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Problem Set 2: Problems on Dyamic Games

Exercise 1. Extensive Form

In the game below find: the normal form, all pure and mixed NE and all SPNE.

Let me label the actions of each player (subscript) according to the information set (superscript)

in which they are.

1) The normal form.

Let’s carefully build the normal form. The first thing to notice is that each player has three

information sets (they both share the last information set where nature plays). Since each

player has two actions per information set, and there are three information sets (h), each

∗This version builds on the solutions provided by Damiano Argan and Konuray Mutluer.
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player will have 23 = 8 strategies in the normal form representation. Furthermore, in the

strategy profile where nature plays as well, we must calculate the expected utility of each

strategy profile.

In normal form:

L3 R3

U3 1.5, 4 2, 2

D3 0.5, 1 2, 2

The normal form of the game as a whole:

P2

R1R2R3 R1R2L3 R1L2R3 R1L2L3 L1R2R3 L1R2L3 L1L2R3 L1L2L3

P1

U1U2U3 0 , 0 0 , 0 0 , 0 0 , 0 5 , 5 5 , 5 5 , 5 5 , 5

U1U2D3 0 , 0 0 , 0 0 , 0 0 , 0 5 , 5 5 , 5 5 , 5 5 , 5

U1D2U3 0 , 0 0 , 0 0 , 0 0 , 0 5 , 5 5 , 5 5 , 5 5 , 5

U1D2D3 0 , 0 0 , 0 0 , 0 0 , 0 5 , 5 5 , 5 5 , 5 5 , 5

D1U2U3 1 , 2 1 , 2 7 , 3 7 , 3 1 , 2 1 , 2 7 , 3 7 , 3

D1U2D3 1 , 2 1 , 2 7 , 3 7 , 3 1 , 2 1 , 2 7 , 3 7 , 3

D1D2U3 2 , 2 1.5 , 4 7 , 3 7 , 3 2 , 2 1.5 , 4 7 , 3 7 , 3

D1D2D3 2 , 2 0.5 , 1 7 , 3 7 , 3 2 , 2 0.5 , 1 7 , 3 7 , 3

2) All pure and mixed Nash equilibria.

Pure strategies:

The normal form of the game contains the BR of each player underlined. There is a consid-

erable amount of equilibria, so let us use a more concise formulation.

A strategy si contains an action for each player i in each information set: si = (a1i , a
2
i , a

3
i ):

PSNE = {s1, s2} ∈
{(
U1 · ·

)
,
(
L1R2·

)}
∪
{((

D1U2·
)
∪
(
D1D2D3

))
,
(
·L2·)

)}
∪
{(
D1D2D3

)
,
(
R1R2L3

)}
where · refers to player i playing either of his two available actions.

Mixed strategies: To simplify the search of mixed strategies, we can write a condensed normal

form of the game. Note that I omit strategy R1R2R3 for player two as it is strictly dominated
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by L1L2L3. Again, the BRs of each player are underlined. (Note how they coincide with those

of the original game). If you develop the indifference conditions, you will find:

P2

R1R2L3 R1L2· L1R2R3 L1R2L3 L1L2·

P1

U1 · · 0 , 0 0 , 0 5 , 5 5 , 5 5 , 5

D1U2· 1 , 2 7 , 3 1 , 2 1 , 2 7 , 3

D1D2U3 1.5 , 4 7 , 3 2 , 2 1.5 , 4 7 , 3

D1D2D3 0.5 , 1 7 , 3 2 , 2 0.5 , 1 7 , 3

MSNE =
{(

(U1 · ·), 3

5
(L1L2·) +

2

5
(L1R2R3)

)
,

(
(U1 · ·), 7

11
(L1L2·) +

4

11
(L1R2L3)

)
,(

(D1D2U3),
3

10
(L1R2L3) +

7

10
(R1R2L3)

)
,

(
1

2
(D1U2·) +

1

2
(D1D2U3), (L1L2·)

)
,(

1

2
(D1U2·) +

1

2
(D1D2U3), (R1L2·)

)
,

(
2

3
(D1D2U3) +

1

3
(D1D2D3), L1L2·)

)
,(

2

3
(D1D2U3) +

1

3
(D1D2D3), (R1L2·)

)}
3) All subgame perfect equilibra.

