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Abstract 
 
This entry shows why self-interested agents manage to cooperate in a long-term 
relationship.  When agents interact only once, they often have an incentive to deviate 
from cooperation. In a repeated interaction, however, any mutually beneficial outcome 
can be sustained in an equilibrium.  This fact, known as the folk theorem, is explained 
under various information structures.  This entry also compares repeated games with 
other means to achieve efficiency and briefly discuss the scope for potential 
applications.  
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Repeated games 
Repeated games provide a formal and quite general framework to examine why 
self-interested agents manage to cooperate in a long term relationship. 
Formally, repeated games refer to a class of models where the same set of agents 
repeatedly play the same game, called the ‘stage game’, over a long (typically, infinite) 
time horizon. In contrast to the situation where agents interact only once, any 
mutually beneficial outcome can be sustained as an equilibrium when agents interact 
repeatedly and frequently.  A formal statement of this fact is known as the folk 
theorem.   
 
Repeated games and the general theories of effic iency 
Thanks to the developments in the last three decades, economics now recognizes three 
general ways to achieve efficiency: 
(1) Competition  
(2) Contracts  
(3) Long term relationships.  
For standardized goods and services, with a large number of potential buyers and 
sellers, promoting market competition is an effective way to achieve efficiency.  This is 
formulated as the classic First and Second Welfare Theorems in general equilibrium 
theory.  There are, however, other important resource allocation problems which do 
not involve standardized goods and services.  Resource allocation within a firm or an 
organization is a prime example, as pointed out by Ronald Coase, and examples abound 
in social and political interactions.  In such a case, aligning individual incentives with 
social goals is essential for efficiency, and this can be achieved by means of incentive 
schemes (penalties or rewards).  The incentive schemes, in turn, can be provided in 
two distinct ways: by a formal contract or by a long term relationship. The penalties 
and rewards specified by a formal contract are enforced by the court, while in a long 
term relationship, the value of future interaction serves as the rewards and penalties 
to discipline the agents’ current behavior.  The theory of contracts and mechanism 
design concerns the former case, and the theory of repeated games deals with the latter.  
These theories provide general methods to achieve efficiency, and they have become 
important building blocks of modern economic theory. 
 
An example: collusion of gas stations and the tr igger strategy 
Consider two gas stations located right next to each other.  They have identical and 
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constant marginal cost c (the wholesale price of gasoline) and compete by publicly 
posting their prices.  Suppose their joint profit is maximized when they both charge 
p=10, where each receives a large profit π .  Although this is the best outcome for 
them, they have an incentive to deviate.  By slightly undercutting the price, each of 
them can steal all the customers from the opponent, and its profit (almost) doubles. 
The only price free from such profitable deviation is p=c, where their profit is equal to 
zero.  In other words, the only Nash equilibrium in the price competition game is an 
inefficient (for the gas stations) outcome where both charge p=c.  This situation is the 
rule rather than the exception: The Nash equilibrium in the stage game, the only 
outcome that agents can credibly achieve in a one-shot interaction, is quite often 
inefficient for them. This is because agents only seek their private benefits, ignoring 
the benefits or costs of their actions for the opponents. 
 In reality, however, gas stations enjoy positive profits, even when there is 
another station nearby.  An important reason may well be that their interaction is not 
one-shot.  Formally, the situation is captured by a repeated game, where the two gas 
stations play the price competition game (the stage game) over an infinite time horizon 
t=0,1,2,….  Consider the following repeated game strategy: 
1) Start with the optimal price p=10. 
2) Stick to p=10 as long as no player (including oneself) has ever deviated from p=10. 
3) Once anyone (including oneself) deviated, charge p=c forever. 
This can be interpreted as an explicit or implicit agreement of the gas stations: charge 
the monopoly price p=10, and any deviation triggers cut-throat price competition (p=c 
with zero profit).  Let us now check if each player has any incentive to deviate from 
this strategy.  Note that, if no one deviates, each station enjoys profit π every day. As 
we saw above, a player can (almost) double its stage payoff by slightly undercutting the 
agreed price p=10.  Hence the short term gain from deviation is at most π. If one 
deviates, however, her future payoff is reduced from π to zero in each and every period 
in the future.  Now assume that the players discount future profits by the discount 
factor δ∈(0,1). The number δ measures the value of a dollar in the next period. The 
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short-term gain from defection (π), no one wants to deviate from the collusive price 
p=10.  The condition is π ≤ δ/(1 – δ)π, or equivalently, 1/2 ≤ δ.  
 Next let us check if the players have an incentive to carry out the threat (the 
cut-throat price competition p=c). Since p=c is the Nash equilibrium of the stage game, 
charging p=c in each period is a best reply if the opponent always does so.  Hence, the 
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players are choosing mutual best replies.  In this sense, the threat of p=c is credible or 
self-enforcing. 
 In summary, under the strategy defined above, players are choosing mutual 
best replies after any history, as long as 1/2 ≤ δ.  In other words, the strategy 
constitutes a subgame perfect equilibrium in the repeated game.  Similarly, in a 
general game, any outcome which Pareto dominates the Nash equilibrium can be 
sustained by a strategy which reverts to the Nash equilibrium after a deviation.  Such 
a strategy is called a trigger strategy. 
 
