#### Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

# **The Folk Theorem**

- individual rationality: each players gets at least what they can get when they know the other players strategy
- social feasibility: there is some combination of strategies that gives players the given average present value of utility

## Prisoner's Dilemma

|               | Player 2      |         |
|---------------|---------------|---------|
| Player 1      | don't confess | confess |
| don't confess | 32,32         | 28,35   |
| confess       | 35,28         | 30,30   |







# The Folk Theorem:

the entire socially feasible individually rational set (except possibly the boundaries) are subgame perfect equilibrium for discount factors close enough to one.

• we know two equilibria - the static Nash equilibrium at (30,30) and the grim strategy equilibrium at (32,32)

# **Minmax and Maxmin**

Minmax:

Player 1 knows player 2's strategy and does the best he can Player 2 hurts player 1 as badly as possible

 $\min_{s_2} \max_{s_1} u_1(s_1, s_2)$ 

#### example

|          | Player 2 |      |
|----------|----------|------|
| Player 1 | L        | R    |
| U        | 2,3      | 3*,2 |
| D        | 4*,2     | 1,1  |

\* marks best for player 1

should 2 play L(4) or R(3)? Choose R(3)

Minmax is player 1's individually rational payoff level

Similar analysis for player 2

## Maxmin:

Player 2 knows player 1's strategy and hurts player 1 as badly as possible

Player 1 tries to prevent the loss

```
\max_{s_1} \min_{s_2} u_1(s_1, s_2)
```

## example

|          | Player 2 |      |
|----------|----------|------|
| Player 1 | L        | R    |
| U        | 2*,3     | 3,2  |
| D        | 4,2      | 1*,1 |

\* marks worst for player 1

should 1 play U(2) or D(1)? Choose U(2)

Similar analysis for player 2

notice always  $\max \min \le \min \max$ 

Minmax (and not the maxmin) is player 1's *individually rational* payoff level