Copyright (C) 2007 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

If you prefer you may use the Creative Commons attribution license http://creativecommons.org/licenses/by/2.0/

Introductory Lecture

What this class is about

- economic science as it exists today
- intrinsically a mathematical subject
- □ the heart of economics is mechanism design theory
- the goal of the class is to give you a limited working knowledge of mechanism design theory

The Problem of the Consumer

 $\max u(x_1, x_2)$

subject to $p_1x_1 + p_2x_2 \le I$ (budget set) x_1, x_2 quantity of good 1,2 consumed respectively p_1, p_2 money prices of goods 1 and 2

I money income

Utility Theory

- utility we take as given in this class
- utility is not primitive, preferences are
- under mild assumptions preferences can be *represented* by a utility function
- the cocktail party approach to science
 - all things are relative
 - economists assume people are lightning calculators of pleasure and pain

Demand Theory

solution of the consumer problem

 $\max u(x_1, x_2)$

subject to $p_1x_1 + p_2x_2 \leq I$ (budget set)

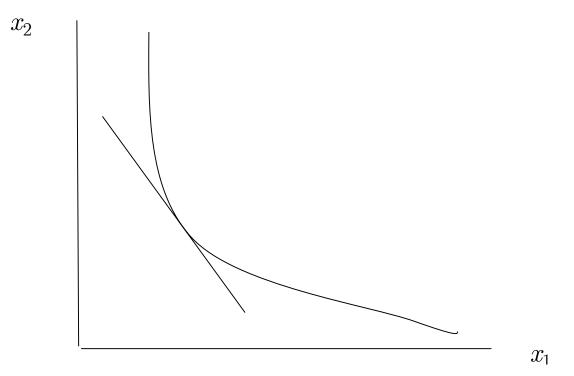
indifference curve $u(x_1, x_2) = \overline{u}$

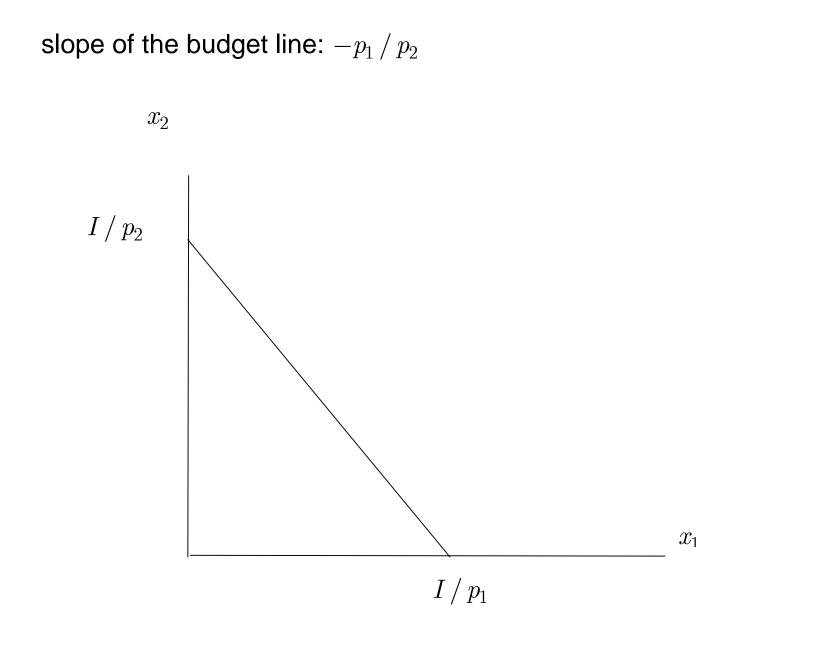
find the slope:
$$\frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 = d\overline{u} = 0$$

solution: $\frac{dx_2}{dx_1} = -\frac{\partial u / \partial x_1}{\partial u / \partial x_2}$

example: Cobb-Douglas utility $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$, $\alpha, \beta > 0$

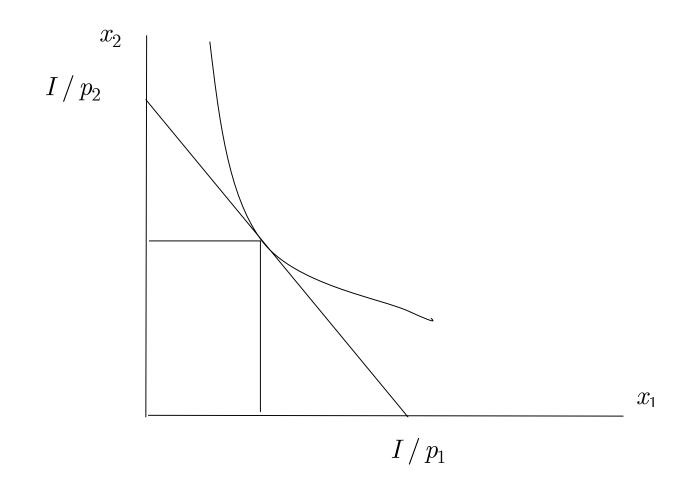
$$\frac{dx_2}{dx_1} = -\frac{\alpha x_1^{\alpha - 1} x_2^{\beta}}{\beta x_1^{\alpha} x_2^{\beta - 1}} = -\frac{\alpha x_2}{\beta x_1}$$





The Optimum

tangency between the budget line and indifference curve



Cobb-Douglas

 $-\frac{\alpha x_2}{\beta x_1} = -\frac{p_1}{p_2}$ tangency condition of equal slopes