Three remarks: multiple equilibria, credibility of threat and renegotiation,  
and f inite versus inf inite horizon 
A couple of remarks are in order about the example.  First, the trigger strategy profile 
is not the only equilibrium of the repeated game.  The repetition of the stage game 
Nash equilibrium (p=c forever) is also a subgame perfect equilibrium.  Are there any 
other equilibria?  Can we characterize all equilibria in a repeated game?  The latter 
question appears to be formidable at first sight, because there are an infinite number of 
repeated game strategies, and they can potentially be quite complex.  We do have, 
however, some complete characterizations of all equilibria of a repeated game, such as 
folk theorems and self-generation conditions as will be discussed subsequently.   
 Second, one may question the credibility of the threat (p=c forever).  In the 
above example, credibility was formalized as the subgame perfect equilibrium condition. 
According to this criterion, the threat p=c is credible because a unilateral deviation by 
a single player is never profitable.  The threat p=c, however, may be upset by 
renegotiation.  When players are called upon to carry out this grim threat after a 
deviation, they may well get together and agree to “let bygones be bygones.”  After all, 
when there is a better equilibrium in the repeated game (for example, the trigger 
strategy equilibrium), why do we expect the players to stick to the inefficient one (p=c)?  
This is the problem of renegotiation proofness in repeated games.  The problem is 
trickier than it appears, however, and economists have not yet agreed on what is the 
right notion of renegotiation proofness for repeated games.  The reader may get a 
sense of difficulty from the following observation.  Suppose the players have 
successfully renegotiated away p=c to play the trigger strategy equilibrium again.  
This is self-defeating, however, because the players now have an incentive to deviate, 
as they may well anticipate that the threat p=c will be again subject to renegotiation 
and will not be carried out.  For a comprehensive discussion of this topic (and also of a 
number of major technical results on repeated games), see an excellent survey by D. 



 4 

Pearce (1990).   
 Third, let me comment on the assumption of an infinite time horizon.  
Suppose that the gas stations are to be closed by the end of next year (due to a new 
zoning plan, for example).  This situation can be formulated as a finitely repeated 
game.  On the last day of their business, the gas stations just play the stage game, 
and therefore they have no other choice but to play the stage game equilibrium p=c.  
In the penultimate day, they rationally anticipate that they will play p=c irrespective 
of their current action.  Hence they are effectively playing the stage game in the 
penultimate day, and again they choose p=c.  By induction, the only equilibrium of the 
finitely repeated price competition is to charge p=c in every period.  The impossibility 
of cooperation holds no matter how long the time horizon is, and it is in sharp contrast 
to the infinite horizon case.   
 Although one may argue that players do not really live infinitely long (so that 
the finite horizon case is more realistic), there are some good reasons to consider the 
infinite horizon models.  First, even though the time horizon is finite, if players do not 
know in advance exactly when the game ends, the situation can be formulated as an 
infinitely repeated game.  Suppose that, with probability r > 0, the game ends at the 
end of any given period.  This implies that, with probability one, the game ends in a 
finite horizon.  Note, however, that the expected discounted profit is equal to π(0) + (1 
– r)δπ(1) +(1 – r)２δ2π(2) + …, where π(t) is the stage payoff in period t. This is identical 
to the payoff in an infinitely repeated game with discount factor δ’ = (1 – r)δ.  Second, 
the drastic “discontinuity” between the finite and infinite horizon cases in the price 
competition example hinges on the uniqueness of equilibrium in the stage game. Benoit 
and Krishna (1985) show that, if each player has multiple equilibrium payoffs in the 
stage game, the long but finite horizon case enjoys the same scope for cooperation as 
the infinite horizon case (the folk theorem, discussed below, approximately holds for 
T-period repeated game, when T →∞).  
 
