Carlsson and van Damme

	Invest	NotInvest
Invest	θ, θ	$\theta-1,0$
NotInvest	$0, \theta-1$	0,0

Three cases
. $\theta>1$ dominant strategy to invest
. $\theta \in[0,1]$ two pure equilibria - coordination problem
. $\theta<1$ dominant strategy not to invest
incomplete information about θ
each player observes a noisy signal $x_{i}=\theta+\sigma \varepsilon_{i}$
where ε_{i} are independent normal random variables with zero mean and unit variance
improper uniform prior over θ
each player sees θ as normal with mean x_{i} and variance σ^{2}; each sees their opponents signal as the sum of this normal and an independent normal with mean zero and variance σ^{2}, that is, a normal with mean x_{i} and variance $2 \sigma^{2}$
expected utility gain from investing if probability of opponent notlnvesting is $q\left(x_{i}\right)$ is
$E\left[\theta \mid x_{i}\right]-q\left(x_{i}\right)$ so best response is invest if this is non-negative; since $E\left[\theta \mid x_{i}\right]=x_{i}$ this can be written as $x_{i}-q\left(x_{i}\right)$

Suppose you believe your opponent invests for $x_{-i}>b$. Then
$q\left(x_{i}\right) \leq \Phi\left(-\left(b-x_{i}\right) /\left(2^{1 / 2} \sigma\right)\right)$, hence you must invest if
$x_{i}>\Phi\left(-\left(b-x_{i}\right) /\left(2^{1 / 2} \sigma\right)\right)$
Suppose you believe your opponent notInvests for $x_{-i}<b$. Then
$q\left(x_{i}\right) \geq \Phi\left(-\left(b-x_{i}\right) /\left(2^{1 / 2} \sigma\right)\right)$ hence you notInvest if
$x_{i}<\Phi\left(-\left(b-x_{i}\right) /\left(2^{1 / 2} \sigma\right)\right)$

Implicitly define the function $b(k)=\Phi\left(-(b(k)-k) /\left(2^{1 / 2} \sigma\right)\right)$
this has a unique solution because Ihs strictly increasing in b and rhs strictly decreasing in b
since rhs strictly increasing in $k, b(k)$ is strictly increasing
$b(k)$ has a unique fixed point at $1 / 2$
why?? substitute $b(k)=k$ and the RHS becomes $\Phi(0)=1 / 2$.

Figure 2.1: Function $b(k)$
any strategy that is not dominated must satisfy

$$
s(x)= \begin{cases}\text { Invest } & x>1 \\ \text { NotInvest } & x<0\end{cases}
$$

suppose you know your opponent will choose Notlnvest for $x<k$ dominance implies you should choose Notlnvest for $x<b(k)$
suppose you know your opponent will choose Invest for $x>k$ dominance implies you should choose Invest for $x>b(k)$
so after n round of iterated dominance
$s(x)= \begin{cases}\text { Invest } & x>b^{n}(1) \\ \text { NotInvest } & x<b^{n}(0)\end{cases}$

Since $b(k)$ strictly increasing and has a unique fixed point at $1 / 2$
$\lim _{n \rightarrow \infty} b^{n}(0), b^{n}(1)=1 / 2$ (see the diagram)
so the only thing to survive iterated weak dominance is the cutpoint strategy
$s(x)= \begin{cases}\text { Invest } & x>1 / 2 \\ \text { NotInvest } & x \leq 1 / 2\end{cases}$
and this is a best response to itself since $b(1 / 2)=1 / 2$ so it is and equilibrium as well as the only thing to survive iterated dominance (weak or strong dominance?)
conditional on θ the choice of the two players is independent and the probability of investment is
$\Phi\left(\left(\frac{1}{2}-\theta\right) / \sigma\right)$
also a continuum of players result:
payoff to investing $\theta-1+l$ where l is fraction of players investing
iterated deletion of dominated strategies leaves only: Invest when you get a signal greater than $1 / 2$.
relationship to common knowledge

