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Risk Aversion

We have the utility function u(c) = −e−c. The coefficients of absolute risk aversion, A(c), and
relative risk aversion, R(c) are obtained from the following formulae:

A(c) = −u′′(c)
u′(c)

, R(c) = −u′′(c)c
u′(c)

. (1)

For this particular choice of utility, the coefficients are:

A(c) = −−e−c

e−c
= 1, R(c) = −−e−cc

e−c
= c. (2)

Taking derivatives, it follows that A′(c) = 0, showing that absolute risk aversion is constant,
and that R′(c) = 1, showing that relative risk aversion is increasing.
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at http://www.dklevine.com/general/gpl.html; the GPL is published by the Free Software Foundation at
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Nash Equilibrium

We are asked to consider the following game. (Bold-face numbers denote best responses.)

H G
H 0,0 2,1
G 1,2 0,0

There are two pure-strategy Nash equilibria to this game: (H,G) and (G, H), with respective
payoffs (2, 1) and (1, 2). Neither of these Nash equilibria is symmetric. There is also a mixed-
strategy Nash equilibrium. It can be computed as follows. Assuming that both players are
mixing between H and G, it follows that they must each be indifferent between either strategy.
Hence, if player II’s probability of playing H is β, then

Eβ[uI(H)] = Eβ[uI(G)] ⇒ 0β + 2(1− β) = β + 0(1− β) ⇒ β = 2/3. (3)

By symmetry of the payoff bimatrix, it follows that α, player I’s probability of playing H,
is also 2/3. Hence, the mixed-strategy Nash equilibrium (2[H]/3 + [G]/3, 2[H]/3 + [G]/3) is
symmetric. The vector of payoffs associated with this equilibrium is (2/3, 2/3).

The following correlated strategy (call it µ) is a symmetric correlated equilibrium that Pareto-
dominates the symmetric Nash.

H G
H 0 1/2
G 1/2 0

Clearly this is symmetric. The vector of payoffs associated with this strategy is (1.5, 1.5), which
clearly Pareto-dominates the symmetric Nash payoffs. To show that µ is indeed a correlated
equilibrium, first notice that—by symmetry—if the incentive constraints are satisfied for player
I then they are also satisfied for player II, so it suffices to check the constraints for player I only.
If the mediator recommends player I to play H then player I will obey the recommendation if

Eµ[uI(H)|H] ≥ Eµ[uI(G)|H]. (4)

If the mediator recommends player I to play H, then player I knows that the mediator must
have recommended player II to play G, i.e., player I’s posterior probability over his opponent’s
actions given H is that G will be played with probability 1. Hence, Eµ[uI(H)|H] = 2, which
is clearly greater than 0 = Eµ[uI(G)|H].

If the mediator recommends player I to play G then player I will obey the recommendation if

Eµ[uI(G)|G] ≥ Eµ[uI(H)|G]. (5)

If the mediator recommends player I to play G, then player I knows that the mediator must
have recommended player II to play H, i.e., player I’s posterior probability over his opponent’s
actions given G is that H will be played with probability 1. Hence, Eµ[uI(G)|G] = 1, which
is clearly greater than 0 = Eµ[uI(H)|G]. It now follows that µ is a correlated equilibrium.
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Trembling Hand Perfection

Definition 1 A strategy profile σ is trembling hand perfect if there exists a sequence of
strategy profiles {σn} with σn → σ such that σn

i (ai) > 0 for every ai ∈ Ai and σi(ai) > 0
implies that ai ∈ Bi(σn

−i), where Bi(·) is player i’s best-response correspondence.

Claim 2 Every trembling hand perfect equilibrium is a Nash equilibrium.

Proof —Let σ be a trembling hand perfect equilibrium. Then there is a sequence {σn} that
satisfies the conditions of Definition 1. Fix any player i, and fix any action ai ∈ Ai such that
σi(ai) > 0. By hypothesis,

ui(ai, σ
n
−i) ≥ ui(bi, σ

n
−i), ∀bi ∈ Ai. (6)

Since ui is continuous, σn
−i → σ−i implies that ui(·, σn

−i) → ui(·, σ−i). Therefore, taking limits
on each side of (6), we may conclude that

ui(ai, σ−i) ≥ ui(bi, σ−i), ∀bi ∈ Ai. (7)

Notice finally that this condition applies to any action ai with σi(ai) > 0. Therefore for any
two ai and a′i such that σi(ai) > 0 and σ(a′i) > 0, we must have both ui(ai, σ−i) ≥ ui(a′i, σ−i)
and ui(a′i, σ−i) ≥ ui(ai, σ−i), so ui(ai, σ−i) = ui(a′i, σ−i). This, together with (7), implies that
σ be a Nash equilibrium.

Subgame Perfection

To find a subgame perfect equilibrium we must show that it’s Nash in every subgame. We
will find it by backward induction. In the subgame below, there is only one Nash: (U,L).

L R
U 6,6 3, 0
D 0, 0 2,2

This is apparent from the fact that D is strictly dominated by U .

Proceeding up the game tree, player I has the option of ending the game (playing E) or
participating in the subgame above (playing P ). Payoffs for each player assuming that the
unique Nash equilibrium will be played in the subgame above are as follows.

E 4, 4
P 6, 6

Therefore the unique subgame perfect equilibrium is ((P,U), L).
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The strategic-form representation of this game looks like this.

L R
(P,U) 6,6 3, 0
(P,D) 0, 0 2,2
(E,U) 4,4 4,4
(E,D) 4,4 4,4

Applying iterated weak dominance, we eliminate (P,D) since it’s strictly dominated by (P,U).
But then R is weakly dominated by L, and finally, restricted to L, (P,U) dominates the rest
of player I’s remaining strategies, leaving only one profile surviving, ((P,U), L). This is the
subgame perfect equilibrium profile.
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