The repeated game model 
Now let me present a general formulation of a repeated game.  Consider an infinitely 
repeated game, where players i=1,2,…,N repeatedly play the same stage game over an 
infinite time horizon t=0, 1, 2, …. In each period, player i takes some action ai ∈ Ai, and 
her payoff in that period is given by a stage game payoff function gi(a), where a = (a1, …, 
aN) is the action profile in that period.   The repeated game payoff is given by  
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where a(t) denotes the action profile in period t and δ ∈ (0,1) is the discount factor.  It 
is often quite useful to look at the average payoff of the repeated game, which is 
defined to be (1 – δ)Πi.  Note that, if one receives the same payoff x in each period, the 
repeated game payoff is Πi = x + δx + δ2x + … = x/(1 – δ).  This example helps to 
understand the definition of average payoff: in this case (1 – δ)Πi is indeed equal to x, 
the payoff per period.  
 A history up to time t is the sequence of realized action profiles before t:  ht = 
(a(0), a(1), …, a(t – 1)).  A repeated game strategy for player i, denoted by si, is a 
complete contingent action plan, which specifies a current action after any history: ai(t) 
= si(ht) (a minor note: to determine ai(0), we introduce a dummy history h0 such that 
ai(0) = si(h0)).  A repeated game strategy profile s = (s1, …, sN) is a subgame perfect 
equilibrium if it specifies mutual best replies after any history.   
 
The folk theorem 
Despite the fact that a repeated game has an infinite number of strategies, which can 
be arbitrarily complicated, we do have a complete characterization of equilibrium 
payoffs.  The folk theorem shows exactly which payoff points can be achieved in a 
repeated game.   

Before stating the theorem, we need to introduce a couple of concepts.  First, 
let us determine the set of physically achievable average payoffs in a repeated game.  
Note that, by alternating between two pure strategy outcomes, say u and v, one may 
achieve any point between u and v as the average payoff profile.  Hence, an average 
payoff profile can be a weighted average (in other words, a convex combination) of pure 
strategy payoff profiles in the stage game.  Let us denote the set of all such points by 
V.  Formally, the set of feasible average payoff profiles V is the smallest convex set 
that contains the pure strategy payoff profiles of the stage game.  
 Second, let us determine the points in V that cannot possibly be an 
equilibrium outcome. For example, if a player has an option to stay out to enjoy zero 
profit in each period, it is a priori clear that her equilibrium average payoff cannot be 
less than zero.  In general, there is a payoff level that a player can guarantee herself 
in any equilibrium, and this is formulated as the minimax payoff.  Formally, the 
minimax payoff for player i is defined as 
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where α =(α1,…,αN) is a mixed action profile (αi is a probability distribution over player 
i’s pure actions) and gi(α) is the associated expected payoff.  To understand why min 
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and max are taken in that particular order, consider the situation where player i 
always correctly anticipate what others do.  If player i knows that others choose α–i = 

(α1,…αi–1, αi＋1,…,αN), he can play a best reply against α–i to obtain )(max !
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 is a function of α–i．In the worst case, where others take the most 

damaging actions α–i, player i obtains the minimax payoff (this is exactly what the 
definition says). From this definition it is clear that, in any equilibrium of the repeated 
game, the average payoff to each player is at least her minimax payoff. In any 
equilibrium, each player correctly anticipates what others do, and simply by playing 
the stage game best reply in each period, any player can make sure that her average 
payoff is more than her minimax payoff.  (A comment: we consider mixed strategies in 
the definition of the minimax payoff because in many games the minimax payoff is 
smaller when we consider mixed strategies.)  
 From what we saw, now it is clear that the set of equilibrium average payoff 
profiles of a repeated game is at most 
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set V* is called the feasible and individually rational payoff set. This is the set of 
physically achievable average payoff profiles in the repeated game where each player 
receives more than her minimax payoff. The folk theorem shows that any point in this 
“maximum possible region” can indeed be an equilibrium outcome of the repeated game. 
(Throughout this entry, I maintain a minor technical assumption that each player has 
a finite number of actions in the stage game.) 
 
