrium bidding function has the same shape as function (1.1 without
private information. Whether this equilibrium exists depends on the underlying distributions
of total supply and types as well as the number of participating bidders. Both determine
the distribution of i’s winning quantity Fg«(-). Its shape in turn will determine whether
the bidding function of each type assumes an inverse function (the demand function)
that is additively separable in the type. Without private types, the existence conditions boil
down to the assumption that total supply (and with it the winning equilibrium quantity)
is drawn from a distribution with decreasing hazard rate (as in Theorem [I)). Determining
general conditions on the primitives of the model that guarantee existence of this equilibrium
is beyond the scope of this article. The generalized theorem, instead, is meant to under-
line differences and similarities between pay-as-bid auctions relative to first-price auctions in
presence of private information. In line with the previous section it allows me to make the
following observation.

Main Result 2. In the symmetric equilibrium of the pay-as-bid auction with independent
private types, each bidder shades his bid for 1 of N shares as if he competed with (N —1)N
bidders in a first-price auction with independent private values provided the submitted de-
mand function is additively separable in their type and strictly decreasing in price.

My analysis highlights a complication in multi-unit auctions that has, to the best of my
knowledge, not yet been made explicit in the literature. Strategizing in pay-as-bid auctions
might not be as “simple” as bidding in first-price auctions when agents of different types
submit demands with different slopesﬁ Intuitively, a type-dependent slope introduces an
asymmetry in incentives not only across prices but also agents with different types. Now
type t; reduces his true demand at price p by a different amount than type ¢;. In other
words, bidders do not only reduce their demand differently across prices but each type does

8Even though I do not show that this necessary condition is also sufficient, I expect that it is not possible
to derive an equilibrium bidding function in the pay-as-bid auction that has the discussed similarities to the
one of the first-price auction.



it differently. It seems to be the type-dependency that creates complicated equilibrium ef-
fects, not demand reduction per se.

As in Pycia and Woodward| (2017)’s model without private information, the theorem and
with it the main result extend to auctions with reserve prices R > 0, where total supply or
types may be drawn from distributions with potentially unbounded supports (see Appendix
. This insight could be valuable for the optimal design of pay-as-bid auctions. For
first-price auctions where bidders draw independent private types s € [0, S] from a common

distribution Fj(s) the formula for the optimal reserve-price is well known: R— <%S}g%)> =0.
For pay-as-bid auctions, we do not know how to set reserve prices optimally. My findings
might help to determine an analogous formula for an optimal reserve price in pay-as-bid

share auctions in presence of private information.

1.4.1 Linear Example

To conclude I illustrate how Theorem [2| can be used to find equilibria of pay-as-bid share
auctions in presence of private information. It is, to the best of my knowledge, new to the
literature. My approach of finding it could be used in other set-ups.

My aim is to construct a linear example. In search for an equilibrium with a linear bidding
function, it is natural to assume that the agents’ true marginal willingness to pay is linear:
v(q,t;) = max{t; — pq,0} with p > 0. Assuming linear marginal values alone, however, is
not enough to generate linear bidding strategies. To see this, recall the bid-representation
of Theorem [2 From there we know that the agent’s function depends nontrivially on the
distribution of his winning quantity Fq;«(-). With linear marginal valuations function

becomes
N—1

G 1 — F ()] N
b*(q,ti) = ti — pqg — p/ {—q} dx. (1.4)
. 1= 7@ =

For many distributions the integral, and with it the bidding function, will not be linear in
quantity. For an auction environment without private types, Ausubel et al. (2014) show
that equilibria are linear only if the per-capita supply (here referred to as i’s equilibrium
winning quantity, ¢*) is drawn from the Generalized Pareto Distribution (GDP). This result
extends without complications to an environment with private types where ¢ replaces ¢*.
There are two important differences. First, the distribution of ¢’s winning quantity becomes
type dependent. More importantly, it is no longer exogenously given by the distribution of
total supply but is endogenous. It is now an equilibrium object itself. In the linear example,
where demand schedules take the following form

z*(p,t;) = a” + c't; — e"p with a*, ¢ € R,e* > 0 (1.5)
it depends, by market clearing, on equilibrium coefficient ¢*

1
N

*

¢=— Q- ti+(N-1)ct|. (1.6)
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The winning quantity is a transformed convolution of the independent total supply @ and
(N —1) iid types, tj, which are weighted by the equilibrium coefficient, —c¢*. As shown in the
following corollary, a linear equilibrium exists when ¢} follows a Generalize Pareto Distri-
bution. Even though I cannot show that there exist distributions of total supply and types
that generate the GDP for i’s winning quantity, I am optimistic that there are examples.
In particular, I conjecture that it is possible to pick suitable Gamma Distributions for total
supply and types. My believe comes from the fact that the GDP belongs to the class of Gen-
eralized Gamma Convolutionﬂ whose elements can be represented as the distribution of the
sum of two or more non-constant (not necessarily identically distributed) random variables
which are distributed according to a Gamma Distribution["

Corollary 1. Let v(q,t;) = max{t; — pq,0} with p > 0, and asume N > %.
For distributions of total supply and types under which the amount an agent wins in the
symmetric equilibrium g s drawn from the Generalized Pareto Distribution

o[B8
with scale parameter B
o6ty =€ Sy ) -0 -¢ ()

and shape parameter
€ € (—o0,—1]

there exists a pure-strategy Bayesian Nash equilibrium in which bidders submit

)= (v ) 1= €t = (ve5) [(V = 1)a = €@Q] fora € [0.7)

vig %) forq € (@,00) with 3 = (262).

The corollary specifies several restrictions on parameters. Before analyzing how agents bid
in equilibrium, I explain why.

Parameter Restrictions. The first restriction, N > %, makes sure that the market clears
at a non-negative price. In particular, it guarantees that the marginal valuation of the lowest

9This class was introduced by [Thorin| (1977alb). It is the smallest class of distributions on R that
contains Gamma Distributions and is closed with respect to convolution and weak limits. This means that
any element of this class is the weak limit of finite convolutions of Gamma Distributions.

Bondesson| (1979) showed that distributions that have a density of the form f(z) = Caf~!(14-c2®) ™7,