Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.
Extensive Form Games

Definition of Extensive Form Game

A finite game tree X with nodes $x \in X$

Nodes are partially ordered and have a single root (minimal element)

Terminal nodes are $z \in Z$ (maximal elements)
Players and Information Sets

player 0 is nature

information sets \(h \in H \) are a partition of \(X \setminus Z \)

each node in an information set must have exactly the same number of immediate followers

each information set is associated with a unique player who “has the move” at that information set

\(H_i \subset H \) information sets where \(i \) has the move
More Extensive Form Notation

information sets belonging to nature $h \in H_0$ are singletons

$A(h)$ feasible actions at $h \in H$

each action and node $a \in A(h), x \in h$ is associated with a unique node
that immediately follows x on the tree

each terminal node has a payoff $r_i(z)$ for each player

by convention we designate terminal nodes in the diagram by their payoffs
Example: a simple simultaneous move game
Behavior Strategies

A **pure strategy** is a map from information sets to feasible actions
\[s_i(h_i) \in A(h_i) \]

A **behavior strategy** is a map from information sets to probability distributions over feasible actions
\[\pi_i(h_i) \in P(A(h_i)) \]

Nature’s move is a behavior strategy for Nature and is a fixed part of the description of the game.

We may now define \(u_i(\pi) \)

Normal form are the payoffs \(u_i(s) \) derived from the game tree.
\[(1,1) \quad (2,2) \quad (3,3) \quad (4,4)\]

\[
\begin{array}{c|cc}
 & L & R \\
\hline
U & 1,1 & 2,2 \\
D & 3,3 & 4,4 \\
\end{array}
\]
Kuhn’s Theorem:

every mixed strategy gives rise to a unique behavior strategy

The converse is NOT true
1 plays .5 U
behavior: 2 plays .5L at U; .5L at R
mixed: 2 plays .5(LL),.5(RR)

2 plays .25(LL),.25(RL),.25(LR),.25(RR)

however: if two mixed strategies give rise to the same behavior strategy, they are equivalent, that is they yield the same payoff vector for each opponents profile $u(\sigma_i,s_{-i}) = u(\sigma'_i,s_{-i})$
Subgame Perfection

some games seem to have too many Nash equilibria

Ultimatum Bargaining

player 1 proposes how to divide $10 in pennies
player 2 may accept or reject

Nash: any proposal by player 1 with all poorer proposals rejected and equal or better proposals accepted
Chain Store

<table>
<thead>
<tr>
<th></th>
<th>Out</th>
<th>In</th>
</tr>
</thead>
<tbody>
<tr>
<td>fight</td>
<td>2*,0*</td>
<td>-1,-1</td>
</tr>
<tr>
<td>give in</td>
<td>2,0</td>
<td>1*,1*</td>
</tr>
</tbody>
</table>
Subgame Perfection

A *subgame perfect Nash Equilibrium* is a Nash equilibrium in every subgame

A subgame starts at a singleton information set
Selten Game

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-1,-1</td>
<td>2*,0*</td>
</tr>
<tr>
<td>D</td>
<td>1*,1*</td>
<td>1,1</td>
</tr>
</tbody>
</table>
equilibria:
UR is subgame perfect
D and .5 or more L is Nash but not subgame perfect
Application to Rubinstein Bargaining

the pie division game: there is one unit of pie; player 1 demands p_1

player 2 accepts or rejects

if player 2 rejects one period elapses, then the roles are reversed, with player 2 demanding p_2

common discount factor $0 < \delta < 1$
Nash equilibrium: player 1 gets all pie, rejects all positive demands by player 2; player 2 indifferent and demands nothing

conversely: player 2 gets all the pie

wait 13 periods then split the pie 50-50; if anyone makes a positive offer during this waiting period, reject then revert to the equilibrium where the waiting player gets all the pie

subgame perfection: one player getting all pie is not an equilibrium: if your opponent must wait a period to collect all pie, he will necessarily accept demand of $1 - \delta - \varepsilon$ today, since this give him $\delta + \varepsilon$ in present value, rather than δ the present value of waiting a period
Rubinstein’s Theorem:
there is a unique subgame perfect equilibrium

players always make the same demands, and if they demand no more than the equilibrium level their demands are accepted

