Final Exam Answers: Economics 101

January 26, 1998 © David K. Levine

1. Normal Form Games (note that a complete answer must include a drawing of the socially feasible sets)

a)		
	L(<i>p</i>)	R(1- <i>p</i>)
U(q)	2*,5*	-1,1
D(1-q)	1,-1	5*,2*

Two pure strategy equilibria as marked. Mixed for player $2 \ 2p - (1-p) = p + 5(1-p)$ so p=6/7; for player $1 \ 5q - (1-q) = q + 2(1-q)$ so q=3/7. Pure strategy equilibria are Pareto Efficient. The mixed equilibrium has payoffs of (11/7,11/7) is not. No weakly dominated strategies. Pure strategy maxmin for both players is 1; pure strategy minmax for both players is 2.

b)	
~,	

	L	R
U	5,5	-1,8*
D	8*,-1	1*,1*

Unique Nash equilibrium (U,L are both strictly dominated). No mixed equilibria due to dominance. Nash equilibrium is not Pareto efficient. Pure maxmin and maxmin is 1 for both players.

c)		
	L	R
U	-1*,3	-3,5*
D	-3,5*	-1*,3

1

No pure strategy equilibrium. Unique Pareto efficient mixed equilibrium where both players mix 50-50. No weakly dominated strategies. Note that the socially feasible set is one-dimensional. Pure strategy maxmin for player 1 is -3, for player 2 is 3; pure strategy minmax for player 1 is -1, for player 2 is 5.

2. Long Run versus Long Run

	L	R
U	3,3	0,5
D	5,0	1,1

Use the grim strategies: U(or L) as long as UL in every past period, otherwise DR (the static Nash equilibrium). In equilibrium you get 3. If you deviate you get at most $(1-\delta)5+\delta 1 \le 3$ or $2 \le 4\delta$, so this is an equilibrium for $\delta \ge 1/2$.

3. Long Run versus Short Run

	L	R
U	2,1*	0,0
D	11*,0	1*,3*

The unique Nash equilibrium is DR; the Stackelberg equilibrium is UL. Strategies for which lead to playing UL are UL if always UL in the past and DR if ever a deviation. Alternatively, players may base their strategies on past play of the LR player only: LR: U if U in the past and D if ever a deviation by LR and SR: L if U in the past and R if ever a deviation of the LR player.

These are optimal for the short-run player because it is in his best-response correspondence. For the long run player it must be that $2 \ge (1-\delta)11 + \delta 1$ or $\delta \ge 9/10$.

4. Screening

Nerd/Dude	$\mathbf{S}(q)$	I(1-q)
SS	5,0*	5,0*
SM	4.9,0.1*	5.2*,0
MS	6.8*,0	4.1,0.9*
ММ	6.7,0.1	4.3,0.9*

No pure equilibria. Observe that if player 1 randomizes with weight .9 on SM and .1 on MS, he gets 5.09 regardless of how player 2 plays. So SS is strictly dominated and will not be played. Next observe that for player 2 to mix, player 1 must put some weight on SM. SM MS. Suppose that 1 is indifferent between and Then 4.9q + 5.2(1-q) = 6.8q + 4.1(1-q). This gives q = 11/30, and the expected utility is 5.09. On the other hand, the expected utility from MM is 5.18. So next we try to make player 1

indifferent between SM and MM. Then 4.9q + 5.2(1-q) = 6.7q + 4.3(1-q), or q = 1/3, with and expected utility of 5.1. In this case the utility from MS is only 5. So we conclude that q = 1/3, and that player 1 is indifferent between SM and MM, and will not play SS or MS. Finally, to make player 2 indifferent, player 1 must choose the probability *p* of MM so that 0.9p=0.1, or p=1/9.

What then is the probability of nerd|mba?

 $p(n|m) = \frac{p(m|n)p(n)}{p(m)}$ The probability of *n* is .9. The probability of *m* is equal to 1/9 (the

probability of MM) plus 8/9x.1 (the probability of SM times probability of dude). The probability of m|n is 1/9, since nerds stay out when SM is played. So

$$p(n|m) = \frac{(1/9).9}{1/9 + .1 \times 8/9} = \frac{.9}{1 + .8} = 1/2$$

5. Price Discrimination

a)

$$(5-p^{H})x^{H} \ge (5-p^{L})x^{L} \text{ or } 5(x^{H}-x^{L}) \ge p^{H}x^{H}-p^{L}x^{L}$$

 $(3-p^{L})x^{L} \ge (3-p^{H})x^{H} \text{ or } 3(x^{H}-x^{L}) \le p^{H}x^{H}-p^{L}x^{L}$

Important observation: these two inequalities can be satisfied only if $x^H \ge x^L$. This in turn shows that $p^H x^H \ge p^L x^L$.

b)

$$(5-p^{H})x^{H} \ge 0 \text{ or } 5 \ge p^{H}$$

$$(3-p^{L})x^{L} \ge 0 \text{ or } 3 \ge p^{L}$$
c)

$$U = 5 \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} 5 \stackrel{L}{\longrightarrow} k$$

 $U = 5p^{H}x^{H} + 5p^{L}x^{L}$

case 1: $x^{H} = x^{L}$; then from a) we see that $p^{H} = p^{L}$, so $U = p^{L}x^{L}$. From b) we see that $p^{L} \le 3$, so utility will be a maximum when $p^{L} = 3$ and $x^{L} = 2$, yielding a utility of 6.

Case 2: Since from a) $x^{H} \ge x^{L}$ the other case is $x^{H} = 2$, $x^{L} = 1$. The constraints are

$$5 \ge 2p^{H} - p^{L}, 2p^{H} - p^{L} \ge 3, 5 \ge p^{H}, 3 \ge p^{L}$$
, utility is $U = p^{H} + 5p^{L}$.
Rewrite constraints $(5 + p^{L})/2 \ge p^{H}, 2p^{H} - 3 \ge p^{L}$ so
 $p^{H} \le \max\{(5 + p^{L})/2, 5\}$
 $p^{L} \le \max\{2p^{H} - 3, 3\}$
Case 1a) $p^{H} = 5$ then from second constraint $p^{L} = 3$, which means that $p^{H} \le 4$ so this

case is not possible.

Case 1b) $p^{H} = (5+p^{L})/2$ then $p^{L} \le (5+p^{L})-3 = p^{L}+2$, which doesn't bind, so $p^{L} = 3$. Then $p^{H} = 4$, which satisfies $p^{H} \le \max\{(5+p^{L})/2,5\}$. Utility is then $U = p^{H} + 5p^{L} = 4 + 15 = 55$

So we should sell at the fixed price of 3 and not try to price discriminate.