We are looking for a strategy profile that yields a NE in every subgame. Recall the definition

of subgame: an information set that begins with a single node. The smallest subgame at the

end of the tree in this exercise begins at information set h21.
1 Let me find the NE in this

subgame using the normal form. Note that the strategies played by player 1 will have two

actions.

L3 R3

U2U3 1, 2 1, 2

U2D3 1, 2 1, 2

D2U3 1.5, 4 2, 2

D2D3 0.5, 1 2, 2

This subgame has two NE:

NE = (D2U3, L3)︸ ︷︷ ︸
Eq’m A

, (D2D3, R3)︸ ︷︷ ︸
Eq’m B

This means that any SPNE of the whole game must play one of these two strategy profiles in

the last subgame. I have named the two equilibria, so that we look for the BR of the players

in previuos stages of the game.

Before making our way up on the tree, let me briefly focus on the subgame beggining at

information set h12: when asked to play at this subgame, player 2 will choose L1, yielding a

payoff of (5, 5).

1This is crucial, recall our discussion during the TA class. The smallest subgame does not start at information set

h3, because we do not consider nature as a player per se and each player has two decision nodes in this information

set.
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A. Consider equilibrium A, and let’s see what other players will respond.

- At h22: u2(R
2|eq’m A) = 4 > 3 = u2(L

2|eq’m A). Player 2 will choose R2.

- At h11: u1(U
1|eq’m A) = 5 > 1.5 = u1(D

1|eq’m A). Player 1 will choose U1.

SPNE = (U1D2U3, L1R2L3)

B. Consder equilibrium B, and let’s see what other players will respond.

- At h22: u2(R
2|eq’m B) = 2 < 3 = u2(L

2|eq’m B). Player 2 will choose L2.

- At h11: u1(U
1|eq’m B) = 5 < 7 = u1(D

1|eq’m B). Player 1 will choose D1.

SPNE = (D1D2D3, L1L2R3)

Exercise 2. Backward Induction

There are five pirates with names 1,2,3,4,5. They have just seized a hundred gold coins, and now

it’s time to share the loot. The bargaining rules are: Whoever has the lowest number as a name

must propose an division of the one hundred coins to the remaining pirates. If the majority accepts

the proposal, then the coins are allocated and the game ends. If the majority does not accept, then

the proposer gets thrown overboard and the game is repeated with one less pirate. What should the

first pirate propose?

We will assume that in the case of a tie, the pirate gets thrown overboard. Getting thrown overboard

yields negative utility, and when indifferent pirates will reject an offer. We will proceed by backward

induction. We start at the last subgame of the game.

• Last subgame: There are only P4 and P5 left, as P1, P2, and P3 have been thrown overboard.

P4 is the one to make an offer. Whatever he offers, however, he will be thrown to overboard.

This is because P5 can always refuse, and in the case of a tie P4 gets thrown and P5 gets all

the coins. So refuse is a dominant strategy for P5.

• Second to last subgame: We substitute the last subgame with its equilibrium payoff. P4

knows that if P3’s offer gets refused, he will be thrown. P3, at the same time, wants to

maximize his payoffs and offer P4 the strict minimum for him to accept. Hence, P3 offers 1

coin to P4, 0 to P5 and keeps 99. With this offer, P3 and P4 vote in favour and P5 against.

OffP3 = (·, ·, 99, 1, 0)

• Third to last subgame: There are four pirates left. P2 will anticipate P3’s offer. Hence, he

understands that he will need to lure two pirates to accept his offer. The cheapest ones are

P4 and P5. He therefore proposes 1 gold coin to 5, 2 gold coins to 4 and keeps 97 to himself,

leaving 0 for P3. His proposal is accepted and this ends the game.

OffP2 = (·, 97, 0, 2, 1)
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• First subgame: P1 foresees P2’s proposal. He understands that he needs to get two more

pirates to accept his proposal. He offers 1 gold coin to P3, 2 coins to P5 and keeps 97 to

himself. The pirates will split the money this way and the game will end. The proposal by

P1, which eventually will be the accepted one is:

OffP1 = (97, 0, 1, 0, 2)

Exercise 3: Self-Confirming Equilibrium

Consider a three person centipede game in which player 1 can drop or pass, player 2 can drop or

pass, and player 3 can drop or pass. If player 1 drops, the payoffs are (5,3,5); if player 2 drops the

payoffs are (4,5,4), if player 3 drops the payoffs are (3,4,3) and if player 3 passes the payoffs are

(8,6,8).