to compute the unique equilibrium observe that a player may reject an offer, wait a period, make the equilibrium demand of \(p \) and have it accepted, thus getting \(\delta p \) today; this means the opposing player may demand up to \(1 - \delta p \) and have the demand accepted; the equilibrium condition is

\[
p = 1 - \delta p \quad \text{or} \quad p = \frac{1}{1 + \delta}
\]
notice that the player moving second gets

\[
\frac{\delta}{1+\delta}
\]

and that as \(\delta \to 1 \) the equilibrium converges to a 50-50 split

a problem: if offers are in pennies, subgame perfect equilibrium is not unique

How to prove the equilibrium is unique:
let p be such that any higher demand will be rejected in every equilibrium

let q be such that any lower demand will be accepted in every equilibrium

if you accept p you get $1 - p$ versus at least δq by rejecting, so $1 - \delta q$ or less will be rejected in any equilibrium and $p \leq 1 - \delta q$

if you accept q you get $1 - q$ versus at most δp by rejecting so $(1 - q)/\delta$ will be accepted in any equilibrium and $p \geq (1 - q)/\delta$

moreover $p \geq q$
Trembling Hand Perfection

Selten Game

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-1,-1</td>
<td>2,0</td>
</tr>
<tr>
<td>D</td>
<td>1,1</td>
<td>1,1</td>
</tr>
</tbody>
</table>
subgame perfect equilibria:
UR is subgame perfect
D and .5 or more L is Nash but not subgame perfect

can also solve by weak dominance
or by trembling hand perfection
Example of Trembling Hand not Subgame Perfect

Here \(L_d, D \) is trembling hand perfect but not subgame perfect.
definition of the agent normal form

each information set is treated as a different player, e.g. 1a, 1b if player 1 has two information sets; players 1a and 1b have the same payoffs as player 1

extensive form trembling hand perfection is trembling hand perfection in the agent normal form

what is sequentiality??
Robustness – The Selten Game

genericity in normal form

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-1,-1</td>
<td>2**,0**</td>
</tr>
<tr>
<td>D</td>
<td>1**,1*(±ε)</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Self Confirming Equilibrium

$s_i \in S_i$ pure strategies for i; $\sigma_i \in \Sigma_i$ mixed

H_i information sets for i

$\overline{H}(\sigma)$ reached with positive probability under σ

$\pi_i \in \Pi_i$ behavior strategies

$\hat{\pi}(h_i|\sigma_i)$ map from mixed to behavior strategies

$\hat{\rho}(\pi), \hat{\rho}(\sigma) \equiv \hat{\rho}(\hat{\pi}(\sigma))$ distribution over terminal nodes
μ_i a probability measure on Π_{-i}

$u_i(s_i|\mu_i)$ preferences

$$\Pi_{-i}(\sigma_{-i}|J) \equiv \{ \pi_{-i} | \pi_i(h_i) = \hat{\pi}(h_i|\sigma_i), \forall h_i \in H_{-i} \cap J \}$$
Notions of Equilibrium

Nash equilibrium

a mixed profile σ such that for each $s_i \in \text{supp}(\sigma_i)$ there exist beliefs μ_i such that

- s_i maximizes $u_i(\cdot | \mu_i)$
- $\mu_i (\Pi_{-i} (\sigma_{-i} | H)) = 1$

Unitary Self-Confirming Equilibrium

- $\mu_i (\Pi_{-i} (\sigma_{-i} | \bar{H}(\sigma))) = 1$

(=Nash with two players)
Fudenberg-Kreps Example

![Game Tree]

\[A_1, A_2 \] is self-confirming, but not Nash

any strategy for 3 makes it optimal for either 1 or 2 to play down

but in self-confirming, 1 can believe 3 plays R; 2 that he plays L
Heterogeneous Self-Confirming equilibrium

- \(\mu_i(\Pi_{-i}(\sigma_{-i}|H(s_i, \sigma))) = 1 \)

Can summarize by means of “observation function”

\[
J(s_i, \sigma) = H, H(s_i, \sigma)
\]
Remark: In games with perfect information, the set of heterogeneous self-confirming equilibrium payoffs (and the probability distributions over outcomes) are convex.
Ultimatum Bargaining Results

\[\text{($10.00 - x, x$)} \]

\[(0, 0) \]
Raw US Data for Ultimatum

<table>
<thead>
<tr>
<th>x</th>
<th>Offers</th>
<th>Rejection Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.00</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>$3.25</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>$4.00</td>
<td>7</td>
<td>14%</td>
</tr>
<tr>
<td>$4.25</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>$4.50</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>$4.75</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>$5.00</td>
<td>13</td>
<td>0%</td>
</tr>
</tbody>
</table>

