Midterm Exam Answers: Economics 101

May 8, 1997 © David K. Levine

1. Short Answers

a)

	L	R
U	$2^{*}, 3^{*}$ (efficient)	0,0
D	0,0	$1^{*}, 2^{*}$

b)

	L	R
U	4,3	$1,4^{*}$
D	$5^{*}, 0$	$2^{*}, 1^{*}$ (not efficient)

For each of the extensive form games below, find all of the subgame perfect equilibria
c)

equilibrium $(3,2)$ is efficient
d)

equilibrium of 1,0 is not efficient

2. Duopoly

Let Macrosoft be firm 1, and Peach firm 2.
a) profits for Macrosoft $\pi_{1}=\left(16-x_{1}-x_{2}\right) x_{1}$, reaction function for Macrosoft from $16-2 x_{1}-x_{2}=0$ is $x_{1}=8-x_{2} / 2$.

Profits for Peach $\pi_{2}=\left(14-x_{1}-x_{2}\right) x_{2}$, reaction function for Peach from $14-x_{1}-2 x_{2}=0$ is $x_{2}=7-x_{1} / 2$

Solving the two reaction schedules

$$
\begin{aligned}
& 7-x_{1} / 2=16-2 x_{1} \\
& 3 x_{1} / 2=9, x_{1}=6
\end{aligned}
$$

and solving for $x_{2}=4$, industry output is 10 and price 7
profits are $\pi_{1}=36, \pi_{2}=16$
b) in Bertrand, Macrosoft has the whole market at a price of 4 . Output is 14 , and Macrosoft profits are 28. Peach produces nothing and has no profits.
c) In Stackelberg with Macrosoft as leader, Macrosoft chooses both x_{1}, x_{2} to maximize profits $\pi_{1}=\left(16-x_{1}-x_{2}\right) x_{1}$ subject to Peach's reaction function $x_{2}=7-x_{1} / 2$ as a constraint. Substitute into profit to find $\pi_{1}=\left(16-x_{1}-\left(7-x_{1} / 2\right)\right) x_{1}=\left(9-x_{1} / 2\right) x_{1}$. Differentiate to find $9-x_{1}=0$. So output by Macrosoft is 9 , output by Peach is $21 / 2$, industry output is $11 \frac{1}{2}$, price is $5 \frac{1}{2}$, Macrosoft profit is 40.5 and Peach ouput is 6.25 .

3. Cooperation or Competition?

a)

b)c)

	LL	LR	RL	RR
Uu	$1,8^{*}$	$1,8^{*}$	$1,8^{*}$	$1,8^{*}$
Ud	$-1,-1$	$-1,-1$	$3,3^{*}$	$3^{*}, 3^{*}$
Du	$5^{*}, 5^{*}$	0,0	$5^{*}, 5^{*}$	0,0
Dd	0,0	$2^{*}, 2^{*}$	0,0	$2,2^{*}$

d) Ud,RR; Du,LL; Du,RL and Dd,LR are the Nash equilibria with corresponding payoffs

3,$3 ; 5,5 ; 5,5 ; 2,2$ e) Subgame perfection requires 2 to play R in the top game, and this means that 1 cannot play Uu . So Ud, RR and Du, RL are subgame perfect, with corresponding payoffs 3,3 and 5,5.
e) $\mathrm{Du}, \mathrm{LL} ; \mathrm{Du}, \mathrm{RL}$ both Pareto dominate Ud,RR which pareto dominates Dd,LR.
f) RL weakly dominates LL and RR weakly dominates LR

	RL	RR
Uu	$1,8^{*}$	$1,8^{*}$
Ud	$3,3^{*}$	$3^{*}, 3^{*}$
Du	$5^{*}, 5^{*}$	0,0
Dd	0,0	$2,2^{*}$

In the reduced game, Ud weakly dominates Uu and Dd

	RL	RR
Ud	$3,3^{*}$	$3^{*}, 3^{*}$
Du	$5^{*}, 5^{*}$	0,0

In this game, RL weakly dominates RR

	RL
Ud	$3,3^{*}$
Du	$5^{*}, 5^{*}$

So the unique results of iterated weak dominance is Du, RL with a payoff of 5,5