What payoffs are possible in Nash equilibrium?

To find all the NE possible payoffs we have to write the normal form representation of this game.

There are two games where P2 and P3 play: in the first one P1 has passed, and in the second one

P1 has dropped. P2 and P3 will decide what to play , but then P1 will decide which of the two

games to play.

Player 1 D1

P3

P2

P3 D3

P2 5,3,5 5,3,5

D2 5,3,5 5,3,5

Player 1 P1

P3

P2

P3 D3

P2 8,6,8 4,5,4

D2 3,4,3 4,5,4

We can hence find the pure strategies NE:

PSNE = {(P1, P2, P3), (D1, D2, D3), (D1, D2, P3), (D1, P2, D3)}

To look for a mixed strategy, let’s first assume σ is a strategy profile that is NE and contains

1 > σ1(P1) > 0, so that the subgame containing P2’s decision is on the equilibrium path. Then P2
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P2

P3

(p) (1− p)
P3 D3

(q) P2 6,8 4,3

(1− q) D2 5,4 5,4

and P3 face the game depicted below.

u2(P2) = 6p+ 4(1− p) = 5p+ 5(1− p) = u2(D2) p = 1/2

u3(P3) = 8q + 4(1− q) = 3q + 4(1− q) = u3(D3) q = 0

There are three NE: {
(P2, P3), (D2, D3),

(
D2,

1

2
P3 +

1

2
D3

)}

Let’s look at these NE from the perspective of P1: if P2 and P3 play (P2, P3), then for P1 playing

P1 with certainty is strictly better off: 8 > 5; if they play (D2, D3) then for P1 playing D1 is a

strictly better: 5 > 4, and the same is for (D2, D3/2 +P3/2). So, there is no strategy profile where

1 fully mixes. In addition, once player 1 plays P1, there is no mixed strategy that is Nash. All the

mixed strategies that could be Nash have D1 played with certainty and thus whatever P2 and P3

do, the payoff profile will always be (5,3,5).

Bottom line: the possible payoffs of the NE of this game are are (8,6,8) and (5,3,5).

What payoffs are possible in sequential equilibrium?

To find the sequential rational equilibrium we use backward induction. Start form the last subgame

where P3 has to choose between D3 and P3. P3 is a strictly dominant strategy and so is the NE of

this subgame. Then replace P3’s node by the payoff profile entailed by this choice: (8,6,8). Now,

take the subgame starting from P2’s decision. P2 is a strictly dominant strategy for P2 and so it is

his choice. Again, we replace the above mentioned subgame by the payoff from P2’s choice. Then,

for P1 P1 is a strictly dominant strategy. (P1, P2, P3) is the only sequential rational equilibrium.

So, the only possible payoff profile is (8,6,8).

Construct a self-confirming equilibrium that is NOT a public randomization over Nash equilibrium.

The history {P1, D2} is not part of the set of NE and hence cannot be obtained via public random-

ization. In other words, there is no way to randomize over NE and have P1 played with certainty

but not P2. Let’s hence consider the strategy profile σ = (P1, P2/2 +D2/2, P3).

In a self-confirming equilibrium, for all the strategies that are played with positive probability,

there exist some beliefs that are true on path and maximize players’ utility given the beliefs.We

therefore need to construct players’ beliefs, and recall that we need a belief for each action played

with positive probability. We can have two types of equilibria depending on the beliefs we create:
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Heterogeneous SCE: create two different beliefs to support the two actions in the support of

P2’s strategy:

• P1 believes that P3 will pass and that P2 will pass only 50% of the time.

µ1[Pr(D2) = 1/2,Pr(D3) = 0] = 1

u1(P1, σ−i) =
1

2
4 +

1

2
8 = 6 > 5 = u1(D1, σ−i)

• P2: we need to construct a belief for each action played with positive probability.

– µP2: believes that P3 will pass. Note that the belief needs to be true on the equilibrium

path.

µP2[Pr(P1) = 1,Pr(P3) = 1] = 1

u2(P2, σ−i) = 6 > 5 = u2(D2, σ−i)

– µD2: for D2 to be a BR, we want to construct a belief off the equilibrium path that

satisfies:

µD2[Pr(P1) = 1,Pr(P3) = 0] = 1

u2(D2, σ−i) = 5 > 4 = u2(P2, D3)

Note that this belief need not be correct, as what P3 plays is off the equilibrium path

and P2 will never realise his mistake.

