More on Dominance and the Second Price Auction

a single item is to be auctioned.
value to the seller is zero.
Many buyers $i=1, \ldots, N$
value $v_{i}>0$ to buyer i.
each buyer submits a bid b_{i}
the item is sold to the highest bidder at the second highest bid
suppose the bids are $b_{1}, \ldots b_{N}$
suppose that the second highest bid is \hat{b} and that there are M winning bidders
then a winning bidder gets $\frac{v^{i}-\hat{b}}{M}$ all other players get 0

Application of Weak Dominance to Second Price Auction

the strategy of bidding $b_{i}=v_{i}$ weakly dominates all other strategies

Calculate utility. Let \hat{b} be the highest bid by the other players.

Other bid \hat{b}	Your bid b_{i} $v_{i}+x$		$v_{i}-x$
$\hat{b}<v_{i}-x$	$v^{i}-\hat{b}>0$	$v^{i}-\hat{b}>0$	$\nu^{i}-\hat{b}>0$
$\hat{b}=v_{i}-x$	$v^{i}-\hat{b}>0$	$v^{i}-\hat{b}>0$	$\frac{v^{i}-\hat{b}}{M}>0$
$v_{i}>\hat{b}>v_{i}-x$	$v^{i}-\hat{b}>0$	$v^{i}-\hat{b}>0$	0
$\hat{b}=v_{i}$	0	0	0
$v_{i}+x>\hat{b}>v_{i}$	$v^{i}-\hat{b}<0$	0	0
$\hat{b}=v_{i}+x$	$\frac{v^{i}-\hat{b}}{M}<0$	0	0
$v_{i}+x<\hat{b}$	0	0	0

© David K. Levine Source:
Source: DOCS\Annual\98\CLASS\101\DOMINANCE-s.DOC

