Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Nash Equilibrium and Coordination Games

iterated strict dominance is a powerful argument if it leads to a conclusion

Battle of the Sexes Game

	Opera	Ball Game
Opera	1,2	0,0
Ball Game	0,0	2,1

No strategies are dominated

this is an example of a coordination game

a pure coordination game: meeting in a strange city

	Airport	Train Station
Airport	1,1	0,0
Train Station	0,0	1,1

(also: which side of the street to drive on?)

Nash Equilibrium

Each player plays optimally and correctly guesses what the other player will do

Connection to Best-Response

Connection to dominant strategy equilibrium

	Opera	Ball Game
Opera	1*,2*	0,0
Ball Game	0,0	2*,1*

Battle of the Sexes has two Nash equilibria at 1,2 and 2,1

Focal Points

meeting in a strange city

	Airport	Train Station
Airport	1*,1*	0,0
Train Station	0,0	1*,1*

Pareto Dominance and Coordination

another coordination game

	А	В
A	1*,1*	0,0
В	0,0	2*,2*

Risk Dominance and Coordination

	А	В
A	2*,2*	-10,0
В	0,-10	1*,1*

Why Nash Equilibrium

reasoning versus learning at a Nash equilibrium, there is nothing further to learn

example of the traffic game

Nash Equilibrium and Dominance

- Nash equilibria are contained in the set of strategies that remain after iterated strict dominance
- There can be Nash equilibria where players play weakly dominated strategies

	L	R
U	-1,-1	2*,0*
D	1*,1*	1,1*

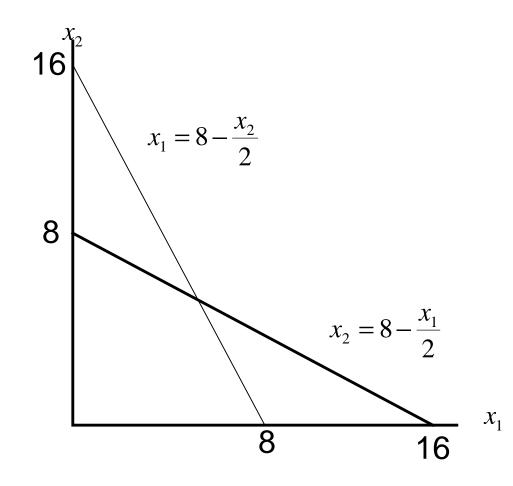
- L is weakly dominated by R, but D,L is a Nash equilibrium
- The second equilibrium at UR makes more sense

Nash Equilibrium and the Reaction Function

Nash equilibrium is where the best response functions cross

Duopoly Again

p = a - bx


a = 17, c = 1, b = 1

so that the competitive solution is 16 units of output and the monopoly solution is 8 units of output

profits $\pi_i = [17 - (x_i + x_{-i})]x_i - x_i$

recall that the best-response function is

$$x_i = 8 - \frac{x_{-i}}{2}$$

$$x = \frac{16}{3}$$