Carlsson and van Damme

	Invest	NotInvest
Invest	$_{ heta, heta}$	θ -1,0
NotInvest	0,θ-1	0,0

Three cases

- . $\theta \! > \! 1$ dominant strategy to invest
- . $\theta\!\in\![0,\!1]$ two pure equilibria coordination problem
- . $\theta\!<\!1$ dominant strategy not to invest

incomplete information about $\boldsymbol{\theta}$

each player observes a noisy signal $x_i = \theta + \sigma \varepsilon_i$

where ε_i are independent normal random variables with zero mean and unit variance

improper uniform prior over θ

each player sees θ as normal with mean x_i and variance σ^2 ; each sees their opponents signal as the sum of this normal and an independent normal with mean zero and variance σ^2 , that is, a normal with mean x_i and variance $2\sigma^2$

expected utility gain from investing if probability of opponent notInvesting is $q(x_i)$ is

 $E[\theta|x_i] - q(x_i)$ so best response is invest if this is non-negative; since $E[\theta|x_i] = x_i$ this can be written as $x_i - q(x_i)$

Suppose you believe your opponent invests for $x_{i} > b$. Then

 $q(x_i) \leq \Phi(-(b-x_i)/(2^{1/2}\sigma))$, hence you must invest if

 $x_i \! > \! \Phi(\, \text{-}(b \, \text{-} x_i) \, / (2^{1 \, / 2} \, \sigma))$

Suppose you believe your opponent notInvests for $x_{i} < b$. Then

 $q(x_i) \geq \Phi(-(b - x_i) / (2^{1/2}\sigma))$ hence you notInvest if $x_i < \Phi(-(b - x_i) / (2^{1/2}\sigma))$

Implicitly define the function $b(k) = \Phi(-(b(k) - k) / (2^{1/2}\sigma))$

this has a unique solution because lhs strictly increasing in b and rhs strictly decreasing in b

since rhs strictly increasing in k, b(k) is strictly increasing

b(k) has a unique fixed point at $\frac{1}{2}$

why?? substitute b(k) = k and the RHS becomes $\Phi(0) = 1/2$.

Figure 2.1: Function b(k)

any strategy that is not dominated must satisfy

$$s(x) = \begin{cases} \text{Invest} & x > 1 \\ \text{NotInvest} & x < 0 \end{cases}$$

suppose you know your opponent will choose NotInvest for x < k dominance implies you should choose NotInvest for x < b(k)

suppose you know your opponent will choose Invest for x > k dominance implies you should choose Invest for x > b(k)

so after \boldsymbol{n} round of iterated dominance

$$s(x) = \begin{cases} \text{Invest} & x > b^n(1) \\ \text{NotInvest} & x < b^n(0) \end{cases}$$

Since b(k) strictly increasing and has a unique fixed point at 1/2

$$\lim_{n\to\infty} b^n(0), b^n(1) = 1/2$$
 (see the diagram)

so the only thing to survive iterated weak dominance is the cutpoint strategy

$$s(x) = \begin{cases} \text{Invest} & x > 1 / 2 \\ \text{NotInvest} & x \le 1 / 2 \end{cases}$$

and this is a best response to itself since b(1/2)=1/2 so it is and equilibrium as well as the only thing to survive iterated dominance (weak or strong dominance?)

conditional on θ the choice of the two players is independent and the probability of investment is

$$\Phi((\frac{1}{2}-\theta)/\sigma)$$

also a continuum of players result:

payoff to investing θ -1 + l where l is fraction of players investing

iterated deletion of dominated strategies leaves only: Invest when you get a signal greater than $1\ /2.$

relationship to common knowledge