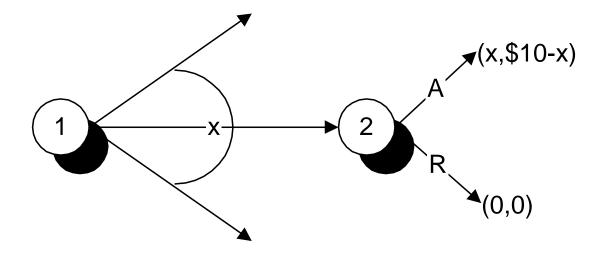

Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

More about Extensive Form Games

Peasant Dictator



Political Economy Applications

- time consistency
- capital taxation
- inflation

Ultimatum Bargaining

extensive form

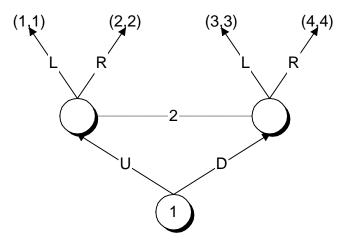
x is the demand by player 1 (in nickles)

subgame perfectionplayer 2 accepts any demand less than \$10

subgame perfection requires player 1 demand at least \$9.95

Roth et al [1991]: ultimatum bargaining in four countries

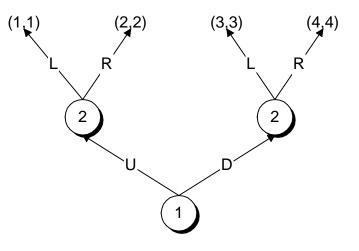
pooled results of the final (of 10) periods of play in the 5 experiments with payoffs normalized to \$10


Demand	Observations	Frequency of Observations	-	Probability of Acceptance
\$5.00	37	28%	37	1.00
\$6.00	67	52%	55	0.82
\$7.00	26	20%	17	0.65

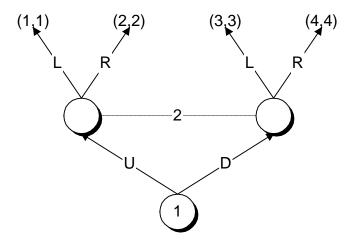
Does subgame perfection fail, or are the preferences wrong?

Information Sets and the Normal Form

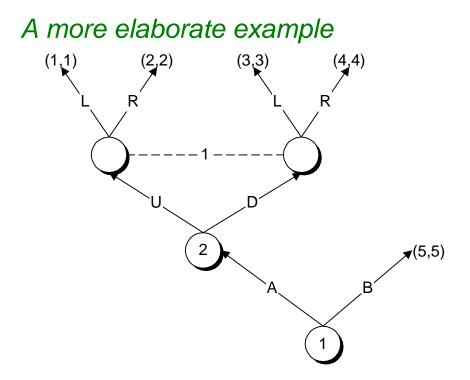
How can we represent a simultaneous move game as an extensive form?


Example: a simple simultaneous move game

- The dashed line represents an *information set*.
- A player knows what information set he is at, but not which node in the information set

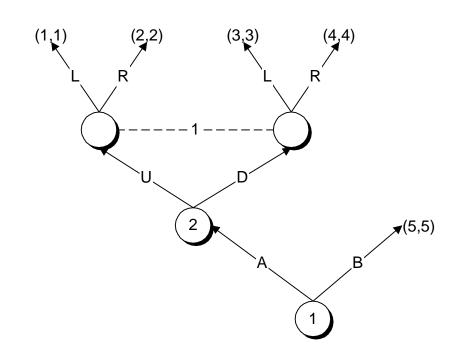

Normal Form Examples

Without an information set


	LL	LR	RL	RR
U	1,1	1,1	2,2	2,2
D	3,3	4,4	3,3	4,4

	L	R
U	1,1	2,2
D	3,3	4,4

- actions constant within an information set
- labeling of actions must be consistent
- what are subgames like with information sets?
- what about uniqueness with information sets?



	U	D
AL	1,1	3,3
AR	2,2	4.4
BL	5,5	5,5
BR	5,5	5,5

- we find Nash equilibrium in the usual way from the normal form
- the strategies BL and BR are *equivalent* in the sense that neither player cares which is used

• the *reduced normal form* collapses equivalent strategies

	U	D
AL	1,1	3,3
AR	2,2	4.4
В	5,5	5,5

- no easy procedure to find subgame perfect
- can easily check a particular Nash equilibrium for subgame perfection

- 1. find subgames; look for nodes which begin a game (not connected to anything else by information sets); this game has a subgame starting with 2's node
- 2. find the normal form of the subgame

	U	D
L	1,1	3,3
R	2,2	4.4

check for Nash equilibrium in the subgame