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1. Introduction

Game theory is a collection of models designed to understand situations in
which decision-makers interact. This chapter discusses models that focus on
the behavior of individual decision-makers. These models are sometimes called
“noncooperative”. Models that focus on the behavior of groups are discussed
in Chapter ??.

2. Strategic games

2.1 Definition

The basic model of decision-making by a single agent consists of a set of
possible actions and a preference relation over this set. The simplest theory
of the agent’s behavior is that she chooses a member of the set that is best
according to the preference relation.

The model of a strategic game extends this model to many agents, who
are referred to as players. Each player has a set of possible actions and a
preference relation over action profiles (lists of actions, one for each player).

Definition 1 A strategic game with deterministic preferences consists
of

• a set N (the set of players)

and for each player i ∈ N

• a set Ai (the set of player i’s possible actions)

• a preference relation %i over the set ×i∈NAi of action profiles.

A strategic game 〈N, (Ai), (%i)〉 is finite if the set N of players and the set
Ai of actions of each player i are finite.

1I am grateful to Jean Guillaume Forand for comments and to the Social Sciences and
Humanities Research Council of Canada for financial support.
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The fact that each player’s preferences are defined over the set of action
profiles allows for the possibility that each player cares not only about her own
action but also about the other players’ actions, distinguishing the model from
a collection of independent single-agent decision problems.

Notice that the model does not have a temporal dimension. An assump-
tion implicit in the solution notions applied to a game is that each player
independently commits to an action before knowing the action chosen by any
other player. Notice also that no structure is imposed on the players’ sets of
actions. In the simplest cases, a player’s set of actions may consist of two
elements; in more complex cases, it may consist, for example, of an interval of
real numbers, a set of points in a higher dimensional space, a set of functions
from one set to another, or a combination of such sets. In particular, an ac-
tion may be a contingent plan, specifying a player’s behavior in a variety of
possible circumstances, so that the model is not limited to “static” problems
(see Section 3.1.1). Thus although the model has no temporal dimension, it
may be used to study “dynamic” situations under the assumption that each
player chooses her plan of action once and for all.

A few examples give an idea of the range of situations that the model
encompasses. The most well-known strategic game is the Prisoner’s Dilemma.
In this game, there are two players (N = {1, 2}, say), each player has two
actions, Quiet and Fink, and each player’s preference relation ranks the action
pair in which she chooses Fink and the other player chooses Quiet highest,
then (Quiet,Quiet), then (Fink,Fink), and finally the action profile in which
she chooses Quiet and the other player chooses Fink. In this example, as in
most examples, working with payoff representations of the players’ preference
relations is simpler than working with the preference relations themselves.
Taking a payoff function for each player that assigns the payoffs 3, 2, 1, and
0 to the four outcomes, we may conveniently represent the game in the table
in Figure 1. (Any two-player strategic game in which each player has finitely
many actions may be represented in a similar table.)

Player 1

Player 2
Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 1. The Prisoner’s Dilemma.

This game takes its name from the following scenario. The two players are
suspected of joint involvement in a major crime. Sufficient evidence exists to
convict each one of a minor offense, but conviction of the major crime requires
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at least one of them to confess, thereby implicating the other (i.e. one player
“finks”). Each suspect may stay quiet or may fink. If a single player finks
she is rewarded by being set free, whereas the other player is convicted of the
major offense. If both players fink then each is convicted but serves only a
moderate sentence.

The game derives its interest not from this specific interpretation, but
because the structure of the players’ preferences fits many other social and
economic situations. The combination of the desirability of the players’ coordi-
nating on an outcome and the incentive on the part of each player individually
to deviate from this outcome is present in situations as diverse as duopolists
setting prices and countries involved in an arms race.

Another example of a strategic game models oligopoly as suggested by
Cournot (1838). The players are the n firms, each player’s set of actions is
the set of possible outputs (the set of nonnegative real numbers), and the
preference relation of player i is represented by its profit, given by the payoff
function ui defined by

ui(q1, . . . , qn) = qiP

(

n
∑

j=1

qj

)

− Ci(qi),

where qi is player i’s output, Ci is its cost function, and P is the inverse demand
function, giving the market price for any total output. Another strategic game
that models oligopoly, associated with the name of Bertrand, differs from
Cournot’s model in taking the set of actions of each player to be the set of
possible prices (which requires profit to be defined as a function of prices).

