Copyright (C) 2011 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.
If you prefer you may use the Creative Commons attribution license http://creativecommons.org/licenses/by/2.0/

The Competitive Mechanism

Cobb-Douglas Aggregate Excess Demans:

$$
\begin{aligned}
& z_{1}=-\frac{1}{2}+\frac{1}{2} \frac{p_{2}}{p_{1}} \\
& z_{2}=\frac{1}{2} \frac{p_{1}}{p_{2}}-\frac{1}{2}
\end{aligned}
$$

Aggregate excess demand: two key properties

Homogeneous of degree zero
$z_{j}(\lambda p)=z_{j}(p)$
$z_{1}=-\frac{1}{2}+\frac{1}{2} \frac{p_{2}}{p_{1}}$

Walras's Law

$$
\sum_{j=1}^{k} p_{j} z_{j}(p)=0
$$

$$
p_{1}\left[-\frac{1}{2}+\frac{1}{2} \frac{p_{2}}{p_{1}}\right]+p_{2}\left[\frac{1}{2} \frac{p_{1}}{p_{2}}-\frac{1}{2}\right]=? ?
$$

Solving for Equilibrium

there are k different excess demand conditions $z_{j}(p)=0$ and there are k different prices p_{1}, \ldots, p_{k}
but one excess demand condition is redundant
suppose $z_{j}(p)=0$ for $j=1, \ldots, k-1$, then from Walras's law $z_{k}(p)=0$ on the other hand, if $z_{j}(p)=0$ for all $j=1, \ldots, k$ then so does $z_{j}(\lambda p)=0$
so many competitive equilibria
can solve only for relative prices using $k-1$ excess demand equations
Existence of competitive equilibrium?

The Numeraire

may arbitrarily set the price of one good to 1
called the numeraire good, all prices are measured relative to that good (for example - money is numeraire)

Cobb-Douglas Example

Pick one equation
$z_{1}=-\frac{1}{2}+\frac{1}{2} \frac{p_{2}}{p_{1}}=0$
so $p_{2} / p_{1}=1$
pick the other equation
$z_{2}=\frac{1}{2} \frac{p_{1}}{p_{2}}-\frac{1}{2}$
get the same answer of course
if we choose good 1 as numeraire then we have $p_{1}=1, p_{2}=1$
how do we find individual demands?

The First Welfare Theorem

Suppose we have a competitive equilibrium with prices p and individual demands x_{i}^{j}
is this pareto efficient?
That is: can we find \tilde{x}_{j}^{i} socially feasible that makes nobody worse off and at least one person better off?
That is: can we find $\sum_{i=1}^{n} \tilde{x}_{j}^{i} \leq \sum_{i=1}^{n} \bar{x}_{j}^{i}$ so that $u^{i}\left(\tilde{x}^{i}\right) \geq u^{i}\left(\bar{x}^{i}\right)$ for everybody (all i) and for somebody (some i) $u^{i}\left(\tilde{x}^{i}\right)>u^{i}\left(\bar{x}^{i}\right)$?

Observation: if $u^{i}\left(\tilde{x}^{i}\right)>u^{i}\left(\bar{x}^{i}\right)$ then $p \cdot \tilde{x}^{i}>p \cdot \bar{x}^{i}$
Why??
Further observation: $u^{i}\left(\tilde{x}^{i}\right) \geq u^{i}\left(\bar{x}^{i}\right)$ then $p \cdot \tilde{x}^{i} \geq p \cdot \bar{x}^{i}$ (otherwise spend your extra income to buy more)