Folk theorem: In a N-player infinitely repeated game, any feasible and individually 
rational payoff profile v ∈ V* can be achieved as the average payoff profile of a 
subgame perfect equilibrium when the discount factor δ is close enough to 1, provided 
that either 
(i) N = 2, or 
(ii) N ≥ 3 and no two players have identical interests. 
 
Formally, no two players have identical interests if there are no players i and j (i≠j) 
whose payoffs satisfy gi(a) = bgj(a) + c, b > 0 (i.e., no two players have the same 
preferences over the stage game outcomes). This is a “generic” condition that is almost 
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always satisfied: the case where players have identical interests is very special in the 
sense that the equality gi(a) = bgj(a) + c fails by even a slight change of the payoff 
functions.  Hence, the folk theorem provides a general theory of efficiency: it shows 
that, for virtually any game, any mutually beneficial outcome can be achieved in a long 
term relationship, if the discount factor is close to 1.  Although game theoretic 
predictions quite often depend on the fine details of the model, this result is a notable 
exception for its generality.  
 The crucial condition in the folk theorem is a high discount factor.  The 
discount factor δ may measure the (subjective) patience of a player, or, it may be equal 
to 1/(1+r), where r is the interest rate per period.  Although the discount factor may 
not be directly observable (in particular, in the former case), it should be high when one 
period is short.  Hence, an empirically testable implication is that players who have 
daily interaction (such as the gas stations in our example) have a better scope for 
cooperation than those who interact only once a year.  An important message of the 
folk theorem is that a high frequency of interaction is essential for the success of a long 
term relationship. 
 The name ‘folk theorem’ comes from the fact that game theorists had 
anticipated that something like it should be true long before it was precisely 
formulated and proved. In this sense, the assertion had been folklore in the game 
theorists’ community. The proof is, however, by no means obvious, and there is a body 
of literature to prove the theorem in various degrees of generality.  Early 
contributions include Aumann (1959), Friedman (1971) and Rubinstein (1979).  The 
statement above is based on Fudenberg and Maskin (1986) and its generalization by 
Abreu, Dutta and Smith (1994). The proof is constructive: a clever strategy, which has 
a rather simple structure, is constructed to support any point in V*.  
 
Repeated games versus formal contracts 
To discuss the scope of applications, I now compare a long-term relationship (repeated 
game) and a formal contract as a means to enforce efficient outcomes.  As our gas 
station example shows, quite often an agent has an incentive to deviate from an 
efficient outcome, because it increases her private returns at the expense of the social 
benefit.  Such a deviation can be deterred if we impose a sufficiently high penalty so 
that the incentive constraint 

gain from deviation  ≤  penalty 
is satisfied.  This is the basic and common feature of repeated games and contracts.  
A formal contract explicitly specifies the penalty and it is enforced by the court.  In 
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repeated games, the penalty is indirectly imposed through future interaction.  In this 
sense the theory of repeated games can be regarded as the theory of informal or 
relational contracts. 
 When is a long-term relationship a better way to achieve cooperation than a 
formal contract?  First, a long-term relationship is useful when a formal contract is 
too costly or impractical.  For example, it is often quite costly for a third party (the 
court) to verify if there was any deviation from an agreement, while defections may be 
directly observed by the players themselves.  In practice, what constitutes 
‘cooperation’ is often so fuzzy or complicated that it is hard to write it down explicitly, 
although the players have a common and good understanding about what it is.  
‘Pulling enough weight” in a joint research project may be a good example.  In those 
situations, a long-term relationship is a more practical way to achieve cooperation than 
a formal contract.  In fact, a classic study by Macaulay (1963) indicates that a vast 
majority of business transactions are executed without writing formal contracts.  
Second, there are some cases where a court powerful enough to enforce formal 
contracts simply does not exist.  For example, in many problems in development 
economics and economic history, the legal system is highly imperfect. Even for 
developed countries in the modern age, there are no legal institutions which have 
enough binding power to enforce international agreements.  Hence, repeated games 
provide a useful framework to address such problems as the organization of medieval 
trade, informal mutual insurance in developing countries, international policy 
coordination, and measures against global warming.  Lastly, there is no legal system 
to enforce cartels or collusion, because the existing legal system refuses to enforce any 
contract that violates anti-trust laws.  Hence a long-tem relationship is the only way 
to enforce a cartel or collusive agreement. 
 
