Final Exam Answers: Economics 101

April 7, 1997 © David K. Levine

1. Normal Form Games (note that a complete answer must include a drawing of the socially feasible sets)

a)		
	L	R
U	3*,2*	1,0
D	0,1	2*,3*

Two pure strategy equilibria as marked. Mixed for player 23p+1-p=2(1-p) so p=1/4; for player 1 2q+1-q=3(1-q) so q=1/2. Pure strategy equilibria are Pareto Efficient. The mixed equilibrium is not. No weakly dominated strategies.

b)

- /		
	L	R
U	-1,2	2,-1
D	2,-1	-1,2

Unique pareto efficient mixed equilibrium where both players mix 50-50. No weakly dominated strategies. Note that the socially feasible set is one-dimensional.

c)

,		-
	L	R
U	6,6	2,8*
D	8*,2	3*,3*

Unique Nash equilibrium (U,L are strictly dominated). No mixed equilibria. Nash equilibrium is not pareto efficient.

2. Long Run versus Short Run

	L	R
U	2,2*	0,0
D	4*,0	1*,1*

The unique Nash equilibrium is DR; the Stackelberg equilibrium is UL. Strategies for which lead to playing UL are UL if always UL in the past and DR if ever a deviation. Alternatively, players may base their strategies on past play of the LR player only: LR: U if U in the past and D if ever a deviation by LR and SR: L if U in the past and R if ever a deviation of the LR player.

These are optimal for the short-run player because it is in his best-response correspondence. For the long run player it must be that $2 \ge (1-\delta)4 + \delta 1$ or $\delta \ge 2/3$.

3. Screening

S/D (J/C)	HH	HL	LH	LL
CC	1,0*	0,0*	1,0*	0,0*
СЈ	2*,0	3/2*,-1	3/2*,1*	1*,0
JC	0.0	-1/2.1*	-1/21	-1.0
JJ	1,0*	1,0*	0,0*	0,0*

Unique Nash equilibrium: Smart->College, Dumb->Job; low wage to non-college; high wage to college

4. Decision Analysis

C = has cancer

P = test indicates cancer

$$\Pr(C|P) = \frac{\Pr(P|C)\Pr(C)}{\Pr(P|C)\Pr(C) + \Pr(P|\sim C)\Pr(\sim C)} = \frac{.95 \times .2}{.95 \times .2 + .05 \times .8} \approx .83$$

with the operation utility is $.83 \times 0 + .17 \times (-50) = -8.5$

without the operation utility is $.83 \times (-100) + .17 \times (10) = -81.3$

So have the operation

5. Cournot with Uncertain Cost

$$\pi_i(x_i, c_i) = (2/3) [17 - c_i - (x_i + x^1)] x_i$$
$$+ (1/3) [17 - c_i - (x_i + x^3)] x_i$$

maximize

$$\frac{d\pi_i(x_i,c_i)}{dx_i} = \left[17 - c_i - (2x_i + (2/3)x^1 + (1/3)x^3)\right] = 0$$

so
$$2x_i = (17 - c_i - (2/3)x^1 - (1/3)x^3)$$

 $2x_i = (17 - c_i - (2/3)x^1 - (1/3)x^3)$

solve each equation individually

$$8x^{1} = 48 - x^{3}$$

 $7x^{3} = 42 - 2x^{1}$ or $x^{3} = 6 - 2x^{1} / 7$

plug the second into the first

 $8x^{1} = 48 - (6 - 2x^{1} / 7) = 36 + 2x^{1} / 7$ or $x^{1} = 49 / 9$

substitute back to get $x^3 = 40/9$