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Iterated Dominance in the Cournot Model

weak dominance never a lower payoff no matter what the opponent
does, and sometimes a higher payoff

strict dominance a higher payoff no matter what the opponent does

admissibility: never use a weakly dominated strategy




If weakly dominated strategies are not used, should players anticipate
that opponents will not use them?

Iterated weak dominance: eliminate weakly dominated strategies to get
a smaller game, then repeat this procedure




Example of Iterated Weak Dominance

L M R

-1,-1 2,0 1,1
-1,-1 1,-1 0,0
1,1 1,1 1,2

Eliminate M, weakly dominated by U

L M R
-1,-1 2,0 1,1
1,1 1,1 1,2

Eliminate L, weakly dominated by R
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Eliminate D, weakly dominated by U
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Eliminate M, strictly dominated by R




An alternative procedure

L M R
-1,-1 2,0 1,1
1,1 1,1 1,2

Eliminate L AND M, weakly dominated by R
R

1,1
1,2

can proceed no further




Problems with Iterated Weak Dominance

e procedure is ambiguous

e it may yield more than one answer

e it is not “robust”




Robustness

To avoid playing a weakly dominated strategy, a player must know his
own payoffs exactly.

To know that his opponent is not playing a weakly dominated strategy,
a player must know his opponent’s payoffs exactly. This is a very
strong assumption.

To know that his opponent is not playing a strictly dominated strategy,
a player must only know his opponent’s payoffs approximately.

A plausible (and robust) concept: iterated strict dominance, or the
stronger notion of S™W




Iterated Strong Dominance and Duopoly

p=a—bx
a=17c=1b0=1

so that the competitive solution is 16 units of output and the monopoly
solution is 8 units of output

profits
n,=[17-(x,+x_)]x,—x,
=[16—(x, +x_,)]x,
possible output levels 0, 4, 5, 8, 12, 16




5

12

16

0,55

0%,0

28,35"

0*.0

-16,-64

30*,30*

-5,-12

-25,-80

24,15

-32,-48

-64,-128

-12,-5

-96,-96

-144,-192

-80,-25

The *s mark the best response or reaction function

-192,-144

-256,-256




Iterated Strict Dominance
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Continuous Case

Suppose that BMG expects that CBA will produce x, units of output.
What should BMG do?

T =17 — (7 + 2_) |z — =

dx: =16 -2z, —7_; =0

solving we find

L
2

This is called the best response or reaction function of BMG to CBA.







The Cournot Equilibrium




¢ less than monopoly but more than half monopoly

e industry output is twice this amount

e this is 2/3 the competitive output, as against 72 for monopoly