Is the folk theorem a negative result? 
The theory of repeated games based on the folk theorem is often criticized because it 
does not, as the criticism goes, have any predictive power.  The folk theorem basically 
says that anything can be an equilibrium in a repeated game.  One could argue, 
however, that this criticism is misplaced if we regard the theory of repeated games as a 
theory of informal contracts.  Just as anything can be enforced when the party agrees 
to sign a binding contract, in repeated games any (feasible and individually rational) 
outcome is sustained if the players agree on an equilibrium.  Enforceability of a wide 
range of outcomes is the essential property of effective contracts, formal or informal. 
The folk theorem correctly captures this essential feature. 
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 This criticism is valid, however, in the sense that the theory of repeated games 
does not provide a widely accepted criterion for equilibrium selection.  When we 
regard a repeated game as an informal contract, where the players explicitly try to 
agree on which equilibrium to play, the problem of equilibrium selection boils down to 
the problem of bargaining. In such a context, it is natural to assume that an efficient 
point (in the set of equilibria) is played.  In the vast majority of applied works of 
repeated games with symmetric stage games (such as the gas stations example), it is 
common to look at the best symmetric equilibrium.  In contrast, when players try to 
find an equilibrium through trial and error, the theory of repeated games is rather 
silent about which equilibrium is likely to be selected.  A large body of computer 
simulation literature on the evolution of cooperation, pioneered by Axelrod (1984), may 
be regarded as an attempt to address this issue.   
 
Imperfect Monitoring 
 So far we assumed that players can perfectly observe each other’s actions.  In reality, 
however, long term relationships are often plagued by imperfect monitoring.  For 
example, a country may not verify exactly how much CO2 is emitted by neighboring 
countries. Workers in a joint project may not directly observe each other’s effort.  
Electronic appliance shops often offer secret discounts for their customers, and each 
shop may not know exactly how much is charged by its rivals.  In such situations, 
however, there are usually some pieces of information, or signals, which imperfectly 
reveal what actions have been taken.  Published meteorological data indicates the 
amount of CO2 emission, the success of the project is more likely with higher effort, and 
a shop’s sales level is related (although not perfectly) to its rivals’ prices.  
 According to the nature of the signals, repeated games with imperfect 
monitoring are classified into two categories: the case of public monitoring, where 
players commonly observe a public signal, and the case of private monitoring, where 
each player observe a signal that is not observable to others.  Hence, the CO2 emission 
game and the joint project game are examples with imperfect public monitoring 
(published meteorological data and the success of the project are publicly observed), 
while the secret price cutting game by electronic shops is a good example with 
imperfect private monitoring (one’s sales level is private information).  
 This difference may appear to be a minor one, but, somewhat surprisingly, it 
is not.  The imperfect public monitoring case shares many features with the perfect 
monitoring case, and we now have a good understanding of how it works.  In contrast, 
the imperfect private monitoring case is not fully understood, and we only have some 



 10 

partial characterizations of equilibria. In what follows, I will sketch the main results 
in the imperfect public and private monitoring cases.   
 
