E201B: Final Exam—Suggested Answers

David Rahman, UCLA^{*,†}

Winter, 2003

Sequential Equilibrium and Signalling

We have the following game in extensive form.

We are given the following parametric restrictions: y > x > 0, 1 > x, and a > 0.

(a) For what parameter values is there a sequential equilibrium where both types play P?

For both incarnations of player 1 to play P, player 2 must play N for sure, otherwise player 1_I would want to play H. For player 2 to rationally play N he must believe that $\beta = P(I|H)$ is sufficiently low and $b \leq 0$, otherwise N is strictly dominated. Any β is consistent, and, since player 2's information set is off the equilibrium path, N is immediately sequentially rational.

^{*}Please send any comments to dmr@ucla.edu.

[†]Copyright (C) 2003, David Rahman. This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://www.dklevine.com/general/gpl.html; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Therefore, the necessary conditions are $b \leq 0$.

(b) For what parameter values is there a separating equilibrium?

If player 2 plays N, then there is no separating equilibrium, since both incarnations of player 1 will prefer to play P. If player 2 plays E, then there is a separating equilibrium only if $y \ge 1$, so that the dumb player 1, i.e., 1_D , prefers to play P whereas the intelligent player 1, i.e., 1_I , prefers to play H.

Profit Sharing

There are two states of the book's publication: it'll either be a best-seller (B) or a failure (F). The author may either work (W) or shirk (S). The probability of a best-seller depends on the author's effort. Let

$$P(B|W) = H, \qquad P(B|S) = L$$

denote the probability of success given W and S, respectively, where 1 > H > L > 0. The author's utility function for cash c is given by $\ln(1 + c)$; the cost of effort is C > 0.

If the book becomes a best-seller then it'll yield a revenue of y > 0, otherwise it'll yield no revenue at all. In case it's optimal to induce high effort, the (risk neutral) publisher's optimization problem is the following.

$$\max_{\theta \in [0,1]} \left\{ (1-\theta)yH : H\ln(1+\theta y) - C \ge L\ln(1+\theta y) \right\}$$

The Lagrangian for this problem is

$$L = (1 - \theta)yH + \lambda \left[(H - L) \ln(1 + \theta y) - C \right].$$

First-order conditions yield, assuming an interior solution (i.e., $0 < \theta < 1$),

$$\frac{\partial L}{\partial \theta} = -yH + \lambda y \frac{H - L}{1 + \theta y} = 0,$$

which implies that

$$\theta = \frac{1}{y} \left[\lambda \frac{H - L}{H} - 1 \right].$$

Therefore, $\lambda > 0$, otherwise θ would necessarily be negative, which is impossible. Since $\lambda > 0$, the incentive constraint must hold with equality, i.e.,

$$(H-L)\ln(1+\theta y) = C.$$

Rearranging, we obtain that

$$\theta = \frac{1}{y} \left[e^{\frac{C}{H-L}} - 1 \right].$$

Using the two expressions for θ we obtain the following value for λ :

$$\lambda = \frac{H}{H - L} e^{\frac{C}{H - L}}.$$

In general (i.e., including corner solutions as well as the possibility that inducing high effort is not optimal), the publisher's optimum θ is

$$\min\left\{1, \max\left\{0, \frac{1}{y}\left[e^{\frac{C}{H-L}} - 1\right]\right\}\right\}.$$

Long Run versus Short Run

Consider the following two-player game.

	L	M	R	S
U	1, 1	5, 4	1, 5	0 ,0
D	3 , 5	6 ,4	2 , 1	0 , 0

There is one pure NE: (D, L). To find mixed NE, notice that S is strictly dominated, so it won't be played by player 2 in any mixed NE. But then, not only does player 1 have no reason to play U, but also player 1 strictly prefers to play D over U, so there is no mixed Nash equilibrium.

The minmax payoff for player 1 is clearly 0, implemented by player 2 playing S. If player 1 commits to playing U and player 2 best-responds, player 1's payoff will be 1, whereas if player 1 commits to playing D then his payoff will be 3. Hence 3 is player 1's pure Stackelberg precommitment payoff.

For the mixed Stackelberg payoff, let p be the probability with which player 1 plays U. If player 1 commits to the mixed strategy p < 1/4 then player 2 will play L, so player 1 will get an expected payoff of p + 3(1 - p). If player 1 commits to playing p > 3/4 then player 2 will play R, so player 1's payoff will be p + 2(1 - p). Finally, if player 1 plays $1/4 \le p \le 3/4$ then player 2 will optimally play M, so that player 1's payoff will be 5p + 6(1 - p). The highest this could possibly be is when p = 1/4, so that the mixed Stackelberg payoff to player 1 is 5/4 + 6(3/4) = 23/4.

