Review Answers From Economics 11

September 30, 1997 © David K. Levine

1. Consumer and Demand Theory

income $\$ 1,000,000$
utility is $\log x^{1}+2 \log x^{2}$
marginal rate of substitution $\frac{\partial u / \partial x^{1}}{\partial u / \partial x^{2}}=\frac{x^{2}}{2 x^{1}}=\frac{p^{1}}{p^{2}}$ or $p^{2} x^{2}=2 p^{1} x^{1}$
budget constraint $p^{1} x^{1}+p^{2} x^{2}=I$
substitute and get $x^{1}=\frac{I}{3 p^{1}}=\frac{1,000,000}{3 p^{1}}$
elasticity of demand for champagne $\frac{p^{1}}{x^{1}} \frac{\partial x^{1}}{\partial p^{1}}=-\frac{p^{1}}{x^{1}} \frac{I}{3} \frac{1}{\left(p^{1}\right)^{2}}=-1$
so a 10% price increase in champagne results in a 10% fall in demand for champagne cross elasticity of demand for champagne $\frac{p^{2}}{x^{1}} \frac{\partial x^{1}}{\partial p^{2}}=\frac{p^{2}}{x^{1}} 0=0$
so a 10% price increase in diamonds does not change the demand for champagne

2. General Equilibrium Theory

Rockstar
demand $x_{R}^{1}=\frac{I}{3 p^{1}} ;$ excess demand $z_{R}^{1}=\frac{1000 p^{1}+100 p^{2}}{3 p^{1}}-1000$
Turkeyfeathers
demand $x_{T}^{1}=\frac{2 I}{3 p^{1}} ;$ excess demand $z_{T}^{1}=\frac{200 p^{1}+40 p^{2}}{3 p^{1}}-100$
aggregate excess demand

$$
z_{R}^{1}+z_{T}^{1}=\frac{1000 p^{1}+100 p^{2}}{3 p^{1}}-1000+\frac{200 p^{1}+40 p^{2}}{3 p^{1}}-100
$$

$$
=\frac{140 p^{2}}{3 p^{1}}-700=0
$$

solve for equilibrium price ratio $\frac{p^{2}}{p^{1}}=15$
plug prices into demand to find equilibrium consumption
$x_{R}^{1}=\frac{1000}{3}+\frac{100}{3} 15=\frac{2500}{3}$
$x_{T}^{1}=\frac{200}{3}+\frac{40}{3} 15=\frac{800}{3}$

3. Lagrange Multipliers

Lagrangean is $\sqrt{x^{1}}+2 \sqrt{x^{2}}+3 \sqrt{x^{3}}-\lambda\left(p^{1} x^{1}+p^{2} x^{2}+p^{3} x^{2}-I\right)$
$\frac{\bar{o} L}{\bar{\partial} x^{i}}=i \frac{1}{2}\left(x^{i}\right)^{-1 / 2}-\lambda p^{i}=0$
solving we get $x^{i}=\frac{i^{2}}{4 \lambda^{2}\left(p^{i}\right)^{2}}$
plugging into the budget constraint we get
$\frac{1}{4 \lambda^{2} p^{1}}+\frac{4}{4 \lambda^{2} p^{2}}+\frac{9}{4 \lambda^{2} p^{3}}=I$
or
$\lambda=\sqrt{\frac{1}{4 I p^{1}}+\frac{4}{4 I p^{2}}+\frac{9}{4 I p^{3}}}$
substituting back in we get the answer
$x^{1}=\frac{1}{4\left(\frac{1}{4 I p^{1}}+\frac{4}{4 I p^{2}}+\frac{9}{4 I p^{3}}\right)\left(p^{1}\right)^{2}}$
as a check observe that this function is homogeneous of degree zero in prices and income: if prices and income both double, demand (a real quantity) does not change.