Imperfect Public Monitoring 
At first sight, this case might look much more complicated than the perfect monitoring 
case, but those two cases are similar in the sense that they share a recursive structure. 
Consider the set W* of all average payoff profiles associated with the subgame perfect 
equilibria of a perfect monitoring repeated game.  Any point w ∈ W* is a weighted 
average of the current payoff g and the continuation payoff w’: (1 – δ)g + δw’. The 
continuation payoff typically changes when a player deviates from g, in such a way 
that the short-term gain from deviation is wiped out.  Subgame perfection requires 
that all continuation payoffs are chosen from the equilibrium set W*.  In this sense, 
W* is generated by itself, and this stationary or recursive structure turns out to be 
quite useful in characterizing the set of equilibria.   
 The set of equilibria in an imperfect public monitoring game also shares the 
same structure.  Consider the equilibria where the public signal determines which 
continuation equilibrium to play.  When a player deviates from the current 
equilibrium action, it affects both her current payoff and (through the public signal) 
her continuation payoff.  The equilibrium action should be enforceable in the sense 
that any gain in the former should be wiped out in the latter, and this is easier when 
the continuation payoff admits large variations.  Formally, given the range of 
continuation payoffs W, we can determine the set B(W) of enforceable average payoffs.  
The larger the set W is, the more actions can be enforced in the current period (and 
therefore the larger the set B(W) is).  As in the perfect monitoring case, the 
equilibrium payoff set W=W* generates itself: it satisfies the self-generation condition 
of Abreu, Pearce and Stacchetti (1990) W ⊆ B(W).  W* is the largest (bounded) set 
satisfying this condition, and the condition is in fact satisfied with equality.  
Conversely, it is easy to show that any (bounded) set satisfying the self-generation 
condition is contained in the equilibrium payoff set W*.  
 This provides a simple and powerful characterization of equilibria, which is an 
essential tool to prove the folk theorem in the imperfect public monitoring case.  The 
folk theorem shows that, despite the imperfection of monitoring, we can achieve any 
feasible and individually rational payoff profile under a certain set of conditions.  
 Before presenting a formal statement, let me sketch the basic ideas behind the 
folk theorem.  When monitoring is imperfect, players have to be punished when a 
“bad” signal outcome ω is observed, and this may happen with a positive probability 
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even if no one defects.  For example, in the joint project game, the project may fail 
even though everyone works hard.  A crucial difference between the perfect and 
imperfect monitoring cases is that, in the latter, punishment occurs on the equilibrium 
path.  The resulting welfare loss, however, can be negligible under certain conditions. 
 Consider a two-player game, where the probability distribution of the signal 
ω∈Ω={ω1,…,ωK}, when no one defects, is given by P*= (p*(ω1),…,p*(ωK)) in the Figure.  
Suppose that each player’s defection changes the probability distribution to exactly the 
same point P’. Then, there is absolutely no way to tell which player deviates, so that 
the only way to deter a defection is to punish all players simultaneously, when a “bad” 
outcome arises. This means that surplus is thrown away, and we are bound to have 
substantial welfare loss.  Now consider a case where different players’ actions affect 
the signal asymmetrically: player 1’ defection leads to point P’, while the defection by 
player 2 leads to P”. In this asymmetric case, one can transfer future payoff from 
player 1 to 2 when player 1’s defection is suspected.  Under such a transfer, surplus is 
never thrown away, and this enables us to achieve efficiency. 

The space of signal distributions

P*

P’

P”

x

 
Figure 

 
More precisely, consider the normal vector x of the hyper plane separating P’ 

and P” in the figure, and let w1 = x and w2 = –x be the continuation payoffs of player 1 
and 2 respectively. The Figure indicates that player 1’s expected continuation payoff 
P⋅w1 = P⋅x is reduced by her own defection (P’⋅x < P*⋅x). Similarly, player 2’s defection 
reduces her expected continuation payoffs (P*⋅(–x) > P”⋅(–x)). Note that this asymmetric 
punishment scheme does not reduce the joint payoff, because by construction w1 + w2 is 
identically equal to 0. This is an essential idea behind the folk theorem under imperfect 
public monitoring: When different players’ deviations are statistically discriminated, 
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asymmetric punishment deters defections without welfare loss.   
 When can we say that different players’ deviations are statistically 
discriminated?  Note well that the above construction is impossible when P” is 
exactly in between P* and P’ (i.e., when P” is a convex combination of P* and P’).  
Such a case can be avoided if P*, P’ and P” are linearly independent.  The linear 
independence of the equilibrium signal distribution (P*) and the distributions 
associated with the players’ unilateral deviations (P’ and P”), is a precise formulation of 
what it means that the signal “statistically discriminates different players’ deviations”.  

