Bargaining

Rohan Dutta/David Levine
Washington University in St. Louis

Econ 4011

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

HagGLing and its variants

- The price of vegetables at the local vendor.
- Salary of NFL players
- Divorce settlements
- International border disputes
- Trade unions and firms

Basic Components

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

Basic Components

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

BASIC COMPONENTS

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

BASIC COMPONENTS

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

BASIC COMPONENTS

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

BASIC COMPONENTS

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

BASIC COMPONENTS

- Multiple players
- Surplus
- The value of a full season of football
- The cost of a lengthy court case
- The cost of war
- Necessity of agreement

Questions

- Is there a division that is acceptable to all?
- What are the shares for each player?
- Efficiency
- Distribution

Questions

- Is there a division that is acceptable to all?
- What are the shares for each player?
- Efficiency
- Distribution

Questions

- Is there a division that is acceptable to all?
- What are the shares for each player?
- Efficiency
- Distribution

Questions

- Is there a division that is acceptable to all?
- What are the shares for each player?
- Efficiency
- Distribution

Questions

- Is there a division that is acceptable to all?
- What are the shares for each player?
- Efficiency
- Distribution

Axiomatic/Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic / Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic / Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic / Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic /Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic /Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic /Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

Axiomatic / Cooperative Approach

- S is the set of all possible outcomes in terms of utility.
- $s_{0} \in S$ is the disagreement outcome.
- $\left(S, s_{0}\right)$ is a bargaining problem.
- A bargaining solution simply chooses a possible outcome for any given bargaining problem.
- Examples
- Impose conditions which Bargaining solutions must satisfy
- Nash, Kalai Smorodinsky, Proportional Solution

NON COOPERATIVE APPROACH

- Explicitly model the negotiation process as a game.
- Solve for Nash Equilibria, Subgame Perfect Equilibria.
- Is the equilibrium efficient?
- Does it favour some players over others?

NON COOPERATIVE APPROACH

- Explicitly model the negotiation process as a game.
- Solve for Nash Equilibria, Subgame Perfect Equilibria.
- Is the equilibrium efficient?
- Does it favour some players over others?

NON COOPERATIVE APPROACH

- Explicitly model the negotiation process as a game.
- Solve for Nash Equilibria, Subgame Perfect Equilibria.
- Is the equilibrium efficient?
- Does it favour some players over others?

NON COOPERATIVE APPROACH

- Explicitly model the negotiation process as a game.
- Solve for Nash Equilibria, Subgame Perfect Equilibria.
- Is the equilibrium efficient?
- Does it favour some players over others?

NON COOPERATIVE APPROACH

- Explicitly model the negotiation process as a game.
- Solve for Nash Equilibria, Subgame Perfect Equilibria.
- Is the equilibrium efficient?
- Does it favour some players over others?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from
$\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Discrete Nash Demand Game

- 2 players, John and Oskar
- Simultaneously announce demands from $\{0,1 / 3,1 / 2,2 / 3,1\}$
- If $x_{j}+x_{0} \leq 1$ then each player gets his demand.
- Otherwise they both get a payoff of 0
- What are the Nash Equilibria of this game?
- Efficiency?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division ($1-x_{a}, x_{a}$), where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division ($1-x_{a}, x_{a}$), where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division ($1-x_{a}, x_{a}$), where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Shrinking Cake Alternating Offers

- 2 players, Ingolf and Ariel
- First period: Ingolf proposes a division $\left(x_{i}, 1-x_{i}\right)$, where $x_{i} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ariel accepts the division, he gets $1-x_{i}$, while Ingolf gets x_{i} and the game ends.
- If Ariel rejects then the cake shrinks to size δ and the second period starts.
- Second period: Ariel proposes a division $\left(1-x_{a}, x_{a}\right)$, where $x_{a} \in\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If Ingolf accepts the division, he gets $\delta\left(1-x_{a}\right)$, while Ariel gets $\delta\left(x_{a}\right)$ and the game ends.
- If Ingolf rejects then the game ends with both players getting 0 .
- What is the subgame perfect equilibrium of this game?
- What if following Ingolf's rejection there was another period just like the first with Ingolf proposing and a cake size of δ^{2} ?

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{J}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{I}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{J}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{J}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{J}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

Commitment in Bargaining

- John and Oskar announce their demands x_{J} and x_{O} simultaneously from the set $\{0,1 / 3,1 / 2,2 / 3,1\}$.
- If the sum doesn't exceed 1 they get their own demands.
- Otherwise they play the game depicted below.
- What does subgame perfection predict?

	Accept	Stick
Accept	$1-x_{O}, 1-x_{J}$	$1-x_{O}-0.49, x_{O}$
Stick	$x_{J}, 1-x_{J}-0.49$	0,0