A strategic game that models competition between candidates for political
office was suggested by Hotelling (1929). The set of players is a finite set
of candidates; each player’s set of actions is the same subset X of the line,
representing the set of possible policies. Each member of a continuum of
citizens (who are not players in the game) has single-peaked preferences over
X. Each citizen votes for the candidate whose position is closest to her favorite
position. A density function on X represents the distribution of the citizens’
favorite policies. The total number of votes obtained by any player is the
integral with respect to this density over the subset of X consisting of points
closer to the player’s action (chosen policy) than to the action of any other
player. A player’s preferences are represented by the payoff function that
assigns 1 to any action profile in which she obtains more votes than every
other player, 1/k to any action profile in which she obtains at least as many
votes as any other player and k ≥ 2 players tie for the highest number of votes,
and 0 to any action profile in which she obtains fewer votes than some other
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player.

2.2 Nash equilibrium

Which action profile will result when a strategic game is played? Game theory
provides two main approaches to answering this question. One isolates action
profiles that correspond to stable “steady states”. This approach leads to the
notion of Nash equilibrium, discussed in this section. The other approach,
discussed in Section 2.5, isolates action profiles that are consistent with each
player’s reasoning regarding the likely actions of the other players, taking
into account the other players’ reasoning about each other and the player in
question.

Fix an n-player strategic game and suppose that for each player in the
game there exists a population of K individuals, where K is large. Imagine
that in each of a long sequence of periods, K sets of n individuals are randomly
selected, each set consisting of one individual from each population. In each
period, each set of n individuals plays the game, the individual from popula-
tion i playing the role of player i, for each value of i. The selected sets change
from period to period; because K is large, the chance that an individual will
play the game with the same opponent twice is low enough not to enter her
strategic calculations. If play settles down to a steady state in which each
individual in each population i chooses the same action, say a∗

i , whenever she
plays the game, what property must the profile a∗ satisfy?

In such a (deterministic) steady state, each individual in population i knows
from her experience that every individual in every other population j chooses
a∗

j . Thus we can think of each such individual as being involved in a single-
person decision problem in which the set of actions is Ai and the preferences
are induced by player i’s preference relation in the game when the action of
every other player j is fixed at a∗

j . That is, a∗ maximizes i’s payoff in the
game given the actions of all other players. Or, looked at differently, a∗ has
the property that no player i can increase her payoff by changing her action a∗

i

given the other players’ actions. An action profile with this property is a Nash
equilibrium. (The notion is due to Nash (1950); the underlying idea goes back
at least to Cournot (1838).). For any action profile b, denote by (ai, b−i) the
action profile in which player i’s action is ai and the action of every other
player j is bj .

Definition 2 A Nash equilibrium of the strategic game 〈N, (Ai), (%i)〉 is
an action profile a∗ for which

a∗ %i (ai, a
∗
−i) for all ai ∈ Ai
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for every player i ∈ N .

By inspection of the four action pairs in the Prisoner’s Dilemma (Figure 1)
we see that the action pair (Fink,Fink) is the only Nash equilibrium. For each
of the three other action pairs, a player choosing Quiet can increase her payoff
by switching to Fink, given the other player’s action.

The games in Figure 2 immediately answer three questions: Does every
strategic game necessarily have a Nash equilibrium? Can a strategic game
have more than one Nash equilibrium? Is it possible that every player is
better off in one Nash equilibrium than she is in another Nash equilibrium?
The left-hand game, which models the game “Matching pennies”, has no Nash
equilibrium. The right-hand game has two Nash equilibria, (B, B) and (C, C),
and both players are better off in (C, C) than they are in (B, B).

B C
B 1,−1 −1, 1
C −1, 1 1,−1

B C
B 1, 1 0, 0
C 0, 0 2, 2

Figure 2. Two strategic games.

In some games, especially ones in which each player has a continuum of
actions, Nash equilibria may most easily be found by first computing each
player’s best action for every configuration of the other players’ actions. For
each player i, let ui be a payoff function that represents player i’s preferences.
Fix a player i and define, for each list a−i of the other players’ actions, the set
of actions that maximize i’s payoff:

Bi(a−i) = {ai ∈ Ai : ai maximizes ui(ai, a−i) over ai ∈ Ai}.

