Copyright (C) 2011 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

If you prefer you may use the Creative Commons attribution license http://creativecommons.org/licenses/by/2.0/

Introductory Lecture

What this class is about

- economic science as it exists today
- intrinsically a mathematical subject
- the heart of economics is mechanism design theory
- the goal of the class is to give you a limited working knowledge of mechanism design theory

The Monopoly Pricing Problem

- The catering company Big Eats has the exclusive right to sell pizza on the campus of Big U.
- How much should it charge for each pizza?
- Each pizza will cost $c \$$ to produce and distribute.
- Market research indicates that the number of units that will be sold x depends upon the price p according to the relation $x=d(p)$, where a higher price results in fewer sales.
- This is the simplest example of a mechanism design problem: here the choice is between different prices that can be charged. Deeper analysis would consider more elaborate pricing schemes: auction the pizzas to the highest bidder, allocate the pizzas by means of a contest and so forth.
- Illustrates the interplay between an economic problem (what should we do with the pizzas?) and mathematical methods.

Solution to the Problem of Monopoly

p is price, x is output, c is unit cost
profit $\pi=p x-c x$; this is what Big Eats cares about
demand $x=d(p)$ or inverse demand $p=f(x)$
profit again $\pi=f(x) x-c x$
for a maximum: marginal profit equals zero
$\frac{d \pi}{d x}=f^{\prime}(x) x+f(x)-c=0, f(x)\left[\frac{f^{\prime}(x) x}{f(x)}+1\right]=c$
$\eta \equiv \frac{d \log x}{d \log p}=\frac{d \log x}{d \log f(x)}=\frac{1 / x}{f^{\prime}(x) / f(x)}=\frac{f(x)}{f^{\prime}(x) x}$ the price elasticity of demand

$$
p\left[\frac{1}{\eta}+1\right]=c \text { or } p-c=-p / \eta
$$

Discussion of the Solution

$p-c=-p / \eta$
η is negative so the markup $p-c$ is positive

- monopoly vs. "competition": the more "elastic" is output [large absolute η] with respect to price the smaller the markup
- competition: raise price a tiny amount lose entire market: infinite elasticity
- the more "inelastic" is output [small absolute η] with respect to price, the bigger the markup: monopolists like inelasticity, you can increase your price a lot without having much effect on your sales
- game theoretic perspective: we are taking into account how "other players" respond to our "strategy": the more we charge, the less the "other players" are willing to pay

An Example with Linear Demand

$p=a-b x$
monopoly
$\pi=(a-b x) x-c x=(a-c) x-b x^{2}$
$\frac{d \pi}{d x}=(a-c)-2 b x=0$
$x=\frac{a-c}{2 b}$ the monopoly output
competitive equilibrium
$p=c$
$a-b x=c$
$x=\frac{a-c}{b}$ twice the monopoly output

Graphical Analysis

revenue $=p x=f(x) x$
marginal revenue $=M R=\frac{d}{d x}$ revenue
cost $=c x$
marginal cost $=M C=\frac{d}{d x}$ cost $=c$
$f^{\prime}(x) x+f(x)=c$ or $M R=M C$
take $a=9, b=1, c=2$

Optimum of the Monopolist

Ouput

> - inverse demand
> - MC
> MR

Returns to Scale

$$
\begin{aligned}
& \text { total cost }=c x+d x^{2} / 2 \\
& \text { average }=c+d x / 2 \\
& \text { marginal }=c+d x
\end{aligned}
$$

- if $d=0$ constant returns to scale
- if $d>0$ decreasing returns to scale
- if $d<0$ increasing returns to scale

Example Revisited

$$
p=a-b x
$$

monopoly

$$
\begin{aligned}
& \pi=(a-b x) x-c x-d x^{2} / 2 \\
& =(a-c) x-(b+d / 2) x^{2} \\
& \frac{d \pi}{d x}=(a-c)-2(b+d / 2) x=0 \\
& x=\frac{a-c}{2 b+d}
\end{aligned}
$$

competitive equilibrium
$a-b x=c+d x$
$x=\frac{a-c}{b+d}$

- when $d>0$ (decreasing returns to scale) monopolist produces more than $1 / 2$ competition
- when $d<0$ competitor earns negative profit
average $=c+d x / 2$
marginal $=c+d x$
when $d<0$
average cost > marginal cost
so price $=$ marginal cost $<$ average cost
means you lose money on each unit you sell