 $p_1x_1 + p_2x_2 = I$ budget constraint holds with equality

two equations in two unknowns

solve the tangency $p_2 x_2 = (\beta / \alpha) p_1 x_1$

plug in the budget constraint $p_1x_1 + (\beta / \alpha)p_1x_1 = I$

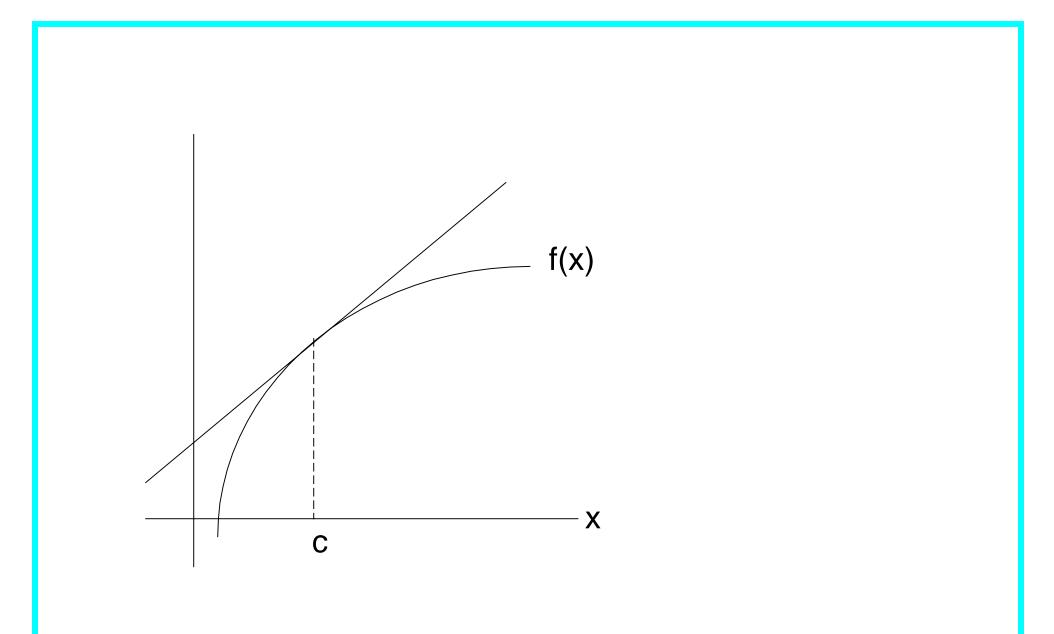
solve for the demand function

$$x_1 = \frac{\alpha}{\alpha + \beta} \frac{I}{p_1}$$

bigger α the more you like x_1 and the more you demand homogeneity of degree zero: depends only on the ration I / p_1 Lagrange Multipliers

 $\max f(x)$ subject to $x \le c$

obvious answer: if *f* is concave and f'(c) > 0 take x = c



Lagrange Multipliers

 $L = f(x) - \lambda(x - c)$

first order conditions for a maximum

$$\frac{\partial L}{\partial x} = f'(x) - \lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = -(x - c) = 0$$

solution: $x = c, \lambda = f'(x)$

what is measured by the multiplier λ ?

the increase in the objective when the constraint *c* is relaxed

Example

 $\max (x_1^{\rho} + x_2^{\rho} + x_3^{\rho})^{1/\rho}$

subject to $p_1x_1 + p_2x_2 + p_3x_3 = I$

Lagrangean

$$L = (x_1^{\rho} + x_2^{\rho} + x_3^{\rho})^{1/\rho} - \lambda(p_1x_1 + p_2x_2 + p_3x_3 - I)$$

solution:

$$\frac{\partial L}{\partial x_i} = \frac{1}{\rho} (x_1^{\rho} + x_2^{\rho} + x_3^{\rho})^{(1/\rho)-1} \rho x_i^{\rho-1} - \lambda p_i = 0$$

solve:

$$x_{i} = \left[\frac{\lambda p_{i}}{(x_{1}^{\rho} + x_{2}^{\rho} + x_{3}^{\rho})^{(1/\rho)-1}}\right]^{\frac{1}{\rho-1}}$$
$$= \left[\frac{p_{i}}{(x_{1}^{\rho} + x_{2}^{\rho} + x_{3}^{\rho})^{(1/\rho)-1}}\right]^{\frac{1}{\rho-1}} [\lambda]^{\frac{1}{\rho-1}}$$

substitute in constraint

$$\sum_{i} p_{i}^{1+\frac{1}{\rho-1}} \left[\frac{\lambda}{(x_{1}^{\rho} + x_{2}^{\rho} + x_{3}^{\rho})^{(1/\rho)-1}} \right]^{\frac{1}{\rho-1}} = I$$
$$[\lambda]^{\frac{1}{\rho-1}} = \frac{I}{\sum_{i} p_{i}^{\frac{\rho}{\rho-1}} (x_{1}^{\rho} + x_{2}^{\rho} + x_{3}^{\rho})^{\frac{1}{\rho}}}$$

substitute back into solution of FOC

$$\begin{aligned} x_i &= \left[\frac{p_i}{\left(x_1^{\rho} + x_2^{\rho} + x_3^{\rho} \right)^{(1/\rho) - 1}} \right]^{\frac{1}{\rho - 1}} \frac{I}{\sum_j p_j^{\frac{\rho}{\rho - 1}} \left(x_1^{\rho} + x_2^{\rho} + x_3^{\rho} \right)^{\frac{1}{\rho}}} \\ &= \left[p_i \right]_{\rho - 1}^{\frac{1}{\rho - 1}} \frac{I}{\sum_j p_j^{\frac{\rho}{\rho - 1}}} \end{aligned}$$

this is the CES demand function widely used in empirical research

note that it satisfies homogeneity of degree zero in prices and income