Each member of Bi(a−i) is a best response of player i to a−i; the function Bi is
called player i’s best response function. (Note that it is set-valued.) An action
profile a∗ is a Nash equilibrium if and only if

a∗
i ∈ Bi(a

∗
−i) for every player i.

In some games, the set Bi(a−i) is a singleton for every player i and every list
a−i. For such a game, denote the single element by bi(a−i). Then the condition
for the action profile a∗ to be a Nash equilibrium may be written as

a∗
i = bi(a

∗
−i) for every player i,

a collection of n equations in n unknowns.
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Consider, for example, a two-player game in which each player’s set of
actions is the set of nonnegative real numbers and the preference relation of
each player i is represented by the payoff function ui defined by

ai(c + aj − ai)

where c > 0 is a constant. In this game each player i has a unique best
response to every action aj of the other player (j), given by bi(aj) = 1

2
(c+ aj).

The two equations a1 = 1

2
(c + a2) and a2 = 1

2
(c + a1) immediately yield the

unique solution (a1, a2) = (c, c), which is thus the only Nash equilibrium of
the game.

2.3 Mixed strategy Nash equilibrium

In a steady state modeled by the notion of Nash equilibrium, all individuals
who play the role of a given player choose the same action whenever they
play the game. We may generalize this notion. In a stochastic steady state,
the rule used to select an action by individuals in the role of a given player
is probabilistic rather than deterministic. In a polymorphic steady state, each
individual chooses the same action whenever she plays the game, but different
individuals in the role of a given player choose different deterministic actions.

In both of these generalized steady states an individual faces uncertainty:
in a stochastic steady state because the individuals with whom she plays the
game choose their actions probabilistically, and in a polymorphic steady state
because her potential opponents, who are chosen probabilistically from their
respective populations, choose different actions. Thus to analyze the players’
behavior in such steady states, we need to specify their preferences regarding
lotteries over the set of action profiles. The following extension of Definition 1
assumes that these preferences are represented by the expected value of a
payoff function. (The term “vNM preferences” refers to von Neumann and
Morgenstern (1944, pp. 15–31; 1947, pp. 204–221), who give conditions on
preferences under which such a representation exists.)

Definition 3 A strategic game (with vNM preferences) consists of

• a set N (the set of players)

and for each player i ∈ N

• a set Ai (the set of player i’s possible actions)

• a function ui : ×i∈NAi → R (player i’s payoff function, the expected
value of which represents i’s preferences over the set of lotteries over
action profiles).
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A probability distribution over Ai, the set of actions of player i, is called
a mixed strategy of player i. The notion of a mixed strategy Nash equilib-
rium corresponds to a stochastic steady state in which each player chooses
her mixed strategy to maximize her expected payoff, given the other players’
mixed strategies.

Definition 4 A mixed strategy Nash equilibrium of the strategic game
〈N, (Ai), (ui)〉 is a profile α∗ in which each component α∗

i is a probability dis-
tribution over Ai that satisfies

Ui(α
∗) ≥ Ui(αi, α

∗
−i) for every probability distribution αi on Ai

for every player i ∈ N , where Ui(α) is the expected value of ui(a) under α.

Suppose that each player’s set of actions is finite and fix the mixed strategy
of every player j 6= i to be αj . Then player i’s expected payoff when she uses
the mixed strategy αi is a weighted average of her expected payoffs to each
of the actions to which αi assigns positive probability. Thus if αi maximizes
player i’s expected payoff given α−i, then so too do all the actions to which
αi assigns positive probability. This observation has two significant conse-
quences. First, a mixed strategy Nash equilibrium corresponds not only to
a stochastic steady state but also to a polymorphic steady state. (The equi-
librium probability α∗

i (ai) is the fraction of individuals in population i that
choose ai.) Second, the fact that in a mixed strategy Nash equilibrium each
player is indifferent between all the actions to which her mixed strategy assigns
positive probability is sometimes useful when computing mixed strategy Nash
equilibria.

To illustrate the notion of a mixed strategy Nash equilibrium, consider the
games in Figure 2. In the game on the left, a player’s expected payoff is the
same (equal to 0) for her two actions when the other player chooses each action
with probability 1

2
, so that the game has a mixed strategy Nash equilibrium

in which each player chooses each action with probability 1

2
. The game has

no other mixed strategy Nash equilibrium because each player’s best response
to any mixed strategy other than the one that assigns probability 1

2
to each

action is either the action B or the action C, and we know that the game has
no equilibrium in which neither player randomizes.

