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Repeated Games Step-by-Step

David K. Levine, 5/22/02

A Sample Game

To keep things concrete we will focus on a specific example, the normal form game in

the matrix below:

a b c d

A 3,4 3*,2 -1,5* 0*,1

B 1,3 2,4* 0,3 0*,1

C 4*,0 3*,1 1*,2* 0*,1

D 0,1* 0,1* 0,1* -1,0

The best responses for each player are marked with asterisks.

Static Benchmarks

The place to begin analyzing a repeated game is to ignore the fact that it is repeated, and

focus on what happens when the game is played once. To clearly distinguish this from the

repeated game, we refer to this as the static game. Most of the interesting information

about the static game can be found directly from the best responses.

Nash equilibrium: The static Nash equilibrium is (equivalently – the static Nash

equilibrium strategies are) Cc. The static Nash equilibrium payoff is (1,2).
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Stackelberg equilibrium with player 1 leader:

strategy of 1 best response of 2 payoff to 1

A c -1

B b 2*

C c 1

D a,b,c 0

The Stackelberg strategy is to play B. The Stackelberg payoff is the most that player 1

can get when player 2 plays a best response, that is, 2.

Problem: Show that the Stackelberg payoff to player 2 as the leader is 2.

Note: If there is a tie, such as when player 2 plays b we assume the Stackelberg follower

plays the strategy most favorable to the leader. That is, since 1 is indifferent between A
and C, we assume he plays A since that is better for the leader, player 2.

Minmax for player 1:

strategy of 2 best response of 1 payoff to 1

a C 4

b A,C 3

c C 1

d A,B,C 0*

The minmax payoff to player 1 is the least amount he gets when he plays a best-response,

that is, 0.

Problem: Show that the minmax payoff for player 2 is 1.
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Find the strategies that strictly Pareto dominate the static Nash equilibrium: The static

Nash equilibrium has payoffs (1,2). Strict Pareto dominance means both players must be

better off (no ties). This leaves only Aa payoffs (3,4) and Bb payoff (2,4).

Problem: Show that the only strategy profile (pair of strategies, one for each player) that

Pareto dominates the static Nash equilibrium and is Pareto efficient is Aa.

Types of Repetition

There are many way in which a game can be repeated. It can be repeated a fixed

number of times or an infinite number of times. Payoffs between different periods can be

aggregated by several methods: adding them together, averaging them, taking the present

value, or the average present value. Regardless, the repeated game strategies in which

each player plays their static Nash equilibrium strategy no matter what the circumstances

is always a subgame-perfect equilibrium of the repeated game. In the example, the

strategies player 1 plays C no matter what, and player 2 plays c no matter what are a

subgame perfect equilibrium. Notice that a strategy in a repeated game must not only say

what to play (that is, Cc), but also under what circumstances to play it (in this case,

always).

We will limit attention to two types of repetition. In both cases, the game is

repeated infinitely (no definite ending). In the first case, which we refer to as patient

players, both players use average present value, and a common (the same for both

players) discount factor δ . In the second case, which we refer to as long run versus short-

run player, one player uses average present value with discount factor δ  and the other

discount the future with discount factor 0  – that is, they don’t care about the future at all.

Before examining the actual repetition of the games, we review the notion of

average present value. If a player has a discount factor δ , and receives 1u  in period 1, 2u

in period 2, and so forth, the average present value is defined to be
2

1 2 3(1 )( )u u uδ δ δ− + + � .

The key to computations is the identity

2 11
1

δ δ
δ

+ + + =
−

� .
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For example, suppose that in period 1 in the example, play is Cc, in period 2 again Cc,

and forever Cc. That is, the static Nash equilibrium in every period. Then player 1

receives 1 in period 1, 1 in period 2 and so forth. His average present value is

2 1(1 )(1 1 1 1 ) (1 ) 1
1

δ δ δ δ
δ

− ⋅ + ⋅ + ⋅ + = − =
−

� .

This is basically the point of average present value – if the same fixed utility is received

every period, the average present value is equal to that same amount.

