Final Exam Answers: Economics 101

January 26, 1998 © David K. Levine

1. Normal Form Games (note that a complete answer must include a drawing of the socially feasible sets)

a)

	$\mathrm{L}(p)$	$\mathrm{R}(1-p)$
$\mathrm{U}(q)$	$2^{*}, 5^{*}$	$-1,1$
$\mathrm{D}(1-q)$	$1,-1$	$5^{*}, 2^{*}$

Two pure strategy equilibria as marked. Mixed for player $22 p-(1-p)=p+5(1-p)$ so $p=6 / 7$; for player $15 q-(1-q)=q+2(1-q)$ so $q=3 / 7$. Pure strategy equilibria are Pareto Efficient. The mixed equilibrium has payoffs of $(11 / 7,11 / 7)$ is not. No weakly dominated strategies. Pure strategy maxmin for both players is 1 ; pure strategy minmax for both players is 2 .
b)

	L	R
U	5,5	$-1,8^{*}$
D	$8^{*},-1$	$1^{*}, 1^{*}$

Unique Nash equilibrium (U, L are both strictly dominated). No mixed equilibria due to dominance. Nash equilibrium is not Pareto efficient. Pure maxmin and maxmin is 1 for both players.
c)

	L	R
U	$-1^{*}, 3$	$-3,5^{*}$
D	$-3,5^{*}$	$-1^{*}, 3$

No pure strategy equilibrium. Unique Pareto efficient mixed equilibrium where both players mix 50-50. No weakly dominated strategies. Note that the socially feasible set is one-dimensional. Pure strategy maxmin for player 1 is -3 , for player 2 is 3 ; pure strategy minmax for player 1 is -1 , for player 2 is 5 .

2. Long Run versus Long Run

	L	R
U	3,3	0,5
D	5,0	1,1

Use the grim strategies: $\mathrm{U}($ or L) as long as UL in every past period, otherwise DR (the static Nash equilibrium). In equilibrium you get 3 . If you deviate you get at most $(1-\delta) 5+\delta 1 \leq 3$ or $2 \leq 4 \delta$, so this is an equilibrium for $\delta \geq 1 / 2$.

3. Long Run versus Short Run

	L	R
U	$2,1^{*}$	0,0
D	$11^{*}, 0$	$1^{*}, 3^{*}$

The unique Nash equilibrium is DR; the Stackelberg equilibrium is UL. Strategies for which lead to playing UL are UL if always UL in the past and DR if ever a deviation. Alternatively, players may base their strategies on past play of the LR player only: LR: U if U in the past and D if ever a deviation by $L R$ and $S R$: L if U in the past and R if ever a deviation of the LR player.

These are optimal for the short-run player because it is in his best-response correspondence. For the long run player it must be that $2 \geq(1-\delta) 11+\delta 1$ or $\delta \geq 9 / 10$.

4. Screening

Nerd/Dude	$\mathrm{S}(q)$	$\mathrm{I}(1-q)$
SS	$5,0^{*}$	$5,0^{*}$
SM	$4.9,0.1^{*}$	$5.2^{*}, 0$
MS	$6.8^{*}, 0$	$4.1,0.9^{*}$
MM	$6.7,0.1$	$4.3,0.9^{*}$

No pure equilibria. Observe that if player 1 randomizes with weight .9 on SM and .1 on MS, he gets 5.09 regardless of how player 2 plays. So SS is strictly dominated and will not be played. Next observe that for player 2 to mix, player 1 must put some weight on SM. Suppose that 1 is indifferent between SM and MS. Then $4.9 q+5.2(1-q)=6.8 q+4.1(1-q)$. This gives $q=11 / 30$, and the expected utility is 5.09. On the other hand, the expected utility from MM is 5.18 . So next we try to make player 1
indifferent between SM and MM. Then $4.9 q+5.2(1-q)=6.7 q+4.3(1-q)$, or $q=1 / 3$, with and expected utility of 5.1 . In this case the utility from MS is only 5 . So we conclude that $q=1 / 3$, and that player 1 is indifferent between SM and MM, and will not play SS or MS. Finally, to make player 2 indifferent, player 1 must choose the probability p of MM so that $0.9 p=0.1$, or $p=1 / 9$.

What then is the probability of nerd|mba?
$p(n \mid m)=\frac{p(m \mid n) p(n)}{p(m)}$ The probability of n is .9 . The probability of m is equal to $1 / 9$ (the probability of MM) plus $8 / 9 x .1$ (the probability of SM times probability of dude). The probability of $\mathrm{m} \mid \mathrm{n}$ is $1 / 9$, since nerds stay out when SM is played. So

$$
p(n \mid m)=\frac{(1 / 9) .9}{1 / 9+.1 \times 8 / 9}=\frac{.9}{1+.8}=1 / 2
$$

5. Price Discrimination

a)

$$
\begin{aligned}
& \left(5-p^{H}\right) x^{H} \geq\left(5-p^{L}\right) x^{L} \text { or } 5\left(x^{H}-x^{L}\right) \geq p^{H} x^{H}-p^{L} x^{L} \\
& \left(3-p^{L}\right) x^{L} \geq\left(3-p^{H}\right) x^{H} \text { or } 3\left(x^{H}-x^{L}\right) \leq p^{H} x^{H}-p^{L} x^{L}
\end{aligned}
$$

Important observation: these two inequalities can be satisfied only if $x^{H} \geq x^{L}$. This in turn shows that $p^{H} x^{H} \geq p^{L} x^{L}$.
b)
$\left(5-p^{H}\right) x^{H} \geq 0$ or $5 \geq p^{H}$
$\left(3-p^{L}\right) x^{L} \geq 0$ or $3 \geq p^{L}$
c)
$U=.5 p^{H} x^{H}+.5 p^{L} x^{L}$
case 1: $x^{H}=x^{L}$; then from a) we see that $p^{H}=p^{L}$, so $U=p^{L} x^{L}$. From b) we see that $p^{L} \leq 3$, so utility will be a maximum when $p^{L}=3$ and $x^{L}=2$, yielding a utility of 6 .

Case 2: Since from a) $x^{H} \geq x^{L}$ the other case is $x^{H}=2, x^{L}=1$. The constraints are
$5 \geq 2 p^{H}-p^{L}, 2 p^{H}-p^{L} \geq 3,5 \geq p^{H}, 3 \geq p^{L}$, utility is $U=p^{H}+.5 p^{L}$.
Rewrite constraints $\left(5+p^{L}\right) / 2 \geq p^{H}, 2 p^{H}-3 \geq p^{L}$ so
$p^{H} \leq \max \left\{\left(5+p^{L}\right) / 2,5\right\}$
$p^{L} \leq \max \left\{2 p^{H}-3,3\right\}$
Case 1a) $p^{H}=5$ then from second constraint $p^{L}=3$, which means that $p^{H} \leq 4$ so this case is not possible.

Case 1b) $p^{H}=\left(5+p^{L}\right) / 2$ then $p^{L} \leq\left(5+p^{L}\right)-3=p^{L}+2$, which doesn't bind, so $p^{L}=3$. Then $p^{H}=4$, which satisfies $p^{H} \leq \max \left\{\left(5+p^{L}\right) / 2,5\right\}$.

Utility is then $U=p^{H}+.5 p^{L}=4+1.5=5.5$
So we should sell at the fixed price of 3 and not try to price discriminate.

