Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Expected Utility Theory

Let Ω be a probability space

A gamble is a random variable where the quantity represents "money" or "consumption"

Suppose that x_{1} and x_{2} are "gambles"
Which gamble is prefered?

Von Neumann-Morgerstern Preferences

Gambles are compared using a numeric valued utility function $u: \Re_{+} \rightarrow \Re$
$u(x)$ is the utility from consuming x
x_{1} is at least as good (strictly better than) as x_{2}
$E u\left(x_{1}\right) \geq(>) E u\left(x_{2}\right)$

Expected Utility Theory

Example

$$
u(x)=10-10 / x
$$

Money payoffs for player 1

	H	T
U	5	1
D	4	2

Utility payoffs for player 1

	H	T
U	8	0
D	7.5	5

If H and T have equal probability is it better to choose U or D ?

	Expected money	Expected utility
U	3	4
D	3	6.25

Choose D

Risk Aversion

Would you rather get a gamble x or get the expected value of the gamble Ex for sure? Suppose that the gamble is x^{L} with probability p and x^{H} with probability $1-p$
utility

What happens as p changes?

Risk Loving

- Insurance: auto insurance company charges a premium
- Investment: risky portfolio? Stocks or bonds?
- Gambling

Allais Paradox

Case 1, choose between:

Gamble 1
.33 chance of $\$ 27.5$ billion
.66 chance of $\$ 24.0$ billion
.01 chance of nothing

Gamble 2
$\$ 24.0$ billion for sure

Case 2, choose between:

Gamble 1
.33 chance of $\$ 27.5$ billion
.67 chance of nothing

Gamble 2

.34 chance of $\$ 24.0$ billion
.66 chance of nothing

Case 1

$$
\begin{aligned}
& .33 u(27.5 b)+.66 u(24.0 b)+.01 u(0)-u(24.0 b)= \\
& .33 u(27.5 b)-.34 u(24.0 b)+.01 u(0)
\end{aligned}
$$

Case 1

$.33 u(27.5 b)+.67 u(0)-(.34 u(24 b)+.66 u(0))=$
$.33 u(27.5 b)-.34 u(24 b)+.01 u(0)$

Expected utility predicts the same choice between gambles in the two cases.

