Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Cournot and Bertrand

The Cournot Model

- a market with n identical firms facing constant marginal cost c
- demand given by $\mathrm{p}=\mathrm{a}-\mathrm{bx}$
so that the competitive solution is $(a-c) / b$ units of output and the monopoly solution is $(a-c) / 2 b$ units of output
let X be output of representative firm profits of a representative firm

$$
\pi_{i}=\left[a-b\left(x_{i}+(n-1) \mathrm{x}\right)\right] \mathrm{x}_{\mathrm{i}}-c \mathrm{c}_{\mathrm{i}}
$$

Reaction Function

$\frac{d \pi_{i}}{d x_{i}}=\left[a-b\left(2 x_{i}+(n-1) x\right)\right]-c=0$
in a symmetric equilibrium $X_{i}=X$, so
$a-b(n+1) x=c$ giving the result
$x=\frac{a-c}{b(n+1)}$ per firm
$x=\frac{a-c}{b(n+1)}$ per firm
industry output $\frac{n}{(n+1)} \frac{a-c}{b}$
when $\mathrm{n}=1$ this gives the usual monopoly solution as $\mathrm{n} \rightarrow \infty$ this approaches the competitive solution

Bertrand Competition

Firms choose prices rather than quantities

- two facing constant marginal cost C
- demand given by $\mathrm{p}=\mathrm{a}-\mathrm{bx}$
so that the competitive solution is $(a-c) / b$ units of output and the monopoly solution is $(a-c) / 2 b$ units of output
consumers buy from the lowest price firm: demand for firm i

$$
x_{i}=\left\{\begin{array}{cl}
0 & p_{1}>p_{-i} \\
\frac{a-p}{2 b} & p_{i}=p_{-i} \\
\frac{a-p}{b} & p_{1}<p_{-i}
\end{array}\right.
$$

Suppose in equilibrium $\mathrm{p}_{-\mathrm{i}}>\mathrm{C}$ profits are

$$
\pi_{i}=\left\{\begin{array}{cc}
0 & p_{1}>p_{-i} \\
\left(p_{1}-c\right) \frac{a-p_{i}}{2 b} & p_{1}=p_{-i} \\
\left(p_{1}-c\right) \frac{a-p_{i}}{b} & p_{1}<p_{-i}
\end{array}\right.
$$

this problem does not have a solution
as $\mathrm{p} \uparrow \mathrm{p}_{-\mathrm{i}}$ profits approach

$$
(p-c) \frac{a-p}{b}
$$

- always undercut by a little bit
if $\mathrm{p}=\mathrm{p}_{\mathrm{i}}=\mathrm{c}$ then we have a Nash equilibrium

Bertrand competition between two firms is competitive

Bertrand vs. Cournot

- choosing output is a commitment not to produce more
- in Bertrand competition firms will provide whatever amount the market wants

Bertrand Competition in the Hotelling Model

- consumers are located on the line between 0 and 1
- firms are located on each edge
- a consumer gets b units of satisfaction from buying 1 unit, minus x where x is the distance traveled to purchase the good, minus the price
- both firms have constant marginal cost c
indifference of a consumer between stores
$\mathrm{b}-\mathrm{x}^{*}-\mathrm{p}_{1}=\mathrm{b}-\left(1-\mathrm{x}^{*}\right)-\mathrm{p}_{2}$
solving for x gives demand for firm 1
firm 2 demand is $1-x$
$x^{*}=\frac{1-p_{1}+p_{2}}{2}$

Reaction Function

profit $\pi_{1}=\left(p_{1}-\mathrm{c}\right) \frac{1-\mathrm{p}_{1}+\mathrm{p}_{2}}{2}$
differentiate
$\frac{\mathrm{d} \pi_{1}}{\mathrm{~d} \mathrm{p}_{1}}=\frac{1-\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{p}_{1}+\mathrm{c}}{2}=0$
in symmetric equilibrium $p_{1}=p_{2}$
$p_{1}=c+1$
this is valid provided
b-1/2-c-1 ≥ 0