The game on the right of Figure 2 has three mixed strategy Nash equilibria.
Two correspond to the Nash equilibria of the game in which randomization is
not allowed: each player assigns probability 1 to B, and each player assigns
probability 1 to C. In the third equilibrium, each player assigns probability 2

3

to B and probability 1

3
to C. This strategy pair is a mixed strategy Nash
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equilibrium because each player’s expected payoff to each of her actions is the
same (equal to 2

3
for both players).

The notion of mixed strategy Nash equilibrium generalizes the notion of
Nash equilibrium in the following sense.

• If a∗ is a Nash equilibrium of the strategic game 〈N, (Ai), (%i)〉, then the
mixed strategy profile in which each player i assigns probability 1 to a∗

i

is a mixed strategy Nash equilibrium of any strategic game with vNM
preferences 〈N, (Ai), (ui)〉 in which, for each player i, ui represents %i.

• If α∗ is a mixed strategy Nash equilibrium of the strategic game with
vNM preferences 〈N, (Ai), (ui)〉 in which for each player i there is an
action a∗

i such that α∗
i (a

∗
i ) = 1, then a∗ is a Nash equilibrium of the

strategic game 〈N, (Ai), (%i)〉 in which, for each player i, %i is the pref-
erence relation represented by ui.

The following result gives a sufficient condition for a strategic game to have
a mixed strategy Nash equilibrium.

Proposition 5 A strategic game with vNM preferences 〈N, (Ai), (ui)〉 in which
the set N of players is finite has a mixed strategy Nash equilibrium if either
(a) the set Ai of actions of each player i is finite or (b) the set Ai of actions
of each player i is a compact convex subset of a Euclidean space and the payoff
function ui of each player i is continuous.

Part a of this result is due to Nash (1950, 1951) and part b is due to Glicksberg
(1952).

In many games of economic interest the players’ payoff functions are not
continuous. Several results giving conditions for the existence of a mixed strat-
egy Nash equilibrium in such games are available; see, for example, Section 5
of Reny (1999).

As I have noted, in any mixed strategy Nash equilibrium in which some
player chooses an action with positive probability less than one, that player
is indifferent between all the actions to which her strategy assigns positive
probability. Thus she has no positive reason to choose her equilibrium strategy:
any other strategy that assigns positive probability to the same actions is
equally good. This fact shows that the notion of a mixed strategy equilibrium
lacks robustness. A result of Harsanyi (1973) addresses this issue. For any
strategic game G, Harsanyi considers a game in which the players’ payoffs are
randomly perturbed by small amounts from their values in G. In any play
of the perturbed game, each player knows her own payoffs, but not (exactly)
those of the other players. (Formally the perturbed game is a Bayesian game,
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a model described in Section 2.6.) Typically, a player has a unique optimal
action in the perturbed game, and this game has an equilibrium in which no
player randomizes. (Each player’s equilibrium action depends on the value
of her own payoffs.) Harsanyi shows that the limit of these equilibria as the
perturbations go to zero defines a mixed strategy Nash equilibrium of G, and
almost any mixed strategy Nash equilibrium of G is associated with the limit
of such a sequence. Thus we can think of the players’ strategies in a mixed
strategy Nash equilibrium as approximations to collections of strictly optimal
actions.

2.4 Correlated equilibrium

One interpretation of a mixed strategy Nash equilibrium is that each player
conditions her action on the realization of a random variable, where the ran-
dom variable observed by each player is independent of the random variable
observed by every other player. This interpretation leads naturally to the ques-
tion of how the theory changes if the players may observe random variables
that are not independent.

To take a simple example, consider the game at the right of Figure 2. Sup-
pose that the players observe random variables that are perfectly correlated,
each variable taking one value, say x, with some probability p, and another
value, say y, with probability 1 − p. Consider the strategy that chooses the
action B if the realization of the player’s random variable is x and the action
C if the realization is y. If one player uses this strategy, the other player op-
timally does so too: if the realization is x, for example, she knows the other
player will choose B, so that her best action is B. Thus the strategy pair is
an equilibrium.

