Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Expected Utility Theory

Let $\boldsymbol{\Omega}$ be a probability space

A gamble is a random variable where the quantity represents "money" or "consumption"

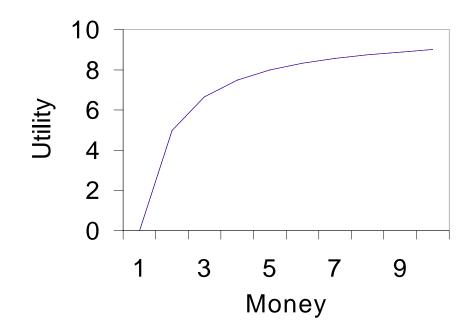
Suppose that x_1 and x_2 are "gambles"

Which gamble is prefered?

Von Neumann-Morgerstern Preferences

Gambles are compared using a numeric valued utility function $u:\mathfrak{R}_{_+}\to\mathfrak{R}$

u(x) is the utility from consuming x


 x_1 is at least as good (strictly better than) as x_2

 $Eu(x_1) \ge (>)Eu(x_2)$

Expected Utility Theory

Example

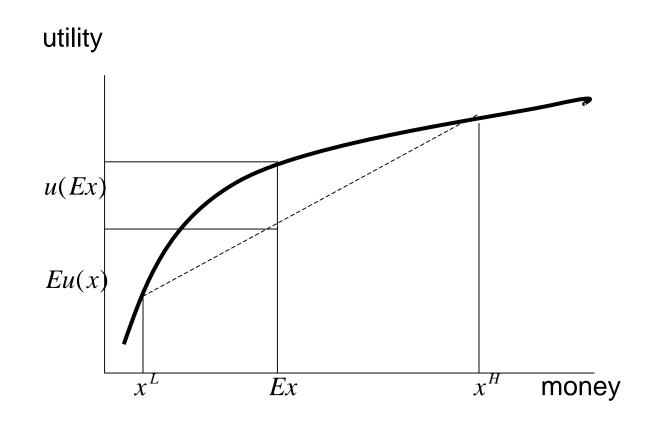
u(x) = 10 - 10 / x

Money payoffs for player 1

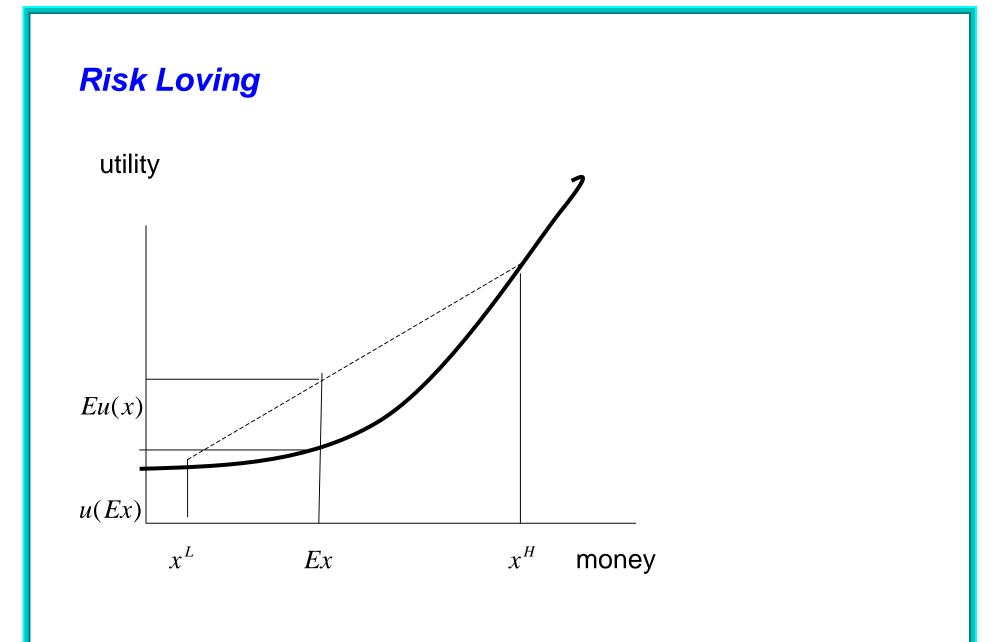
	Н	Т
U	5	1
D	4	2

Utility payoffs for player 1

	Н	Т
U	8	0
D	7.5	5


If H and T have equal probability is it better to choose U or D?

	Expected money	Expected utility
U	3	4
D	3	6.25


Choose D

Risk Aversion

Would you rather get a gamble *x* or get the expected value of the gamble Ex for sure? Suppose that the gamble is x^L with probability *p* and x^H with probability 1-*p*

What happens as *p* changes?

- Insurance: auto insurance company charges a premium
- Investment: risky portfolio? Stocks or bonds?
- Gambling

Allais Paradox

Case 1, choose between:

Gamble 1

- .33 chance of \$27.5 billion
- .66 chance of \$24.0 billion
- .01 chance of nothing

Gamble 2 \$24.0 billion for sure Case 2, choose between:

Gamble 1

.33 chance of \$27.5 billion

.67 chance of nothing

Gamble 2 .34 chance of \$24.0 billion .66 chance of nothing Case 1

.33u(27.5b) + .66u(24.0b) + .01u(0) - u(24.0b) =.33u(27.5b) - .34u(24.0b) + .01u(0)

Case 1

.33u(27.5b)+.67u(0) - (.34u(24b)+.66u(0)) =.33u(27.5b)-.34u(24b)+.01u(0)

Expected utility predicts the same choice between gambles in the two cases.