• P3 will pass. 2

µ3[Pr(P1) = 1,Pr(P2) = 1] = 1

u3(P3, σ−i) = 8 > 3 = u3(D3, σ−i)

Unitary SCE: alternatively, we could assign the same beliefs to both strategies of player 2:

• P1 believes that P3 will pass and that P2 will pass only 50% of the time.

µ1[Pr(D2) = 1/2,Pr(D3) = 0] = 1

u1(P1, σ−i) =
1

2
4 +

1

2
8 = 6 > 5 = u1(D1, σ−i)

• P2: we will assing the same beliefs to both actions of player 2.

µ2[Pr(P1) = 1,Pr(P3) = 1/2] = 1

u2(P2, σ−i) =
1

2
(6 + 4) = 5 = u2(D2, σ−i)

P2 is indifferent, he has no incentive to deviate.

2We DO need to construct beliefs for the player at the last node of the game. This will allow us to eventually

generate equilibria that have player 3 mixing or even dropping all together. Note that, as any NE is a SCE with the

correct beliefs, and we have seen that in some NE P3 drops, we should indeed be able to construct SCE where P3

drops.
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• P3 will pass.

µ3[Pr(P1) = 1,Pr(P2) = 1] = 1

u3(P3, σ−i) = 8 > 3 = u3(D3, σ−i)

Either of these SCE fulfill the conditions: beliefs are correct on path, and agents maximize given

the beliefs.

Exercise 4: Chain Store Game

Consider the following chain store game played between a patient player one (chain store) with

discount factor δ and a sequence of short-run myopic player 2’s (entrants – with discount factor 0)

Inc (P1)

Ent (P2)

Out In

fight 3,0 -2,-2

give in 4,0 2,2

a. What is the Nash equilibrium if the game is played once?

For the incumbent, fight is strictly dominated by give in. Once, you remove fight, out it is

strictly dominated by in.

PSNE = {(G, I)}

b. What is the Stackelberg equilibrium in which player 1 gets to commit if the game is played

once?

The incumbent can commit using pure strategies and mixed strategies.

In pure strategies, if he commits to playing fight, the entrant’s BR is to play out and he gets

a payoff of 3. If, on the other hand, he commits to playing give in, the entrants BR is to play

in and he gets a payoff of 2. He is better off committing to fighting and getting a payoff of 3.

In Stackelberg with mixed strategies, we will use the following tie-breaking rue:

when indifferent, the respondent will take the action that is in the best interest

of the other player. 3

In this case, P1 gets to commit first. He will be the one forcing an indifference condition for

P2’s strategies. Call αF the probability that P1 plays F.

u2(αF , O) = 0 = −2αF + 2(1− αF ) = u2(αF , I) αF = 1/2

3We had a discussion during the TA class about this. The idea is that an equilibrium strategy cannot contain ε,

because one could always choose a smaller ε, say ε/2, which would constitute a profitable deviation and hence break

the equilibrium.
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BR2(αF ) =


O if αF >

1

2

∆{O, I} if αF =
1

2

I if αF <
1

2

Now P1 must choose to which level of αF to commit. The incumbent prefers to induce the

entrant to stay out. Hence, αF ≥ 1/2.

u1(αF , BR2(αF )) = u1(αF , O) = 3αF + 4(1− αF ) = 4− αF

which is strictly decreasing in αF . Hence:

αF = arg max
αF≥0.5

u1(αF , BR2(αF )) = 0.5

Thus, it is optimal for the incumbent to commit to αF = 1/2. At this αF , the entrant will

be indifferent between I and O, which in a Stackelberg equilibrium means he will choose O.

Hence, the best pre-commitment for P1 is αF = 1/2 and he gets a payoff of 3.5.

Stackelberg = {αF = 1/2, O}

Side note: Let’s finish calculating the set of dynamic equilibria in this game.

In a repeated game, Folk’s theorem tells us that the possible payoffs will yield at least the

minmax. Note, however, that Folk’s theorem is not applicable here because it

relates to games where both players are patient, and here we have a SR player.

We will hence focus in worst and best dynamic equilibria.

