Midterm Exam Answers: Economics 101

May 8, 1998 © David K. Levine

1. Short Answers

 a)
 L
 R

 U
 10*,5*(not efficient)
 11,0

 D
 5,3
 12*,5*(efficient)

b)

0)		
	L	R
U	3,1	2*,9*(efficient)
D	7*,-1*(efficient)	1,-3

c)

subgame perfect equilibrium (D,d) is efficient

normal form

	U	D
u	1*,0	0,5*
d	1*,0	5*,4* (efficient)

Note that there is only one Nash equilibrium and it is also subgame perfect

subgame perfect equilibrium of U,u is inefficient

normal form

	u	d
U	2*,-2*	2,-2*
D	1,1*	3*,0

The Nash equilibrium is the same as the subgame perfect equilibrium.

2. Hotelling Duopoly

- a) For given prices p_1, p_2 of the two stores, which location is exactly indifferent between the stores? $-p_1 - x = -p_2 - (1 - x)$ so $x = (p_2 - p_1 + 1)/2$
- b) What is the demand for Marty's groceries? $x = (p_2 p_1 + 1)/2$ For Ginnie's? $1 - x = 1 - (p_2 - p_1 + 1)/2 = (p_1 - p_2 + 1)/2$
- c) What are the Nash equilibrium prices of the price-setting game?

Marty's profit $(p_1 - 2)(p_2 - p_1 + 1)/2$ maximized when $(p_2 - p_1 + 1)/2 - (p_1 - 2)/2 = 0$ or $p_2 - 2p_1 + 3 = 0$

Ginnie's profits $(p_2 - 1)(p_1 - p_2 + 1)/2$ maximized when $(p_1 - p_2 + 1)/2 - (p_2 - 1)/2 = 0$ or $p_1 - 2p_2 + 2 = 0$, or $p_1 = 2p_2 - 2$

Plug in to Marty's FOC and find $p_2 - 2(2p_2 - 2) + 3 = 0$, $p_2 = 7/3$. Plug into Ginnie and find $p_1 = 8/3$.

3. How to get a job?

a) Find the extensive form of this game.

- b) Find normal form of this game. Find all Nash equilibria of this game.
- c) Which of the Nash equilibria are Pareto Efficient and which are not?

	J	N
W,S	-10,0*	-10,0*
W,M	20*,10*(efficient)	-20,0
L,S	10,0*	10*,0*
L,M	5,-10	0,0*

d) Apply the theory of iterated weak dominance to this game.

No dominance for player 2

For player 1, L,M and W,S are strictly dominated by L,S

The reduced game is below

	J	Ν
W,M	20*,10*(efficient)	-20,0
L,S	10,0*	10*,0*

Now J weakly dominates N giving

	J
W,M	20*,10*(efficient)
L,S	10,0*

Finally, W,M strictly dominates L,S, leaving just the efficient Nash equilibrium.