PROBLEM SET \#5 SOLUTIONS

1. First we need to determine the events in this problem. Let E be the event that evidence is found and let B be the event that vase is broken due to bad packaging. Then, we need to determine $P(B \mid E)$. Since we are given the following probabilities

$$
\begin{gathered}
P(B)=0.1 \\
P(E \mid B)=0.9 \\
P\left(E \mid B^{c}\right)=0.3
\end{gathered}
$$

by using Baye's Law, we obtain

$$
\begin{aligned}
P(B \mid E) & =\frac{P(E \mid B) P(B)}{P(E \mid B) P(B)+P\left(E \mid B^{c}\right) P\left(B^{c}\right)} \\
& =\frac{(0.9)(0.1)}{(0.9)(0.1)+(0.3)(0.9)} \\
& =0.25
\end{aligned}
$$

2. Expected utility that is gained from Gamble A is calculated as follows;

$$
\begin{aligned}
E u(A) & =P(x=5) u(5)+P(x=2) u(2) \\
& =\frac{1}{2}\left(20-\frac{20}{5}\right)+\frac{1}{2}\left(20-\frac{20}{2}\right) \\
& =13
\end{aligned}
$$

Similarly, expected utility that is gained from Gamble B is

$$
\begin{aligned}
E u(B) & =P(x=10) u(10)+P(x=1) u(1) \\
& =\frac{1}{2}\left(20-\frac{20}{10}\right)+\frac{1}{2}\left(20-\frac{20}{1}\right) \\
& =9
\end{aligned}
$$

Hence, gamble A is chosen.
3. (a) In order to determine pure strategy Nash equilibria (PSNE) of this game, best responses are underlined on the payoff matrix which is given below;

Hence, (D, R) is the unique PSNE.
Since L is strictly dominated by R for column player, column player never randomizes between L and R. Knowing this, it is always optimal to play D for row player. Hence, there is no mixed strategy Nash equilibria (MSNE).
(b) Similarly, best responses are underlined on the payoff matrix which is given below;

	L	R
	c	$\underline{30}, \underline{60}$
$\underline{90}, \underline{10}$	20,0	

Hence, (D, L) and (U, R) are the PSNE.
Let p be the probability of playing U for row player, and then obviously $1-p$ be the probability of playing D (i.e,, $\sigma_{1}=(p, 1-p)$). So, column player randomizes if the expected payoff of playing L and R are the same. Thus,

$$
\begin{gathered}
u_{2}\left(\sigma_{1}, L\right)=u_{2}\left(\sigma_{1}, R\right) \\
(p)(0)+(1-p)(10)=(p)(60)+(1-p)(0) \\
(1-p) 10=60 p \\
p=1 / 7
\end{gathered}
$$

Similarly, let q be the probability of playing L for column player, then obviously $1-q$ be the probability of playing R (i.e,, $\sigma_{2}=(q, 1-q)$). So, row player randomizes if the expected payoff of playing U and D are the same. Thus,

$$
\begin{gathered}
u_{1}\left(U, \sigma_{2}\right)=u_{1}\left(D, \sigma_{2}\right) \\
(q)(0)+(1-q)(30)=(q)(90)+(1-q)(20) \\
(1-q) 10=90 q \\
q=1 / 10
\end{gathered}
$$

Hence, $\left(\left(\frac{1}{7}, \frac{6}{7}\right),\left(\frac{1}{10}, \frac{9}{10}\right)\right)$ is the MSNE.
(c) Similarly, best responses are underlined on the payoff matrix which is given below;

Hence, there is no PSNE.
Let p be the probability of playing U for row player, and then obviously $1-p$ be the probability of playing D (i.e,, $\sigma_{1}=(p, 1-p)$). So, column player randomizes if the expected payoff of playing L and R are the same. Thus,

$$
\begin{gathered}
u_{2}\left(\sigma_{1}, L\right)=u_{2}\left(\sigma_{1}, R\right) \\
(p)(4)+(1-p)(8)=(p)(10)+(1-p)(4) \\
(1-p) 4=6 p \\
p=2 / 5
\end{gathered}
$$

Similarly, let q be the probability of playing L for column player, then obviously $1-q$ be the probability of playing R (i.e,, $\sigma_{2}=(q, 1-q)$). So, row player randomizes if the expected payoff of playing U and D are the same. Thus,

$$
\begin{gathered}
u_{1}\left(U, \sigma_{2}\right)=u_{1}\left(D, \sigma_{2}\right) \\
(q)(8)+(1-q)(6)=(q)(4)+(1-q)(8) \\
4 q=(1-q) 2 \\
q=1 / 3
\end{gathered}
$$

Hence, $\left(\left(\frac{2}{5}, \frac{3}{5}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right)$ is the MSNE.