Problem: Show the average present value for player 2 is 2.
Now suppose that in period 1 play is Cc, in period 2 Dd, in period 3 again Dd, in

period 4 Cc, period 5 Cc, and then Cc forever. Then player 1 gets 1 in period 1, 2 in

period 2, 2 in period 3, then 1 in period 4 and after. The average present value is

( ) ( )

2 3 4

2 3 4

(1 )(1 1 2 2 1 1 )

(1 )( 1 1 2 2 1 1 )

δ δ δ δ δ

δ δ δ δ δ

− ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

− ⋅ + ⋅ + ⋅ + ⋅ + ⋅

�

�

The trick do doing computations like this is to rearrange the sum so that the final piece

with the infinite part is a sum of constant utilities (in this case 1). We can then factor out

the discount factor (in this example 3
δ ) and apply our formula.

( ) ( )

( ) ( )

( )

2 3 4

2 3

2 3

2 3

(1 )( 1 1 2 2 1 1 )

(1 )( 1 1 2 2 1 1 )

1(1 )( 1 1 2 2 )
1

(1 )(1 2 2 )

δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ
δ

δ δ δ δ

− ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

− ⋅ + ⋅ + ⋅ + + ⋅ =

− ⋅ + ⋅ + ⋅ + =
−

− + + +

�

�

Patient Players

We deal first with the case of two equally patient players who discount the future

with common discount factor δ  with an infinite number of repetitions.

The Folk Theorem

You are expected to know the Folk Theorem: that when player are equally and

sufficiently patient, all payoffs that are socially feasible and Pareto dominate the minmax

are subgame perfect equilibrium payoffs. A good place to start understanding the
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repeated game, is simply by plotting the socially feasible, individually rational (= Pareto

dominates the minmax) region.

Step 1: plot the payoffs from the matrix

Step 2: find the minmax and plot it

minmax is (0,1) from above, marked in green in the figure
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Step 3: shade in the area bounded by the matrix payoffs and above the minmax

Finding Grim Strategy Equilibria

You are not expected to be able to prove the Folk Theorem, or to be able to

construct equilibrium strategies for arbitrary socially feasible individually rational

payoffs. Given a strategy profile that strictly Pareto dominates the static Nash

equilibrium, you are expected to be able to construct a grim-strategy equilibrium that

sustains that outcome on the equilibrium path. Consider, specifically, in the example Aa,

with payoffs (3,4) which strictly Pareto dominate the static Nash equilibrium at Cc with

Payoff (1,2).

The structure of grim strategies is relatively simple. On the equilibrium path

players “play the way they are supposed to.” That means, they play Aa in the first period,

and continue to play that way as long as “no player has deviated,” that is, as long as they

have seen Aa in every previous period. That means that the equilibrium path is Aa, and

that players get an average present value of (3,4) on the equilibrium path. However, to

prevent “cheating” there must be punishment for “deviation.” With grim strategies, the

punishment is always the static Nash equilibrium, that is, Cc. Specifically, player 1’s

strategy is: play A in period 1. Play A as long as Aa has been seen in every previous

period. Play C if every anything other than Aa has ever occurred.
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Grim strategies present a player with a very stark choice. They can go along with

the program, in which case Aa is always played, and player 1 gets 3 and player 2 gets 4.

Or they can deviate doing the best they can for one period, but recognizing that in every

future period they will fact the static Nash equilibrium payoffs of (1,2). For the grim

strategies to be an equilibrium, the discount factor must be high enough that remaining on

the equilibrium path is better than deviating. Here are the computations involved:

Step 1: Find the average present value on the equilibrium path.

On the equilibrium path players play Aa and get (3,4) each period. The average present

value is just (3,4).

Step 2: Find the best response of each player when his opponent remains on the

equilibrium path
On the equilibrium path Player 2 plays a, so the most that player 1 can get is 4, by

playing C.

Problem: Show that 5 is the most that Player 2 can get when Player 1 remains on the

equilibrium path.

Step 3: Calculate the average present value from deviating.