The worst dynamic equilibria lies between the minmax and the static Nash, which in this

exercise coincide. 4 To find the best-dynamic equilibria, we focus on the SR player’s BR to

the LR player’s strategies, and we choose the best worst in the support. Notice that we have

already derived the BR of the entrant when calculating the mixed Stackelberg: 5

• If the LR player plays αF ∈ [0, 1/2), we have seen that BR2(αF ) = I. The payoffs for

the LR player if the entrant plays I are −2 and 2, the worst being −2.

• If the LR player plays αF ∈ [1/2, 1], the BR2(αF ) = O. The payoffs for the LR player

if the entrant plays O are 3 and 4, the worst being 3.

The best worst in the support is the highest between −2 and 3. Hence, the best dynamic

equilibrium is 3.

The combination of all possible payoffs in this game with a SR and LR player is described by

the line:

2λ+ 3(1− λ) λ ∈ [0, 1]

4To find the minmax, in this case it is enough to focus on pure strategies as there is a strictly dominant strategy.
5Notice how the cutoff point for αF is defined in this BRs. This goes back to the discussion we had in the TA class:

BR and equilibrium are two different notions. It is still a BR for player 2 to play In when alpha = 1/2. However, we

are now explicitly looking for an equilibrium (the best dynamic one), which rules out BRs where BR2(αF = 1/2) = I.
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c. What is the subgame perfect equilibrium if the game is repeated T <∞ times?

{G, I} is the SPE of the game repeated T <∞ as it is the only pure strategy equilibrium of

the stage game.

d. If the game is infinitely repeated, find a δ and strategies for both players such that the long-run

player gets 3.

Note that {F,O} is the only history that guarantees a discounted average payoff of 3.

Consider the following grim trigger strategies:

atI =

F if {F,O} has always been played or t = 1

G otherwise

atE =

O if {F,O} has always been played or t = 1

I otherwise

We apply the single-deviation principle: for each history we write the augmented stage game

and we check that there is no single profitable deviation.

There are two possible histories:

• H1 = {F,O} always.

Remember that the entrant is a short run player who does not care about the future.

In particular, when F is played he has no incentive to deviate. So in this history he has

no profitable deviation.

For the long run player the present value of sticking to F when out is played, is VF = 3
1−δ ,

while the present value of any other strategy profile played is VG = 2
1−δ , as if someone

deviates they end up playing {G, I} forever. So, the augmented game is:

Inc

Ent

Out In

fight 3+δVf ,0 -2+δVf ,-2

give in 4+δVg,0 2+δVg,2

For the entrant there is no profitable deviation from (F,O), while for the incumbent

there is no profitable deviation iff:

3 + δVF ≥ 4 + δVG δ ≥ 1

2

• H2 = at least once {F,O} was not played.

Now consider the second history where {F,O} has not been played at a certain date.

Then whatever players do the strategy profile still dictates to play {G, I}. Let’s depict

the augmented stage game and look at whether there is a profitable deviation from the

strategy profile:

We see that, for the entrant there is no profitable deviation (2 > 0), and neither does

the incumbent as 2 + δVG > −2 + δVG.
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Inc

Ent

Out In

fight 3+δVg,0 -2+δVg,-2

give in 4+δVg,0 2+δVg,2

According to the single deviation principle, for δ ≥ 1
2 players playing {atI , atE} ∀t as

described above is a strategy profile that is a SPNE of the infinitely repeated game.

Exercise 5. Brazil or the U.S.?

A long-lived government faces a short-run representative government employee. The government

must choose whether to honor pensions (H) or not (N). At the beginning of the period, times are

either “good” or “bad.” The probability times are “bad” is 90%. In good times, pensions are always

honored. In bad times they are honored or not depending on the government decision. The employee

is informed and observes (after the fact, at the end of the period) whether or not times are good or

bad. The choice of the employee is to guess whether or not her pension will be honored (H) or (N).

The payoff of the employee is the sum of two parts: 1 if the pension is honored, 0 if it is not; and

1 for guessing right, 0 for guessing wrong. So guessing right when the pension is honored gives 2,

and so forth.

a. Find the extensive and normal forms of the stage-game.

It is always a good idea to start with the extensive form, which will help us in building the

normal forms.

