Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Risk and Extensive Form Games

Mixed vs. Behavior Strategies

A mixed strategy is a probability distribution over strategies in the normal form

A behavior strategy gives conditional probabilities of acting at information sets

Behavior vs. Mixed Strategy Example

	UU(.08)	UD(.02)	DU(.72)	DD(.18)
u(.3)	1,1	1,1	2,2	2,2
d(.7)	3,3	4,4	3,3	4,4
	(.06)	(.04)	(.74)	(.16)

Pr(U|u)=Pr(UU)+pr(UD)=0.1Pr(U|d)=Pr(UU)+pr(DU)=0.8

For practical purposes mixed and behavior strategies are the same

Add an additional player "Nature" with random moves

Example: Chain Store in declining industry

Decision Analysis

To drill for oil or not to drill for oil? Cost \$100,000.

How much will you pay for a geological survey before drilling?

Value of Oil: \$0 (dry) with probability 50% \$300,000 with probability 50%

The survey has a 10% error rate

No risk aversion

Expected Revenue After the Test

$$pr(dry|+) = \frac{pr(+|dry)pr(dry)}{pr(+)} = \frac{.1 \times .5}{.5} = .1$$

expected revenue given +

.1x0 + .9x300 = 270

expected revenue given -

.1x300 + .9x0 = 30

Dynamic Programming Analysis

drill or survey; survey if 85 - x > 50 or x < 35