This is the most a player can get when his opponent remains on the equilibrium path in

the first period, followed by the static Nash equilibrium (the punishment) in the second

and subsequent periods. For player 1 we found in step 2 that he could get 4 for one

period. His static Nash equilibrium payoff is 1, so by deviating he gets gets 4 for one

period, and 1 forever after. The average present value is

( )2 1(1 ) 4 (1 )(4 ) (1 )4
1

δ δ δ δ δ δ δ
δ

− + + + = − + = − +
−

� .

Problem: What is the average present value to deviating for Player 2?

Step 4: Compare the average present value to remaining on the equilibrium path to that

from deviating.
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If player 1 had elected not to cheat, he would have received 3 in every period, for an

average present value of 3. So for the grim strategies to be an equilibrium, it must be that

player 1 gets at least as much from not cheating as from cheating. In other words, we

compare the answer from step 2 with that in step 3.

3 (1 )4δ δ≥ − + .

Rearranging terms a bit, this means that 1/ 3δ ≥ . We refer to 1/ 3  as the critical

discount factor for player 1. The condition for equilibrium is that the discount factor must

exceed the critical value for both players.

Problem: Show that the critical discount factor for player 2 is also 1/ 3 .

Problem: Find the grim-strategies and critical discount factors that support Bb and the

corresponding payoff (2,4).

Long-Run versus Short-Run

Our second case is that of an infinitely repeated game in which one player, the

long-run player, uses average present value with discount factor δ  and the other player,

the short-run player, is completely myopic, that is, discounts the future with discount

factor 0. The crucial difference between this case and the previous one is that the short-

run player behaves relatively passively – simply playing a best-response to whatever the

long-run player is expected to do. This is sometime called rational expectations. Because

the short-run player is always playing a best-response, the best the long-run player can

hope to get in the repeated game is his Stackelberg payoff.

In the long-run versus short-run player case, we focus on what the long-run player

can get. As is always the case in a repeated game, the repeated static Nash equilibrium

played unconditionally is a subgame perfect equilibrium. If the long-run player is player

1, this means that the long-run player gets 1. In addition, if the long-run player is

sufficiently patient, then there is a subgame perfect equilibrium in which he gets his

Stackelberg payoff. In the case of Player 1 in the example, this is 2.

You should be able to find the grim strategies that support the Stackelberg

equilibrium, and to calculate the critical discount factor for the long-run player for which

these grim strategies are an equilibrium. The equilibrium path consists of the long-run
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player playing his Stackelberg strategy (B) and the short-run player playing a best-

response (b). The punishment is the static Nash equilibrium.

The grim strategies should be described as follows: For the long-run player

(Player 1) play the Stackelberg strategy B in the first period and as long as Bb has always

been played in the past. If ever Bb has not been played in the past, play the static Nash

strategy C. For the short-run player (Player 2), play the best-response to the Stackelberg

strategy b in  the first period and as long as Bb has always been played in the past. If ever

Bb has not been played in the past, play the static Nash strategy c.

To find the critical discount factor for the long-run player for which the grim

strategies are an equilibrium:

Step 1: Find the long-run player Stackelberg payoff

For player 1 we calculated above this is 2.

Step 2: Find the long-run player static Nash payoff

For Player 1 we calculated above this is 1.

Step 3: Find the best-response of the long-run player to the short-run player play on the

equilibrium path, and the payoff to the long-run player from that best-response.
The equilibrium path is the Stackleberg equilibrium Bb – that is, the short-run player

plays b on the equilibrium path. The long-run player best-response to b is A  or C, both of

which give him a payoff of 3.

Step 4: Calculate the average present value to the long-run Player from deviating.

This is the amount from step 3 in the first period, and the static Nash payoff from step 3

subsequently. For player 1, it is 3 followed by 1 forever. The average present value

( )2 1(1 ) 3 (1 )(3 ) (1 )3
1

δ δ δ δ δ δ δ
δ

− + + + = − + = − +
−

�

Step 5: For the long-run player compare the average present value to remaining on the
equilibrium path to that from deviating.

2 (1 )3δ δ≥ − +
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From which we easily find the critical discount factor of 1/2δ ≥ .

Problem: Find the grim strategies and critical discount factor that support the

Stackelberg payoff when Player 2 is the long-run player and Player 1 is short-run.
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