The best dynamic equilibrium payoff for player 1, denoted \bar{v}_1 , is given by

$$\bar{v}_1 = \max_{(\alpha_1, \alpha_2)} \left\{ \min_{a_1} \left\{ u_1(a_1, \alpha_2) : \alpha_1(a_1) > 0 \right\} : \alpha_2 \in BR_2(\alpha_1) \right\}.$$

If player 1 mixes with probability p such that 1/4 then player 2 will play <math>M whose "worst in support" is 5; this being the best "worst-in-support," it follows that $\bar{v}_1 = 5$.

With Nash threats, the values of $\delta < 1$ that support such payoff are given by

$$5 \ge 6(1-\delta) + 3\delta \qquad \Rightarrow \qquad \delta \ge 1/3.$$

Strategies that support this equilibrium payoff are (I'm assuming that a public randomization device exists):

Device The public randomization device consists of a bent coin (so the state space is $\Omega = \{H, T\}$, with H being heads and T tails) with the following probabilities:

$$P(H) = \frac{1-\delta}{2\delta}, \qquad P(T) = 1 - P(H) = \frac{3\delta - 1}{2\delta}$$

Player 1 1. Start playing the mixed strategy $\frac{1}{2}[U] + \frac{1}{2}[D]$.

- 2. If it turns out you played U, then go back to step 1.
- 3. If it turns out you played D, then use the public randomization device to play $\frac{1}{2}[U] + \frac{1}{2}[D]$ again if H and play D if T.
- 4. If there ever was a deviation from these strategies or if (D, L) was ever played, then play D forever after, otherwise go back to step 1.
- **Player 2** 1. Start playing the pure strategy *M*.
 - 2. If it turns out that player 1 played U, then go back to step 1.
 - 3. If it turns out that player 1 played D, then use the public randomization device to play M if H and L if T.
 - 4. If there ever was a deviation from these strategies or if (D, L) was ever played, then play L forever after, otherwise go back to step 1.

Notice that if (and only if) $\delta \geq 1/3$ then the numbers P(H) and P(T) are probabilities, i.e., $0 \leq P(H) \leq 1$. It remains to show first that the payoff to player 1 from this strategy profile, call it v_1 , is actually equal to \bar{v}_1 , and that such strategies are equilibrium strategies. To find v_1 , notice that, if both players play according to the strategies above, then v_1 must satisfy

$$v_1 = \frac{1}{2}[(1-\delta)5 + \delta v_1] + \frac{1}{2}[(1-\delta)6 + \delta(3P(H) + v_1P(T))],$$

where the first term, $\frac{1}{2}[(1-\delta)5+\delta v_1]$, represents the lifetime payoff to player 1 if it turns out that he played U in the first period, and the second term, $\frac{1}{2}[(1-\delta)6+\delta(3P(H)+v_1P(T))]$, represents the payoff to player 1 if it turns out that he played D in the first period. Rearranging, we get (you guessed it) what we wanted, namely that

$$v_1 = \frac{11(1-\delta) + 3\delta P(H)}{2 - \delta(1+P(T))} = \frac{(1-\delta)(11+3/2)}{2 - (5\delta - 1)/2} = \frac{(1-\delta)25/2}{5/2 - 5\delta/2} = 5.$$

To show that this constitutes a dynamic equilibrium, notice that player 2 is always bestresponding to player 1, so he has no incentive to deviate. As far as player 1 is concerned there are to phases of play: either his opponent is meant to play M or he's meant to play L. If player 2 is meant to play M, then player 1's (dynamic) payoff if playing U is 5 (since $(1-\delta)5 + \delta v_1 = (1-\delta)5 + \delta 5 = 5$) and his dynamic payoff if playing U is 5, too, since

$$(1-\delta)6 + \delta(3P(H) + v_1P(T)) = (1-\delta)6 + \delta\left[3\frac{1-\delta}{2\delta} + 5\frac{3\delta-1}{2\delta}\right] = 5.$$

Therefore, player 1 has no incentive to deviate on the equilibrium path. The last thing we need to check is that player 1 doesn't want to deviate from the proposed strategies when player 2 is meant to play L. But since player 1 is meant to play D, this is just the static Nash equilibrium forever after, so trivially there's no incentive to deviate.