Let us now generalize this observation. Given an action profile (for simplicity 
of exposition, assume it is pure) to be sustained, there is an associated signal 
distribution P*.  Consider any pair of players i and j, and let |Ak| be the number of 
player k’s actions (k=i, j) in the stage game.  Since each player k=i, j has |Ak| – 1 
ways to deviate, we have |Ai|+|Aj| – 2 signal distributions associated with their 
unilateral deviations.  If those distributions and the equilibrium distribution P*, 
altogether |Ai|+|Aj| – 1 vectors, are linearly independent, we say that the signal can 
discriminate between deviations by i and deviations by j.  This is called the pairwise 
full rank condition.  This holds only when the dimension of the signal space (|Ω|, 
the number of signal outcomes) is larger than the number of those vectors (i.e., 
|Ω|≥|Ai|+|Aj| – 1). Conversely, if this inequality is satisfied, the pairwise full rank 
condition holds “generically” (i.e., it holds unless the signal distributions have a very 
special structure, such as exact symmetry).   This leads us to the folk theorem under 
imperfect public monitoring (this is a restatement of Fudenberg, Levine and Maskin 
(1994) in terms of genericity): 

 
Folk theorem under imperfect public monitoring: Suppose that the signal 
space is large enough in the sense that |Ω|≥|Ai|+|Aj| – 1 holds for each pair of 
players i and j.  Then, for a generic choice of the signal distributions and the stage 
game, any feasible and individually rational payoff profile v ∈ V* can be asymptotically 
achieved by a sequential equilibrium as the discount factor δ tends to 1. 
 
In contrast to the perfect monitoring case, the proof is non-constructive.  Rather than 
explicitly constructing equilibrium strategies, the theorem is proved by showing that 
any smooth subset of V* is self-generating. In fact, the exact structure of the 
equilibrium strategy profile to sustain, for example, an efficient point is not so well 
understood.  Sannikov (2005) shows that detailed structure of equilibrium strategies 
can be obtained if the model is formulated in continuous time. 
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Imperfect Private Monitoring 
Now consider the case where each player receives a private signal about the opponents’ 
actions. Although this has a number of important applications (a leading example is 
the secret price cutting model), this part of research is still in its infancy.  Hence, 
rather than just summarizing definitive results as in the previous subsections, I 
explain in somewhat more technical detail the source of difficulties and the nature of 
existing approaches.  
 The difficulties come from a subtle but crucial difference from the perfect or 
public monitoring case. I will explain below the difference from a couple of viewpoints, 
in the increasing order of technicality. 
(i) In the perfect or public monitoring case, players share a mutual understanding 
about when and whom to punish.  They can coordinate to implement a specific 
punishment, and, more importantly, they can mutually provide the incentives to carry 
out the punishment.  This convenient feature is lost when players have diverse 
private information about each other’s action. 
(ii) In the perfect or public monitoring case, public information directly tells the 
opponents’ future action plans. In the private monitoring case, however, each player 
has to draw statistical inferences about the history of the opponents’ private signals to 
estimate what they are going to do.  The inferences quickly become complicated over 
time, even if players adopt relatively simple strategies. 
(iii) In the perfect or public monitoring case, the set of equilibria has a recursive 
structure, in the sense that a Nash equilibrium of the repeated game is always played 
after any history. Now consider a Nash equilibrium of, for example, the repeated 
prisoners’ dilemma with imperfect private monitoring.  After the equilibrium actions 
in the first period, say (C,C), players condition their action plans on their private 
signals ω1 and ω2.  Hence the continuation play is a correlated equilibrium, where it is 
common knowledge that the probability distribution of the correlation device (ω1,ω2) is 
given by p(ω1,ω2|C,C).  When player 1 deviates to D in the first period, however, the 
distribution of correlation device is not common knowledge: player 1 knows that it is 
p(ω1,ω2|D,C), while player 2 keeps the equilibrium expectation p(ω1,ω2|C,C).  Hence, 
after a deviation, the continuation play is no longer a correlated equilibrium in the 
usual sense.  In addition, the space of the correlation device (the history of private 
signals) becomes increasingly rich over time.  Therefore, the equilibria in the private 
monitoring case do not have a compact recursive structure; a continuation play is 
chosen from a different set, depending on the history. 
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 One way to get around these problems is to allow communication (Compte 
(1998) and Kandori and Matsushima (1998)). In their equilibrium, players truthfully 
communicate their private signal outcomes in each period.  The equilibrium is 
constructed in such a way that each player’s report of her signal is utilized to discipline 
other players and does not affect one’s own continuation payoff.  This implies that 
each player is indifferent about what to report, and therefore truth telling is a best 
reply.  Such an equilibrium, which depends on the history of publicly observable 