To have the normal form representation, we first write the two games and then mix them

according to their probability of occurrence. The game in good time occurs with 0.1 prob-

ability, while the bad state of the world happens 0.9 probability. So players face a game of

expected outcomes.
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Good (10%) Emp

Gov

GH GN

H 2,2 0,1

N 2,2 0,1

Bad (90%) Emp

Gov

GH GN

H 2,2 0,1

N 3,0 1,1

Gov (1)

Emp (2)

GH GN

H 2,2 0,1

N 2.9,0.2 0.9,1

b. For the long-run player, find the minmax, the static Nash, mixed precommitment and pure

precommitment payoffs.

• Minmax: the minmax is the lowest payoff to which the SR player can hold the LR. Call

αGH the probability that the employee guesses honour.

u1(H,αGH) = 2αGH

u1(N,αGH) = 2.9αGH + 0.9(1− αGH) = 0.9 + 2αGH

min
αGH∈[0,1]

max{2αGH , 0.9 + 2αGH} = min
αGH∈[0,1]

0.9 + 2αGH = 0.9

The minmax payoff is 0.9. 6

• Static Nash: for the government to not honour is a dominant strategy. So, he plays N

so that for the employee then GN is dominant strategy. So the static NE is {N,GN}
and its payoff is for the long-run player is 0.9.

• Pure precommitment: the long-run player can precommit to H or N . If he commits

to H, then the employee’s best response is GH and the government’s payoff is 2. If he

commits to N , the employees BR is GN and the government’s payoff is 0.9. So, the

government’s pure precommitment strategy is H, and the payoff is 2.

• Mixed precomitment: Call αH the probability of the government playing H. The gov-

ernment will set αH to maximize its payoff according to the employee’s BR function.

The employee’s indifference condition is:

2αH + 0.2(1− αH) = αH + 1− αH αH = 4/9

BRE(αH) =


GH if αH > 4

9

∆{GH,GN} if αH = 4
9

GN if αH < 4
9

Here again, we will use the tie-breaking rule. When indifferent, the SR player will choose

the action that benefits the LR player. Note that, as discussed in the TA class, the BR of

the SR player to αH = 4
9 remains ∆{GH,GN}, but we are stating that the equilibrium

will be one where the SR chooses to play GH.

6Note that, in fact, N is a dominant strategy and so the employee cannot induce the government to play anything

else but GN .
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The government is always better off if the employee plays GH (αH ≥ 4/9) and its payoff

function is:

uG

(
αH ≥

4

9
, BRE(αH)

)
= uG

(
αH ≥

4

9
, GH

)
= 2αH + (1−αH) ∗ 2.9 = 2.9− 0.9 ∗αH

This utility is decreasing in αH , so that the government will aim at setting αH = 4/9.

The mixed precommitment strategy equilibrium is {αH = 4/9, GH}, and the long-run

player gets a payoff of 2.9− 0.9 ∗ 4/9 = 2.5.

c. Find the worst equilibrium for the long-run player, and describe in general terms the set of

equilibrium payoffs for the long-run player.

In a repeated game, Folk’s theorem tells us that the possible payoffs will yield at least the

minmax. We can draw the socially feasible and individually rational region to get a graphical

intuition of where the possible payoffs lie.

Note, however, that Folk’s theorem is not applicable here because it relates to

games where both players are patient, and here we have a SR player. We will

hence focus in worst and best dynamic equilibria. 7

The worst possible equilibrium payoff lies between the minmax and the static Nash. In this

example, as both yield the same payoff, the worst equilibrium for the long-run player will be

0.9, coming from the outcome at {N,GN}. To find the best-dynamic equilibria, we focus

on the SR player’s BR to the LR player’s strategies, and we choose the best worst in the

support. Notice that we have already derived the BR of the employee:

• If the LR player plays αH ∈ [0, 4/9), we have seen that BRE(αH) = GN . The payoffs

for the LR player if the employee plays GN are 0 and 0.9, the worst being 0.

• If the LR player plays αH ∈ [4/9, 1], the BRE(αH) = GH. The payoffs for the LR player

if the employee plays GH are 2 and 2.9, the worst being 2.

7Why is the best-dynamic equilibrium payoff below the mixed pre-commitment payoffs? Effectively, what this

means is that a LR player may do better facing a LR opponent than a SR opponent. When faced with a LR opponent,

a LR player can threat with future punishments if the decided strategy is not followed. These threats are meaningless

when facing a SR opponent, and this forces the LR player to make concessions that invalidate the Folk’s theorem.

13



The best worst in the support is the highest between 0 and 2. Hence, the best dynamic

equilibrium is 2.