Remark Let me mention that the strategies above are special in the following way. First, we calculated the values of δ for which the best dynamic equilibrium payoff was sustainable and then we designed the strategies. But equivalently, we could have begun with the strategies and asked, for what values of δ would the strategies be well-defined? I.e., for what values of δ is it the case that $0 \leq P(H) \leq 1$? Indeed, we obtain that $\delta \geq 1/3$. This two-way street is a general principle. (See Fudenberg, Levine, and Maskin, 1989.) The trick in concocting the strategies was to choose P(H) such that the dynamic payoff to player 1 is the same regardless of the pure strategy played amongst the strategies with positive probability.

Now let's find the worst dynamic equilibrium payoff for player 1, call it \underline{v}_1 . This is given by the "constrained minmax," i.e.,

$$\underline{v}_1 = \min_{(\alpha_1, \alpha_2)} \left\{ \max_{b_1} \left\{ u_1(b_1, \alpha_2) \right\} : \alpha_2 \in BR_2(\alpha_1) \right\}.$$

For this game, it is clear that $\underline{v}_1 = 2$. This is because the constraint restricts player 2 not to play S, leading to the worst possible best response for player 1 being 2.

To find the critical value of $\delta < 1$ above which (yes, above which) \underline{v}_1 is attainable as a dynamic equilibrium payoff for player 1, note that by definition of \underline{v}_1 , it must satisfy the following condition:

$$\underline{v}_1 = 1(1-\delta) + w_1(U)\delta, \qquad w_1(U) \le 3;$$

the first equation follows because we cannot possibly have (D, R) being played, since R is not a best response to D and player 2 *must* play a static best response by virtue of being myopic. It follows that, for it to be possible that player 1 gets a lifetime utility of 2, player 1 must play U (and player 2 must play R) for some time. The second expression is the "Nash threats" condition. Plugging the second expression into the first one, we obtain

$$\underline{v}_1 = 1(1-\delta) + w(U)\delta \leq 1(1-\delta) + 3\delta \leq 1+2\delta,$$

which after substituting for $\underline{v}_1 = 2$ and rearranging to bound δ yields

$$\delta \ge \frac{\underline{v}_1 - 1}{2} = \frac{1}{2}.$$

For strategies that implement such a payoff assuming $(\delta \ge 1/2)$, consider the following. Note that the same remark applies as for the calculation of the critical δ associated with \bar{v}_1 .

Device The public randomization device consists of a bent coin (so the state space is $\Omega = \{H, T\}$, with H being heads and T tails) with the following probabilities:

$$P(H) = \frac{2\delta - 1}{\delta}, \qquad P(T) = 1 - P(H) = \frac{1 - \delta}{\delta}$$

Player 1 1. Start playing the pure strategy U.

- 2. If there were no deviations by any player so far, then use the public randomization device to go back to step 1 if H and play D forever after if T.
- 3. If there ever was a deviation from these strategies then go back to step 1.
- **Player 2** 1. Start playing the mixed strategy *R*.
 - 2. If there were no deviations by any player so far, then use the public randomization device to go back to step 1 if H and L forever after if T.
 - 3. If there ever was a deviation from these strategies then go back to step 1.

Now we need to show that player 1 gets 2 utils from this profile and that it's an equilibrium. Indeed, player 1's payoff from this profile, call it v_1 , is given by

$$v_1 = 1(1 - \delta) + \delta [v_1 P(H) + 3P(T)],$$

which, after solving for v_1 , it turns out that

$$v_1 = \frac{(1-\delta) + 3\delta P(T)}{1-\delta P(H)} = \frac{(1-\delta) + 3(1-\delta)}{1-(2\delta-1)} = \frac{4(1-\delta)}{2(1-\delta)} = 2,$$

as required. To show that this is a dynamic equilibrium, notice first of all that player 2 is always best-responding, so he has no incentive to deviate. For player 1, clearly he won't deviate at the phase where players play the static Nash (D, L). I claim that player 1 won't deviate when he's meant to play U. Indeed,

$$2 \ge (1 - \delta)2 + \delta v_1 = 2,$$

where the left-hand side is the payoff from playing the prescribed strategy and the right-hand side is the best payoff associated with a deviation. (I.e., playing D instead of U in the current period and then reverting to the original strategies for the subsequent periods. That this is without loss of generality is known as the *one-shot deviation principle*, see Fudenberg and Tirole or Myerson (page 319, Theorem 7.1 and subsequent discussion.) We're done, as there's no other opportunity for player 1 to deviate. The key point in all this was that player 1 is punished by *delaying* the reversion to the static Nash.