Midterm Exam Answers: Economics 101

May 8, 1997 © David K. Levine

1. Short Answers

a)		
	L	R
U	2*,3*(efficient)	0,0
D	0,0	1*,2*

b)

	L	R
U	4,3	1,4*
D	5*,0	2*,1*(not efficient)

For each of the extensive form games below, find all of the subgame perfect equilibria

c)

equilibrium (3,2) is efficient

equilibrium of 1,0 is not efficient

2. Duopoly

Let Macrosoft be firm 1, and Peach firm 2.

a) profits for Macrosoft $\pi_1 = (16 - x_1 - x_2)x_1$, reaction function for Macrosoft from $16 - 2x_1 - x_2 = 0$ is $x_1 = 8 - x_2 / 2$.

Profits for Peach $\pi_2 = (14 - x_1 - x_2)x_2$, reaction function for Peach from $14 - x_1 - 2x_2 = 0$ is $x_2 = 7 - x_1/2$

Solving the two reaction schedules $7 - x_1 / 2 = 16 - 2x_1$ $3x_1 / 2 = 9, x_1 = 6$

and solving for $x_2 = 4$, industry output is 10 and price 7

profits are $\pi_1 = 36, \pi_2 = 16$

- b) in Bertrand, Macrosoft has the whole market at a price of 4. Output is 14, and Macrosoft profits are 28. Peach produces nothing and has no profits.
- c) In Stackelberg with Macrosoft as leader, Macrosoft chooses both x₁, x₂ to maximize profits π₁ = (16-x₁-x₂)x₁ subject to Peach's reaction function x₂ = 7-x₁/2 as a constraint. Substitute into profit to find π₁ = (16-x₁-(7-x₁/2))x₁ = (9-x₁/2)x₁. Differentiate to find 9-x₁ = 0. So output by Macrosoft is 9, output by Peach is 2¹/₂, industry output is 11¹/₂, price is 5¹/₂, Macrosoft profit is 40.5 and Peach ouput is 6.25.

3. Cooperation or Competition?

b)c)

	LL	LR	RL	RR
Uu	1,8*	1,8*	1,8*	1,8*
Ud	-1,-1	-1,-1	3,3*	3*,3*
Du	5*,5*	0,0	5*,5*	0,0
Dd	0,0	2*,2*	0,0	2,2*

d) Ud,RR; Du,LL; Du,RL and Dd,LR are the Nash equilibria with corresponding payoffs 3,3; 5,5; 5,5; 2,2 e) Subgame perfection requires 2 to play R in the top game, and this means that 1 cannot play Uu. So Ud,RR and Du,RL are subgame perfect, with corresponding payoffs 3,3 and 5,5.

e) Du,LL; Du,RL both Pareto dominate Ud,RR which pareto dominates Dd,LR.

f) RL weakly dominates LL and RR weakly dominates LR

	RL	RR
Uu	1,8*	1,8*
Ud	3,3*	3*,3*
Du	5*,5*	0,0
Dd	0,0	2,2*

In the reduced game, Ud weakly dominates Uu and Dd

	RL	RR
Ud	3,3*	3*,3*
Du	5*,5*	0,0

In this game, RL weakly dominates RR

	RL
Ud	3,3*
Du	5*,5*

So the unique results of iterated weak dominance is Du,RL with a payoff of 5,5