More generally, the players may observe random variables that are partially
correlated. Equilibria in which they do so exist for the game at the right of
Figure 2, but the game in Figure 3 is more interesting.

B C
B 6, 6 2, 7
C 7, 2 0, 0

Figure 3. A strategic game.

Consider the random variable that takes the values x, y, and z, each with
probability 1

3
. Player 1 observes only whether the realization is in {x, y} or is

z (but not, in the first case, whether it is x or y), and player 2 observes only
whether it is in {x, z} or is y. Suppose that player 1 chooses B if she observes
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{x, y} and C if she observes z, and player 2 chooses B if she observes {x, z}
and C if she observes y. Then neither player has an incentive to change her
action, whatever she observes. If, for example, player 1 observes {x, y}, then
she infers that x and y have each occurred with probability 1

2
, so that player 2

will choose each of her actions with probability 1

2
. Thus her expected payoff

is 4 if she chooses B and 7

2
if she chooses C, so that B is optimal. Similarly, if

player 1 observes z, she infers that player 2 will choose B, so that C is optimal
for her. The outcome is (B, B) with probability 1

3
, (B, C) with probability 1

3
,

and (C, B) with probability 1

3
, so that each player’s expected payoff is 5.

An interesting feature of this equilibrium is that both players’ payoffs ex-
ceed their payoffs in the unique mixed strategy Nash equilibrium (in which
each player chooses B with probability 2

3
and obtains the expected payoff 14

3
).

In general, a correlated equilibrium of a strategic game with vNM prefer-
ences consists of a probability space and, for each player, a partition of the set
of states and a function associating an action with each set in the partition
(the player’s strategy) such that for each player and each set in the player’s
partition, the action assigned by her strategy to that set maximizes her ex-
pected payoff given the probability distribution over the other players’ actions
implied by her information. (The notion of correlated equilibrium is due to
Aumann (1974).)

The appeal of a correlated equilibrium differs little from the appeal of a
mixed strategy equilibrium. In one respect, in fact, most correlated equilibria
are more appealing: the action specified by each player’s strategy for each
member of her partition of the set of states is strictly optimal (she is not
indifferent between that action and any others). Nevertheless, the notion of
correlated equilibria has found few applications.

2.5 Rationalizability

The outcome (Fink,Fink) of the Prisoner’s Dilemma is attractive not only
because it is a Nash equilibrium (and hence consistent with a steady state).
In addition, for each player, Fink is optimal and Quiet is suboptimal regardless
of the other player’s action. That is, we may argue solely on the basis of a
player’s rationality that she will select Fink ; no reference to her belief about
the other player’s action is necessary.

We say that the mixed strategy αi of player i is rational if there exists a
probability distribution over the other players’ actions to which it is a best
response. (The probability distribution may entail correlation between the
other players’ actions; we do not require it to be derived from independent
mixed strategies.) Using this terminology, the only rational action for each
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player in the Prisoner’s Dilemma is Fink.
This definition of rationality puts no restriction on the probability distri-

bution over the other players’ actions that justifies a player’s mixed strategy.
In particular, an action is rational even if it is a best response only to a belief
that assigns positive probability to the other players’ not being rational. For
example, in the game on the left of Figure 4, Q is rational for player 1, but
all the mixed strategies of player 2 to which Q is a best response for player 1
assign probability of at least 1

2
to Q, which is not rational for player 2. Such

beliefs are ruled out if we assume that each player is not only rational, but also
believes that the other players are rational. In the game on the left of Figure 4
this assumption means that player 1’s beliefs must assign positive probability
only to player 2’s action F , so that player 1’s only optimal action is F . That
is, in this game the assumptions that each player is rational and that each
player believes the other player is rational isolate the action pair (F, F ).

Q F
Q 3, 2 0, 3
F 2, 0 1, 1

Q F
Q 4, 2 0, 3
X 1, 1 1, 0
F 3, 0 2, 2

Figure 4. Two variants of the Prisoner’s Dilemma.

We may take this argument further. Consider the game on the right of
Figure 4. Player 1’s action Q is consistent with player 1’s rationality and also
with a belief that player 2 is rational (because both actions of player 2 are
rational). It is not, however, consistent with player 1’s believing that player 2
believes that player 1 is rational. If player 2 believes that player 1 is rational,
her belief must assign probability 0 to player 1’s action X (which is not a best
response to any strategy of player 2), so that her only optimal action is F .
But if player 2 assigns positive probability only to F , then player 1’s action Q
is not optimal.

