Copyright (C) 2001 David K. Levine
This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Problems on Reputation

1. Reputation

A sequence of consumers must choose what product to buy from Gigantic Corporation: a mediocre product or a special improved brand. The mediocre product yields a utility to the consumer of 1 and a profit to Gigantic of 1 . The special improved brand yields a utility of 2 and a profit of 2 . However, Gigantic has the option of producing a cheap imitation brand that is indistinguishable from the special improved brand. This yields a utility of 0 and a profit of 4 . If a consumer buys a special improved brand, he finds out whether or not it is the cheap imitation, and reveals this information to later consumers.
a. Show that there is a sequential equilibrium in which Gigantic produces only cheap imitations and consumers always buy the mediocre product.
b. If Gigantic is very patient and there is a positive probability that it is "honest" and does not produce imitations, does this make a difference?
c. Would it make a difference if Gigantic has also the option of producing defective products that are indistinguishable from mediocre products? These yield a utility of -1 and a profit of 0 .
d. What if in part c) all pure strategy types have equal probability?.

2. Inference and Martingales

A single decision-maker picks a sequence of actions $a_{t} \in A$, a finite set. He is drawn from a finite set of types Ω. If $h_{t}=\left(a_{1}, a_{2}, \ldots a_{t}\right)$ is the history of his play through t his strategy may be described by a probability distribution over A at time $t, \sigma_{t}\left(h_{t-1}, \omega\right)$, which depends on the history and his type. You observe the play of this player, and place probability $\mu(\omega)>0$ on his being type ω.

Consider $\mu\left(\omega \mid h_{t}\right)$. By Bayes law
$\mu\left(\omega \mid h_{t}\right)=\frac{\sigma_{t}\left(h_{t-1}, \omega\right)\left(a_{t}\right) \mu\left(\omega \mid h_{t-1}\right)}{\sum_{\omega^{\prime}} \sigma_{t}\left(h_{t-1}, \omega^{\prime}\right)\left(a_{t}\right) \mu\left(\omega^{\prime} \mid h_{t-1}\right)}$ Fix a type ω^{+}, and let $\Omega^{+} \equiv \Omega \backslash \omega^{+}$be the set of all other types. We may define random variables p_{t}, q_{t} by
$p_{t}(a)=\sigma_{t}\left(h_{t-1}, \omega^{+}\right)\left(a_{t}\right), p_{t}=p_{t}\left(a_{t}\right)$
$q_{t}(a)=\frac{\sum_{\omega^{\prime} \in \Omega^{+}} \sigma_{t}\left(h_{t-1}, \omega^{\prime}\right)\left(a_{t}\right) \mu\left(\omega^{\prime} \mid h_{t-1}\right)}{1-\mu\left(\omega^{+} \mid h_{t-1}\right)}, q_{t}=q_{t}\left(a_{t}\right)$

We also define L_{t} recursively by

$$
\begin{aligned}
& L_{0}=\frac{1-\mu\left(\omega^{+}\right)}{\mu\left(\omega^{+}\right)} \\
& L_{t}=\frac{q_{t}}{p_{t}} L_{t-1}
\end{aligned}
$$

a. What are p_{t} and q_{t}.
b. Show by induction that

$$
L_{t}=\frac{1-\mu\left(\omega^{+} \mid h_{t}\right)}{\mu\left(\omega^{+} h_{t}\right)}
$$

c. Show that

$$
E\left[L_{t} \mid L_{t-1}, h_{t-1}, L_{t-2}, h_{t-2}, \ldots \omega^{+}\right) \leq L_{t-1}
$$

This means (by definition) that L_{t} is a supermartingale; obviously $L_{t} \geq 0$.
d. It is known that if L_{t} is a non-negative supermartingale, with probability one, the sequence ($L_{0}, L_{1}, L_{2}, \ldots$) converges to a limit. How can you interpret this fact?

3. The Chain Store Paradox-Paradox

Consider the Kreps-Wilson version of the chain store paradox: An entrant may stay out and get nothing (0), or he may enter. If he enters, the incumbent may fight or acquiesce. The entrant gets b if the incumbent acquiesces, and $b-1$ if he fights, where $0<b<1$. There are two types of incumbent, both receiving $a>1$ if there is no entry. If there is a fight, the strong incumbent gets 0 and the weak incumbent gets -1 ; if a strong incumbent acquiesces he gets -1 , a weak incumbent 0 .

Only the incumbent knows whether he is weak or strong; it is common knowledge that the entrant a priori believes that he has a $\pi 0$ chance of facing a strong incumbent. Define
$\gamma=\frac{p_{0}}{1-p_{0}} \frac{1-b}{b}$
a. Sketch the extensive form of this game.
b. Define a sequential equilibrium of this game.
c. Show that if $\gamma \neq 1$, there is a unique sequential equilibrium, and that if $\gamma>1$ entry never occurs, while if $\gamma<1$ entry always occurs.
d. What are the sequential equilibria if $\gamma=1$?
e. Now suppose that the incumbent plays a second round against a different entrant who knows the result of the first round. The incumbent's goal is to maximize the sum of his payoffs
in the two rounds. Show that if $\gamma>1$ there is a sequential equilibrium in which the entrant enters on the first round and both types of incumbents acquiesce. Be careful to specify both the equilibrium strategies and beliefs.

