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I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period
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xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

SHRINKING CAKE ALTERNATING OFFERS

I 2 players, Ingolf and Ariel
I First period: Ingolf proposes a division (xi, 1− xi), where

xi ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ariel accepts the division, he gets 1− xi, while Ingolf gets xi and the

game ends.
I If Ariel rejects then the cake shrinks to size δ and the second period

starts.
I Second period: Ariel proposes a division (1− xa, xa), where

xa ∈ {0, 1/3, 1/2, 2/3, 1}.
I If Ingolf accepts the division, he gets δ(1− xa), while Ariel gets δ(xa)

and the game ends.
I If Ingolf rejects then the game ends with both players getting 0.
I What is the subgame perfect equilibrium of this game?
I What if following Ingolf’s rejection there was another period just like

the first with Ingolf proposing and a cake size of δ2?



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0



Bargaining

COMMITMENT IN BARGAINING

I John and Oskar announce their demands xJ and xO simultaneously
from the set {0, 1/3, 1/2, 2/3, 1}.

I If the sum doesn’t exceed 1 they get their own demands.
I Otherwise they play the game depicted below.
I What does subgame perfection predict?

Accept Stick
Accept 1− xO, 1− xJ 1− xO − 0.49, xO

Stick xJ, 1− xJ − 0.49 0, 0


	Bargaining

