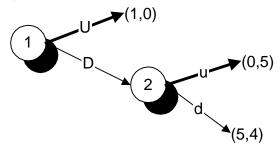
# Midterm Exam Answers: Economics 101

## November 4, 1997 © David K. Levine

## 1. Short Answers

 a)
 L
 R

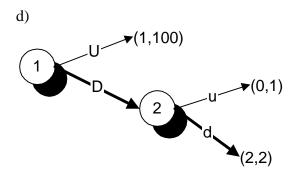

 U
 6\*,3\* (not efficient)
 7,1

 D
 1,2
 8\*,3\* (efficient)

b)

| 0) |                   |                   |
|----|-------------------|-------------------|
|    | L                 | R                 |
| U  | 3,3               | 2*,7* (efficient) |
| D  | 7*,2* (efficient) | 1,1               |

c)




subgame perfect equilibrium (U,u) is not efficient

normal form

|   | u                     | d    |
|---|-----------------------|------|
| U | 1*,0* (not efficient) | 1,0* |
| D | 0,5*                  | 5*,4 |

Note that there is only one Nash equilibrium and it is also subgame perfect



subgame perfect equilibrium of D,d is efficient

normal form

|   | u                   | d                 |
|---|---------------------|-------------------|
| U | 1*,100* (efficient) | 1,100*            |
| D | 0,1                 | 2*,2* (efficient) |

Two Nash equilibria are both efficient, but only the one at D,d is subgame perfect

#### 2. Duopoly

Let Macrosoft be firm 1, and Peach firm 2.

a) In competitive equilibrium only Peach produces; p=MC means 6-x=2 or x=4.

profits for Macrosoft  $\pi_1 = (2 - x_1 - x_2)x_1$ , reaction function for Macrosoft from  $2 - 2x_1 - x_2 = 0$  is  $x_1 = 1 - x_2 / 2$ .

Profits for Peach  $\pi_2 = (4 - x_1 - x_2)x_2$ , reaction function for Peach from  $4 - x_1 - 2x_2 = 0$  is  $x_2 = 2 - x_1 / 2$ 

b) Peach monopoly is  $x_1 = 0$  and  $x_2 = 2$ ; Macrosoft monopoly is  $x_2 = 0$  and  $x_1 = 1$ .

c) Solving the two reaction schedules  $2 - x_1 / 2 = 2 - 2x_1$  $3x_1 / 2 = 0, x_1 = 0$ 

so same as Peach monopoly

d) in Bertrand, Peach has the whole market at a price of 4. Output is 2. Once again, this is the same as a Peach monopoly. Macrosoft produces nothing and has no profits.

e) In Stackelberg with Macrosoft as leader, Macrosoft chooses both  $x_1, x_2$  to maximize profits  $\pi_1 = (2 - x_1 - x_2)x_1$  subject to Peach's reaction function  $x_2 = 2 - x_1/2$  as a constraint. Substitute into profit to find  $\pi_1 = (2 - x_1 - (2 - x_1/2))x_1 = (-x_1/2)x_1$ . Differentiate to find  $-x_1 = 0$ . So even if Macrosoft is the Stackelberg leader, Peach still has the monopoly.

#### 3. How to bid?

|   | 2     | 4      | 6      |
|---|-------|--------|--------|
| 2 | -3,5* | -3*,3  | -3*,1  |
| 4 | -1*,0 | -3*,3* | -3*,1  |
| 6 | -3,0  | -3*,0  | -3*,1* |

Hacker is player 1, Robot player 2

a) two Nash equilibria: both bid 4 or both bid 6

b) both bid 6 is Pareto dominated by both bid 4, which is in turn Pareto dominated by both bid 2, which is not a Nash equilibrium.

c) bidding 2 and bidding 6 for Hacker are both weakly dominated by bidding 4.

| 4 | -1*,0 | -3*,3* | -3*,1 |
|---|-------|--------|-------|

Given this matrix, clearly Robot chooses to bid 4, so using iterated weak dominance we can pin down the equilibrium to both bidding 4.