In all of these games—the Prisoner’s Dilemma and the two in Figure 4—
player 1’s action F survives any number of iterations of the argument: it is
consistent with player 1’s rationality, player 1’s belief that player 2 is ratio-
nal, player 1’s belief that player 2 believes that player 1 is rational, and so
on. An action with this property is called rationalizable (a notion2 developed
independently by Bernheim (1984) and Pearce (1984)).

2Both Bernheim and Pearce discuss a slightly different notion, in which players are
restricted to beliefs that are derived from independent probability distributions over each
of the other player’s actions. Their notion does not have the same properties as the notion
described here.
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The set of action profiles in which every player’s action is rationalizable
may be given a simple characterization. First define a strictly dominated
action.

Definition 6 Player i’s action ai in the strategic game with vNM preferences
〈N, (Ai), (ui)〉 is strictly dominated if for some mixed strategy αi of player i
we have

Ui(αi, a−i) > ui(ai, a−i) for every a−i ∈ ×j∈N\{i}Aj ,

where Ui(αi, a−i) is player i’s expected payoff when she uses the mixed strategy
αi and the other players’ actions are given by a−i.

Note that the fact that αi in this definition is a mixed strategy is essential:
some strictly dominated actions are not strictly dominated by any action. For
example, in the variant of the game at the left of Figure 4 in which player 1
has an additional action, say Z, with u1(Z, Q) = 0 and u1(Z, F ) = 5, the
action F is not strictly dominated by any action, but is strictly dominated by
the mixed strategy that assigns probability 3

4
to Q and probability 1

4
to Z.

We may show that an action in a finite strategic game is not rational if
and only if it is strictly dominated. Given this result, it is not surprising that
actions are rationalizable if they survive the iterated elimination of strictly
dominated actions, defined precisely as follows.

Definition 7 Let G = 〈N, (Ai), (ui)〉 be a strategic game. For each j ∈ N , let
X1

j = Aj, and for each j ∈ N and each t ≥ 1, let X t+1
j be a subset of X t

j with

the property that every member of X t
j \X t+1

j is strictly dominated in the game
〈N, (X t

i ), (u
t
i)〉, where ut

i denotes the restriction of the function ui to ×j∈NX t
j.

If no member of XT
j for any j ∈ N is strictly dominated, then the set ×j∈NXT

j

survives iterated elimination of strictly dominated actions.

The procedure specified in this definition does not pin down exactly which
actions are eliminated at each step. Only strictly dominated actions are elimi-
nated, but not all such actions are necessarily eliminated. Thus the definition
leaves open the question of the uniqueness of the set of surviving action pro-
files. In fact, however, this set is unique; it coincides with the set of profiles of
rationalizable actions.

Proposition 8 In a finite strategic game the set of action profiles that survives
iterated elimination of strictly dominated actions is unique and is equal to the
set of profiles of rationalizable actions.

Every action of any player used with positive probability in a correlated
equilibrium is rationalizable. Thus the set of profiles of rationalizable actions
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is the largest “solution” for a strategic game that we have considered. In
many games, in fact, it is very large. (If no player has a strictly dominated
action, all actions of every player are rationalizable, for example.) However,
in several of the games mentioned in the previous sections, each player has
a single rationalizable action, equal to her unique Nash equilibrium action.
This property holds, with some additional assumptions, for Cournot’s and
Bertrand’s oligopoly games with two firms and Hotelling’s model of electoral
competition with two candidates. The fact that in other games the set of
rationalizable actions is large has limited applications of the notion, but it
remains an important theoretical construct, delineating exactly the conclusion
we may reach by assuming that the players take into account each others’
rationality.

2.6 Bayesian games

In the models discussed in the previous sections, every player is fully informed
about all the players’ characteristics—their actions, payoffs, and information.
In the model of a Bayesian game, players are allowed to be uncertain about
these characteristics. We call each configuration of characteristics a state.
The fact that each player’s information about the state may be imperfect is
modeled by assuming that each player does not observe the state, but rather
receives a signal that may depend on the state. At one extreme, a player may
receive a different signal in every state; such a player has perfect information.
At another extreme, a player may receive the same signal in every state; such
a player has no information about the state. In between these extremes are
situations in which a player is partially informed; she may receive the same
signal in states ω1 and ω2, for example, and a different signal in state ω3.

