Copyright (C) 2011 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

If you prefer you may use the Creative Commons attribution license http://creativecommons.org/licenses/by/2.0/

Mechanism Design

An "auction" problem

- Single seller has a single item
- Seller does not value item
- Two buyers with independent valuations
$0 \leq v^{l}<v^{h}$ low and high valuations
$\pi^{l}+\pi^{h}=1$ probabilities of low and high valuations

In the Auction Environment

q^{l}, q^{h} probability of getting item when low and high
p^{h}, p^{l} expected payment when low and high
individual rationality constraint
(IR) $\quad q^{i} v^{i}-p^{i} \geq 0$

- if you announce truthfully, you get at least the utility from not playing the game
incentive compatibility constraint
(IC) $\quad q^{i} v^{i}-p^{i} \geq q^{-i} v^{i}-p^{-i}$
- you gain no benefit from lying about your type
probability constraints
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$

Seller Problem

Maximize seller utility $U=\pi^{l} p^{l}+\pi^{h} p^{h}$
Subject to IC and IR

Guess that:

IR binds for low value
$q^{l} v^{l}-p^{l}=0$

IC binds for high value
$q^{h} v^{h}-p^{h}=q^{l} v^{h}-p^{l}$

The solution

$p^{l}=q^{l} v^{l}$ from low IR
substitute into high IC
$p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l}$
plug into utility of seller
$U=\pi^{l} q^{l} v^{l}+\pi^{h}\left(\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l}\right)$
$U=q^{l}\left(\pi^{l} v^{l}-\pi^{h} v^{h}+\pi^{h} v^{l}\right)+\pi^{h} q^{h} v^{h}$
$\pi^{l}+\pi^{h}=1$ so
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$

Case 1: $v^{l}>\pi^{h} v^{h}$
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$

Make q^{l}, q^{h} large as possible so
$\pi^{l} q^{l}+\pi^{h} q^{h}=1 / 2$
$U=\frac{1 / 2-\pi^{h} q^{h}}{\pi^{l}}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
$U=\frac{1}{2 \pi^{l}}\left(v^{l}-\pi^{h} v^{h}\right)+q^{h} \frac{\pi^{h}}{\pi^{l}}\left(v^{h}-v^{l}\right)$
so q^{h} should be as large as possible
$q^{h}=\pi^{l}+\pi^{h} / 2$
plug back into (2) to find
$q^{l}=\pi^{l} / 2$
expected payments

$$
\begin{aligned}
& p^{l}=q^{l} v^{l}, p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l} \\
& p^{l}=v^{l} \pi^{l} / 2 \\
& p^{h}=v^{h} / 2+\pi^{l} v^{l} / 2
\end{aligned}
$$

Implementation of Case 1

modified auction: each player announces their value
the highest announced value wins
if there is a tie, flip a coin; if the low value wins, he pays his value
if the high value wins he pays
$\frac{p^{h}}{q^{h}}=\frac{v^{h} / 2+\pi^{l} v^{l} / 2}{\pi^{l}+\pi^{h} / 2}$
under these rules
probability that high type wins is $q^{h}=\pi^{l}+\pi^{h} / 2$
probability that low type wins is $q^{l}=\pi^{l} / 2$
just as in the optimal mechanism, this means the expected payments are the same too

Case 2: $v^{l}<\pi^{h} v^{h}$
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$

Make q^{h} large as possible, q^{l} as small as possible
$q^{h}=\pi^{l}+\pi^{h} / 2$
$q^{l}=0$
expected payments

$$
\begin{aligned}
& p^{l}=q^{l} v^{l}, p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l} \\
& p^{l}=0 \\
& p^{h}=\left(\pi^{l}+\pi^{h} / 2\right) v^{h}
\end{aligned}
$$

Implementation of Case 2

set a fixed price equal to the highest valuation
$v^{h}=\frac{p^{h}}{q^{h}}=\frac{\left(\pi^{l}+\pi^{h} / 2\right) v^{h}}{\pi^{l}+\pi^{h} / 2}$

Other Applications of Mechanism Design

- general equilibrium theory
- public goods
- taxation
- price discrimination