Our conclusion: if $u^{i}\left(\tilde{x}^{i}\right) \geq u^{i}\left(\bar{x}^{i}\right)$ for everybody (all i) and for somebody (some i) $u^{i}\left(\tilde{x}^{i}\right)>u^{i}\left(\bar{x}^{i}\right)$, then $p \cdot \tilde{x}^{i} \geq p \cdot \bar{x}^{i}$ for all i and $p \cdot \tilde{x}^{i}>p \cdot \bar{x}^{i}$ for some i
add these together:

$$
\sum_{i=1}^{n} p \cdot \tilde{x}^{i}>\sum_{i=1}^{n} p \cdot \bar{x}^{i}
$$

on the other hand
$\sum_{i=1}^{n} \widetilde{x}_{j}^{i} \leq \sum_{i=1}^{n} \bar{x}_{j}^{i}$, so adding over different goods
$\sum_{j=1}^{k} p_{j} \sum_{i=1}^{n} \tilde{x}_{j}^{i} \leq \sum_{j=1}^{k} p_{j} \sum_{i=1}^{n} \bar{x}_{j}^{i}$
which says that $\sum_{i=1}^{n} p \cdot \tilde{x}^{i} \leq \sum_{i=1}^{n} p \cdot \bar{x}^{i}$

- relationship to the core
- implications for international trade
- the edgeworth box
- the second welfare theorem
- the competitive mechanism

Finance

Trade in period 0 claims to consumption in period 1
k different states of nature in period 1 , probability of state j is π_{j}
consumption in state j is c_{j}
time 0 price of consumption in state j is p_{j}
budget constraint $\sum_{j=1}^{k} p_{j} c_{j} \leq m$
"martingale" prices $\tilde{p}_{j}=p_{j} / \pi_{j}$
budget constraint in martingale prices
$E \tilde{p} c=\sum_{j=1}^{k} \pi_{j} \tilde{p}_{j} c_{j} \leq m$

Securities

Security a pays r_{j} in state j
Examples:
Arrow security on state j pays 1 in state $j 0$ in all other states
Price of an arrow security p_{j} or \tilde{p}_{j}
Bond pays 1 in all states
Price of a bond $\sum_{j=1}^{k} p_{j}$ or $E \tilde{p}$
"arbitrage pricing" = law of one price

Spanning

Two states $j=1,2, k=2$
Stock 1 pays $(2,1)$ price q_{1}, Stock 2 pays $(1,2)$ price q_{2}
What is the price of a bond?
Buy both stocks: get $(3,3)$ bond pays $(1,1)$ so $1 / 3^{\text {rd }}$ of both stocks
$q_{b}=\left(q_{1}+q_{2}\right) / 3$
what does spanning mean?
k different assets that are "independent"
can determine all asset prices in terms of a spanning set of assets

Short Sales

Stock 1 pays $(2,1)$ price q_{1}, Stock 2 pays (3,1) price q_{2}
What is the price of a bond?

$$
\begin{aligned}
& a(2,1)+b(3,1)=(1,1) \\
& {\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& =(-1)\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \quad=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{aligned}
$$

check $2(2,1)-1(3,1)=(4,2)-(3,1)=(1,1)$
so buying 2 units of stock 1 and -1 units of stock 2 is the same as buying a bond: cost $2 q_{1}-q_{2}$
what does it mean to buy -1 unit of stock 2 ?
observation $2 q_{1}-q_{2}>0$ so we can conclude that $q_{1}>q_{2} / 2$

The Holdup Problem

"entrepreneur" (inventor, merchant) creates value of ρ
ρ is drawn from a uniform distribution over $[0,1]$ and is private information to the entrepreneur
case 1: the innovator receives a fraction of the social total $\phi \rho$
case 2: the innovator receives the entire social total ρ but must pay N existing "rights holders" for the right to create value
examples:
the silk road
patents and copyrights
pollution
efficiency = the good is always produced
in case 1 the good is always produced
in case 2
rights holder i set price p_{i} for his right and gets an expected revenue of

$$
\begin{aligned}
& \left(1-(N-1) p-p_{i}\right) p_{i} \\
p= & 1 /(N+1)
\end{aligned}
$$

entrepreneur pays $\frac{N}{N+1}$ to clear the needed rights, so creation if $\frac{N}{N+1}<\rho$
what happens as $N \rightarrow \infty$
as technologies grow more and more complex requiring more and more specialized inputs,monopoly power induced by patents and copyright becomes more and more socially damaging

