Economic 211B, David K. Levine

Answers to Problems on Repeated Games

Last Modified: January 19, 1999

1. Bellman's equation

$$v_{bankrupt} = 0$$

$$v_{wealthy} = \max \begin{cases} (1 - \delta)1 + \delta v_{wealthy} \\ (1 - \delta)2 + \delta (pv_{bankrupt} + (1 - \pi)v_{wealthy}) \end{cases}$$

if max is bond then $v_{wealthy} = 1$

if max is stock then $v_{wealthy} = 2(1-\delta) + (1-p)\delta v_{wealthy}$

Solve second equation for $v_{wealthy}$ to find $v_{wealthy} = \frac{2(1-\delta)}{1-\delta(1-p)}$

Stocks better for $\frac{2(1-\delta)}{1-\delta(1-p)} \ge 1$ or rewrite as $1-\delta \ge \delta p$

2. a)

	give	don't
pay	3,2	0,1
don't	5,0	0,1

(b) minmax=static nash=0; maxmax=5, mixed precommitment is 50-50 yielding 4; pure precommitment is 3

- (c) since minmax = static nash=0 this is also the worst equilibrium; the set of equilibrium payoffs is the line segment from 0 to \overline{v}
- (d) best for lr is to have giving; requires at least a .5 chance of paying; if lr pays and sr gives then lr receives 3, so $\overline{v} = 3$;

also from incentive constraint $\overline{v} \ge (1-\delta)5 + \delta 0$, so $3 \ge (1-\delta)5, \delta \ge 2/5$

- (e) incentive constraints
- $\overline{v} = (1 \delta)3 + \delta(.5w(p) + .5w(n))$

 $\overline{v} \geq (1 - \delta)5 + \delta w(n)$

maximization of \overline{v} requires that second hold with equality and that $w(p) = \overline{v}$;

solving yields
$$\overline{v} = 1$$
; $w(n) = \frac{1 - (1 - \delta)5}{\delta} \le 1, \delta \ge 4/5$

3)

2*,2*	1,0
0,1	0,0

a) Static nash is 2,2; also the unique pareto efficient point Minmax is 1,1

b)

c) bot for k periods, then top forever, provided no deviation; if deviation, start over again. Utility is $2\delta^k$

 $2\delta^k = 1.5$

 $\delta^{k} = 3/4$ if deviate in initial period get $(1-\delta) + 2\delta^{k+1}$. condition for equilibrium is $2\delta^{k} \ge (1-\delta) + 2\delta^{k+1}$ $0 \ge (1-\delta) + 2\delta(3/4) - 2(3/4)$ $= 1 - \delta + 3\delta/2 - 3/2 = \delta/2 - 1/2$ so this works for any δ, k combination with $\delta^{k} = 3/4$

d) pick δ, k as above. $\eta \in I = (0, 1, 2, ..., k)$. If you both have flag 0 play top; if either has flag $\eta > 0$ play bot. If you both have flag 0 and you play top you get flag max{ $\eta - 1, 0$ }. If you play bot you get flag *k*. If either has flag $\eta > 0$ and you play top you get flag *k*; if you play bot you get flag max{ $\eta - 1, 0$ }. Everyone starts with flag *k*.

© This document is copyrighted by the author. You may freely reproduce and distribute it electronically or in print, provided it is distributed in its entirety, including this copyright notice. Source: <u>\DOCS\Annual\99\class\grad\LONG RUN</u> <u>VS. SHORT RUN ANSWERS.DOC</u>