27

US $10.00 stake games, round 10
<table>
<thead>
<tr>
<th>Trials</th>
<th>Rnd</th>
<th>Cntry</th>
<th>Case</th>
<th>Expected Loss</th>
<th>Max Gain</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI 1</td>
<td>PI 2</td>
<td>Both</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>US</td>
<td>H</td>
<td>$0.00</td>
<td>$0.67</td>
<td>$0.34</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>US</td>
<td>U</td>
<td>$1.30</td>
<td>$0.67</td>
<td>$0.99</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>USx3</td>
<td>H</td>
<td>$0.00</td>
<td>$1.28</td>
<td>$0.64</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>USx3</td>
<td>U</td>
<td>$6.45</td>
<td>$1.28</td>
<td>$3.86</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>Yugo</td>
<td>H</td>
<td>$0.00</td>
<td>$0.99</td>
<td>$0.50</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>Yugo</td>
<td>U</td>
<td>$1.57</td>
<td>$0.99</td>
<td>$1.28</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>Jpn</td>
<td>H</td>
<td>$0.00</td>
<td>$0.53</td>
<td>$0.27</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>Jpn</td>
<td>U</td>
<td>$1.85</td>
<td>$0.53</td>
<td>$1.19</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>Isrl</td>
<td>H</td>
<td>$0.00</td>
<td>$0.38</td>
<td>$0.19</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>Isrl</td>
<td>U</td>
<td>$3.16</td>
<td>$0.38</td>
<td>$1.77</td>
</tr>
</tbody>
</table>

WC | H | $5.00 | $10.00 | 50.0% |

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary
Comments on Ultimatum

• every offer by player 1 is a best response to beliefs that all other offers will be rejected so player 1’s heterogeneous losses are always zero.

• big player 1 losses in the unitary case

• player 2 losses all knowing losses from rejected offers; magnitudes indicate that subgame perfection does quite badly

• as in centipede, tripling the stakes increases the size of losses a bit less than proportionally (losses roughly double).
This game has a unique self-confirming equilibrium; in it player 1 with probability 1 plays T_1
Summary of Experimental Results
<table>
<thead>
<tr>
<th>Trials / Rnd</th>
<th>Rnds</th>
<th>Stake</th>
<th>Case</th>
<th>Expected Loss</th>
<th>Max Gain</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pl 1</td>
<td>Pl 2</td>
</tr>
<tr>
<td>29*</td>
<td>6-10</td>
<td>1x</td>
<td>H</td>
<td>$0.00</td>
<td>$0.03</td>
<td>$0.02</td>
</tr>
<tr>
<td>29*</td>
<td>6-10</td>
<td>1x</td>
<td>U</td>
<td>$0.26</td>
<td>$0.17</td>
<td>$0.22</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>1x</td>
<td>H</td>
<td>$0.80</td>
<td>$4.00</td>
<td>20.0%</td>
</tr>
<tr>
<td>29</td>
<td>1-10</td>
<td>1x</td>
<td>H</td>
<td>$0.00</td>
<td>$0.08</td>
<td>$0.04</td>
</tr>
<tr>
<td>10</td>
<td>1-10</td>
<td>4x</td>
<td>H</td>
<td>$0.00</td>
<td>$0.28</td>
<td>$0.14</td>
</tr>
</tbody>
</table>
Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary
*The data on which from which this case is computed is reported above.
Comments on Experimental Results

• heterogeneous loss per player is small; because payoffs are doubling in each stage, equilibrium is very sensitive to a small number of player 2’s giving money away at the end of the game.
 • unknowing losses far greater than knowing losses
 • quadrupling the stakes very nearly causes ε to quadruple
 • theory has substantial predictive power: see WC
 • losses conditional on reaching the final stage are quite large--inconsistent with subgame perfection. McKelvey and Palfrey estimated an incomplete information model where some “types” of player 2 liked to pass in the final stage. This cannot explain many players dropping out early so their estimated model fits poorly.