messages, works in much the same way as the equilibria in the public monitoring case.  
Hence, with communication, the folk theorem is obtained in the private monitoring 
case.   
 The remaining issue is to characterize the equilibria in the private monitoring 
case without communication.  From the viewpoint of potential applications, this is 
important, because collusion or cartel enforcement is a major applied area of repeated 
games, where communication is explicitly prohibited by the anti-trust law.    
 One may expect that, when players’ private information admits sufficient 
positive correlation, an equilibrium can be constructed in a similar way as in the public 
monitoring case.  Sekiguchi (1997) is the first to construct a non-trivial (and nearly 
efficient) equilibrium in the private monitoring game without communication, and his 
construction is basically built on such an idea.  Strong correlation of private 
information is, however, not assumed in his model but is derived endogenously.  He 
assumed that private signals provide nearly perfect observability and considered mixed 
strategies. In such a situation, the privately observed random variables, the 
action-signal pairs, are strongly correlated (because a player’s random action is 
strongly correlated with another player’s signal under nearly perfect observability).  
Mailath and Morris (2002) showed that, in general, there is “continuity” between the 
public and private but sufficiently correlated monitoring cases, in the sense that any 
strategy with a finite memory works in either case. 
 Those papers are examples of the belief-based approach, which directly 
addresses the statistical inference problem (see point (ii) above).  There are some 
other papers to follow this approach, and they provide judiciously constructed 
strategies in rather specific examples, where the inference problem becomes tractable.  
Aside from the case with near perfect correlation, however, we are yet to have 
generally applicable results or techniques along this line of approach. 
 More successful has been the belief-free approach, where an equilibrium is 
constructed in such a way that the inference problem becomes irrelevant. As a leading 
example, I illustrate Ely and Valimaki’s work (2002) on the repeated prisoners’ 
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dilemma with imperfect private monitoring. Each player’s strategy is a Markov chain 
with two states, R (reward) or P (punishment).  A specific action is played in each 
state (C in R, and D in P), and the transition probabilities between the states depend 
on the realization of the player’s private signal.  Choose those transition probabilities 
in such a way that the opponent is always indifferent between C and D no matter 
which state the player is in.  This requirement can be expressed as a simple system of 
dynamic programming equations, which has a solution when the discount factor is 
close to 1 and the private signal is not too uninformative.  By construction, any action 
choice is optimal against this strategy after any history, and in particular this strategy 
is a best reply to itself (so that it constitutes an equilibrium).  Note that one’s 
incentives do not depend on the opponent’s state, and therefore one does not have to 
draw the statistical inferences about the history of the opponent’s private signals.    
 There are certain difficulties, however, to obtain the folk theorem with such a 
class of equilibria.  First, players may be punished simultaneously in this construction, 
and our discussion about the public monitoring case shows that some welfare loss is 
inevitable (unless monitoring is nearly perfect). Second, even if we restrict our 
attention to the nearly perfect monitoring case, there is a certain set of restrictions 
imposed on the action profiles that can be sustained by such a belief-free equilibrium.   

Those difficulties can be resolved when we consider block strategies. Block 
strategies treat the stage games in T consecutive periods as if they were a single stage 
game, or a block stage game, and applies the belief-free approach with respect to those 
block stage games.  It is now known that, by using the block strategies, the folk 
theorem under private monitoring holds in the nearly perfect monitoring case (Horner 
and Olszewski (2004)) and for some two-player games where monitoring is far from 
perfect (Matsushima (2004)).  In the former, the block structure of the stage game 
helps to satisfy the restrictions imposed on the actions in belief-free equilibria.  In the 
latter, an equilibrium is constructed where players choose constant actions in each 
block.  This means that players have T samples of private signals for the constant 
actions, so that the observability practically becomes nearly perfect when T is large.  
With this increased observability and some restrictions on payoff functions, the folk 
theorem is obtained.  For this construction to be feasible, the signals have to satisfy 
certain strong conditions, such as independence (across players).   
 The general folk theorem, or a general characterization of equilibria, for the 
private monitoring case is yet to be obtained, and it remains to be an important open 
question in economic theory.  A comprehensive technical exposition of the perfect 
monitoring, imperfect public monitoring, and private monitoring cases can be found in 
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Mailath and Samuelson (2006). 
 
Kandori, Michihiro 
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