Final Exam Answers: Economics 101

December 8, 1997 © David K. Levine

1. Normal Form Games (note that a complete answer must include a drawing of the socially feasible sets)
a)

Two pure strategy equilibria as marked. Mixed for player $22 p=5(1-p)$ so $p=5 / 7$; for player $15 q=2(1-q)$ so $q=2 / 7$. Pure strategy equilibria are Pareto Efficient. The mixed equilibrium is not. No weakly dominated strategies. Pure strategy maxmin is 0 ; pure strategy minmax is 2 ; mixed strategy maxmin for player 1 must satisfy $2 q=5(1-q)$ so $q=5 / 7$ and the maxmin is $2(5 / 7)=10 / 7$.
b)

	L	R
U	$-1^{*}, 1$	$-3,3^{*}$
D	$-3,3^{*}$	$-1^{*}, 1$

No pure strategy equilibrium. Unique pareto efficient mixed equilibrium where both players mix 50-50. No weakly dominated strategies. Note that the socially feasible set is one-dimensional. Pure strategy maxmin for player 1 is -3 , for player 2 is 1 ; pure strategy minmax for player 1 is -1 , for player 2 is 3 . mixed strategy maxmin is achieved by playing 50-50; for player $1-2$ for player $2+2$.
c)

	L	R
U	7,7	$0,8^{*}$
D	$8^{*}, 0$	$1^{*}, 1^{*}$

Unique Nash equilibrium (U, L are strictly dominated). No mixed equilibria. Nash equilibrium is not pareto efficient. Pure and mixed maxmin and maxmin is 1 for both players.

2. Long Run versus Short Run

	L	R
U	$3,1^{*}$	0,0
D	$8^{*}, 0$	$1^{*}, 2^{*}$

The unique Nash equilibrium is DR; the Stackelberg equilibrium is UL. Strategies for which lead to playing UL are UL if always UL in the past and DR if ever a deviation. Alternatively, players may base their strategies on past play of the LR player only: LR: U if U in the past and D if ever a deviation by $L R$ and SR: L if U in the past and R if ever a deviation of the LR player.

These are optimal for the short-run player because it is in his best-response correspondence. For the long run player it must be that $3 \geq(1-\delta) 8+\delta 1$ or $\delta \geq 5 / 7$.

3. Screening

Nerd/Nrm	S	C
SS	$5,0^{*}$	$5,0^{*}$
SM	$4.5,2$	$5.5,3^{*}$
MS	$5.5^{*}, 0.5^{*}$	6,0
MM	$5,2.5$	$6.5^{*}, 3^{*}$

Two pure equilibria: MS and S; MM and C. Note that for the graduate SS and MS are strictly dominated by MS. So we look for the randomization by R that makes graduate indifferent between MS and MM: $5.5 p+6(1-p)=5 p+6.5(1-p)$ or $p=0.25$. Then we look for the randomization between MS and MM that makes R indifferent between S and C. $0.5 q+2.5(1-q)=0 q+3(1-q)$ or $q=0.5$. The corresponding behavior strategy (only Graduate has a difference between behavior and mixed strategy) is get and MBA if nerd
and choose MBA with probability 0.5 if normal. Beliefs of recruiter are then $2 / 3$ nerd, 1/3 normal.

4. Decision Analysis

without the test payoff from banning all athletes $.1 \times 0+.9 \times(-100)=-90$; payoff from allowing all athletes to participate $.1 \times(-50)+.9 \times 10=4$, so allow all to participate and get payoff of 4.

Test positive probability of user by Bayes law

$$
\begin{aligned}
& \operatorname{pr}(\text { user } \mid+)=\frac{.95 \times .1}{.95 \times .1+.1 \times .9}=.51 \operatorname{pr}(+)=.95 \times .1+.1 \times .9=.185 \\
& \operatorname{pr}(\text { user } \mid-)=\frac{.05 \times .1}{.05 \times .1+.9 \times .9}=.006 \operatorname{pr}(-)=.05 \times .1+.9 \times .9=.815
\end{aligned}
$$

payoff to + and ban $.51 \times 0+.49 \times(-100)=-49$; payoff to + and participate $.51 \times(-50)+.49 \times 10-$ $=-20.6$ so ban and get payoff of -20.6
payoff to - and ban is obviously negative
payoff to - and participate is $.006 x(-50)+.994 * 10=9.64$
overall utility if test is used optimally $.185 \times(-20.6)+.815 \times 9.64=4.05$
gain to using test $4.05-4=.05$, so pay up to .05 per athlete.

Erratum: the answer key is wrong. The first mistake is just a typo, it says that the payoff from ban is -49 and from participate is -20.6, so "ban" and get payoff of -20.6 (it should say so " don't ban" and get a payoff of -20.6). The main problem however is that the problem was done rounding the payoffs and probabilities yielding a solution of being willing to pay up to $\$.05$ for the test when if done with "all the decimals" you'd get that you would not pay a cent. Just from intuition the answer should be zero, since having the test is not changing our decisions (we are not banning any way). Enrique Flores

5. Cournot with Uncertain Cost

$$
\begin{aligned}
\pi_{i}\left(x_{i}, c_{i}\right) & =(1 / 3)\left[17-c_{i}-\left(x_{i}+x^{1}\right)\right] x_{i} \\
& +(2 / 3)\left[17-c_{i}-\left(x_{i}+x^{3}\right)\right] x_{i}
\end{aligned}
$$

maximize
$\frac{d \pi_{i}\left(x_{i}, c_{i}\right)}{d x_{i}}=\left[17-c_{i}-\left(2 x_{i}+(1 / 3) x^{1}+(2 / 3) x^{3}\right)\right]=0$
so $2 x_{i}=\left(17-c_{i}-(1 / 3) x^{1}-(2 / 3) x^{3}\right)$
$2 x_{i}=\left(17-c_{i}-(1 / 3) x^{1}-(2 / 3) x^{3}\right)$
$6 x_{i}=\left(51-3 c_{i}-x^{1}-2 x^{3}\right)$
solve each equation individually
$7 x^{1}=48-2 x^{3}$
$8 x^{3}=42-x^{1}$ or $x^{3}=21 / 4-x^{1} / 8$
plug the second into the first
$7 x^{1}=48-2\left(21 / 4-x^{1} / 8\right)=75 / 2+x^{1} / 8$ or $x^{1}=60 / 11$
substitute back to get $x^{3}=201 / 44$
Erratum: the answer key is wrong. $7 x^{1}=48-2\left(21 / 4-x^{1} / 8\right)=75 / 2+x^{1} / 4$ so
$x^{1}=50 / 9$. Substituting back in we get $x^{3}=143 / 36$.