The combination of all possible payoffs in this game with a SR and LR player is described by

the line:

λ(0.9) + (1− λ)2 λ ∈ [0, 1]

d. How patient must the government be to avoid catastrophe?

Let’s assume that catastrophe is {N,GN}, and the government wants to instead have {H,GH}.
We will look for the δ such that the long-run equilibrium {H,GH} can be sustained.

Define the following grim-trigger strategies:

atG =

H if {H,GH} has always been played or t = 1

N otherwise

atE =

GH if {H,GH} has always been played or t = 1

GN otherwise

The augmented game will depend on the history. Let’s define the continuation payoffs for the

government:

VH =
2

1− δ
VN =

0.9

1− δ
1. H1 = {H,GH} has always been played.

The augmented stage game for the first history is:

Gov

Emp

GH GN

H 2+δVH ,2 0+δVN ,1

N 2.9+δVN ,0.2 0.9+δVN ,1

Note that for the short-run player there is no profitable deviation (2 > 1). For the

long-run player there is no profitable deviation for this history iff:

2 + δVH ≥ 2.9 + δVN 2 + δ
2

1− δ
≥ 2.9 + δ

0.9

1− δ
δ ≥ 0.9

2

2. H2 = {H,GH} was not played at some point.

Whatever players do, the strategy prescribes that in the future both play {GN,N} the

government will always face VN as the present discounted value of the continuation game.

The augmented game is:

The short-run player has no profitable deviation, as 1 > 0.2. There is no δ for the

government such that 0.9 + δVN > 0 + δVN , so he will also stick to the grim-trigger

strategy.
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Gov

Emp

GH GN

H 2+δVN ,2 0+δVN ,1

N 2.9+δVN ,0.2 0.9+δVN ,1

Exercise 6. The Folk Theorem

For each of the following simultaneous move games, find the static Nash equilibria, and give an

accurate sketch of the socially feasible individually rational region.

a. Static Nash: D is dominant strategy, R is dominant strategy, so PSNE = {D,R}.

L R

U 4,3 0,7

D 5,0 1,2

Let’s look for the min max now. For player 1, when player 2 plays L with αL probability. 8

u1(U,αL) = 4αL

u1(D,αL) = 1 + 4αL

min
αL∈[0,1]

max{4αL, 1 + 4αL} = min
αL∈[0,1]

1 + 4αL = 1

For player 2, when player 1 plays U with αU probability.

u2(αU , L) = 3αU

u2(αU , R) = 2 + 5αU

min
αU∈[0,1]

max{3αU , 2 + 5αU} = min
αU∈[0,1]

2 + 5αU = 2

The minmax is for P1 is 1 while for P2 is 2 (payoffs of {D,R}).

b. Static Nash: U is dominant for both 1 and 2, so PSNE = {U,L}.

The minmax for P1 is 5 (he plays U and P2 minimize’s him playing R), and the minmax for

P2 is 5 (he plays L and P1 plays D).

8Because there are strictly dominant strategies, we could restrict our analysis of the min max to pure strategies.
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L R

U 6,6 5,0

D 0,5 0,0

Exercise 7. Equilibrium in a Repeated Game

Consider the simultaneous move stage game. Consider the “grim” strategy of playing U in period

one, playing U as long as both players have played U in the past, and playing D otherwise. For

what discount factors δ do these strategies form a subgame perfect equilibrium?

U D

U 1,1 -1, 100

D 100, 1 0,0

Note the game is symmetric what holds for one player holds also for the other. The grim-trigger

strategy is:

ati =

U if {U,U} has always been played or t = 1

D align
∀i = {1, 2}

Define the continuation payoffs as:

VU =
1

1− δ
VD = 0

• Augmented stage game for the history H1 = {U,U}:

P1

P2

U D

U 1+δVu,1+δVu -1+δVD,100+δVD

D 100+δVD,-1δVD 0+δVD,0+δVD

There is no profitable deviation if:

1 + δ
1

1− δ
≥ 100 δ ≥ 99

100

• Augmented game for the case where H2 = {U,U} has not always been played:

There is no profitable deviation ∀δ.
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P1

P2

U D

U 1+δVD,1+δVD -1+δVD,100+δVD

D 100+δVD,-1+δVD 0+δVD,0+δVD

So the strategies {at1, at2} constitute a SPNE ∀t if δ ≥ 99%.
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