Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Mixed Strategy Equilibria

Matching Pennies

	H	T
H	$1^{*},-1$	$-1,1^{*}$
T	$-1,1^{*}$	$1^{*},-1$

- This game does not have a Nash equilibrium: each player wants to do the opposite of the other
- Suppose instead of choosing H or T for sure, each player flips a coin to determine what to do

Call H, T pure strategies

A mixed strategy is a probability distribution over pure strategies

Solving the Matching Pennies Game

p_{1} probability that 1 chooses H
p_{2} probability that 2 chooses H
$\mathrm{u}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$
$p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)-\left(1-p_{1}\right) p_{2}-p_{1}\left(1-p_{2}\right)$
$u_{2}\left(p_{1}, p_{2}\right)=$
$-p_{1} p_{2}-\left(1-p_{1}\right)\left(1-p_{2}\right)+\left(1-p_{1}\right) p_{2}+p_{1}\left(1-p_{2}\right)$
reaction function of 1 :
if $p_{2}<1 / 2$ then $p_{1}=0$
if $p_{2}>1 / 2$ then $p_{1}=1$
if $p_{2}=1 / 2$ then indifferent
reaction function of 2 :
if $p_{1}<1 / 2$ then $p_{2}=1$
if $p_{1}>1 / 2$ then $p_{2}=0$
if $p_{1}=1 / 2$ then indifferent
if $p_{1}=p_{2}=1 / 2$ then both players are indifferent
this is a mixed strategy Nash equilibrium

Remarks

- Not easy to give a recipe for finding mixed Nash equilibria
- To mix a player must be indifferent, this is the usual method of solving: find the strategies for player 2 that makes player 1 indifferent and vice versa
- Every finite game has a mixed Nash equilibrium

Coordination Game

	L	R
U	$1^{*}, 1^{*}$	0,0
D	0,0	$1^{*}, 1^{*}$

Two pure equilibria, but also a mixed equilibrium where both players play 50-50.

- Interpretation of mixed equilibrium in terms of uncertainty

Battle of the Sexes

	L	R
U	$2^{*}, 1^{*}$	0,0
D	0,0	$1^{*}, 2^{*}$

Two pure equilibria. Is there a mixed equilibrium?

Player 1's utility from playing $U 2 p_{2}$
Player 1's utility from playing D $1-p_{2}$
Player 1's indifference $2 p_{2}=1-p_{2}$
solve to find $p_{2}=1 / 3$

Similarly we can solve for player 2's indifference and find $p_{1}=2 / 3$

So each player puts more weight on the strategy he likes best

Probability of U, L is $2 / 9$, of D, R is $2 / 9$
Probability of U, R is $4 / 9$, of D, L is $1 / 9$

Kitty Genovese Problem

Description of the problem

Model of the problem
n people all identical
benefit is someone calls the police is x
cost of calling the police is 1
Assumption: $\mathrm{x}>1$
Look for symmetric mixed strategy equilibrium where p is probability of each person calling the police

solution

p is the symmetric equilibrium probability for each player to call the police
each player i must be indifferent between calling the police or not
if i calls the police, gets $x-1$ for sure.
If i doesn't, gets 0 with probability $(1-p)^{n-1}$, gets x with probability $1-(1-p)^{n-1}$
so indifference when
$x-1=x\left(1-(1-p)^{n-1}\right)$
solve for p

$$
p=1-(1 / x)^{1 /(n-1)}
$$

probability police is called

$$
\begin{aligned}
& 1-(1-p)^{n}=1-\left(\frac{1}{x}\right)^{\frac{n}{n-1}} \\
& 1-(1-p)^{n}=1-(1 / x)^{n /(n-1))}
\end{aligned}
$$

$x=10$

probability police are called