To make a decision, given her information, a player needs to form a belief
about the probabilities of the states between which she cannot distinguish. We
assume that she starts with a prior belief over the set of states, and acts upon
the posterior belief derived from this prior, given her signal, using Bayes’ Law.
If, for example, there are three states, ω1, ω2, and ω3, to which her prior belief
assigns probabilities 1

2
, 1

4
, and 1

4
, and she receives the same signal, say X, in

states ω1 and ω2, and a different signal, say Y , in state ω3, then her posterior
belief assigns probability 2

3
to ω1 and probability 1

3
to ω2 when she receives the

signal X and probability 1 to ω3 when she receives the signal Y .
In summary, a Bayesian game is defined as follows. (The notion is due to

Harsanyi (1967/68).)

Definition 9 A Bayesian game consists of
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• a set N (the set of players)

• a set Ω (the set of states)

and for each player i ∈ N

• a set Ai (the set of player i’s possible actions)

• a set Ti (the set of signals that player i may receive) and a function τi :
Ω → Ti associating a signal with each state (player i’s signal function)

• a probability distribution pi over Ω (player i’s prior belief), with
pi(τ

−1
i (ti)) > 0 for all ti ∈ Ti

• a function ui : (×i∈NAi) × Ω → R (player i’s payoff function, the
expected value of which represents i’s preferences over the set of lotteries
on the set (×i∈NAi) × Ω).

This definition allows the players to hold different prior beliefs. In many
applications every player is assumed to hold the same prior belief.

A widely-studied class of Bayesian games models auctions. An example
is a single-object auction in which each player knows her own valuation of
the object but not that of any other player and believes that every player’s
valuation is independently drawn from the same distribution. In a Bayesian
game that models such a situation, the set of states is the set of profiles of
valuations and the signal received by each player depends only on her own
valuation, not on the valuation of any other player. Each player holds the
same prior belief, which is derived from the assumption that each player’s
valuation is drawn independently from the same distribution.

The desirability for a player of each of her actions depends in general on the
signal she receives. Thus a candidate for an equilibrium in a Bayesian game is
a profile of functions, one for each player; the function for player i associates
an action (member of Ai) with each signal she may receive (member of Ti).
We refer to player i after receiving the signal ti as type ti of player i. A
Nash equilibrium of a Bayesian game embodies the same principle as does a
Nash equilibrium of a strategic game: each player’s action is optimal given
the other players’ actions. Thus in an equilibrium, the action of each type of
each player maximizes the payoff of that type given the action of every other
type of every other player. That is, a Nash equilibrium of a Bayesian game is
a Nash equilibrium of the strategic game in which the set of players is the set
of pairs (i, ti), where i is a player in the Bayesian game and ti is a signal that
she may receive.
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Definition 10 A Nash equilibrium of a Bayesian game 〈N, Ω, (ai),
(Ti), (τi), (pi), (ui)〉 is a Nash equilibrium of the following strategic game.

• The set of players is the set of all pairs (i, ti) such that i ∈ N and ti ∈ Ti.

• The set of actions of player (i, ti) is Ai.

• The payoff of player (i, ti) when each player (j, tj) chooses the action
a(j, tj) is

∑

ω∈Ω

Pr(ω | ti)ui((ai, â−i(ω)), ω),

where âj(ω) = a(j, τj(ω)) for each j ∈ N .

To illustrate this notion, consider the two-player Bayesian game in which
there are two states, each player has two actions (B and C), player 1 receives
the same signal in both states, player 2 receives a different signal in each state,
each player’s prior belief assigns probability 1

3
to state 1 and probability 2

3
to

state 2, and the payoffs are those shown in Figure 5. A Nash equilibrium of
this Bayesian game is a Nash equilibrium of the three player game in which the
players are player 1 and the two types of player 2 (one for each state). I claim
that the strategy profile in which player 1 chooses B, type 1 of player 2 (i.e.
player 2 after receiving the signal that the state is 1) chooses C, and type 2
of player 2 chooses B is a Nash equilibrium. The actions of the two types of
player 2 are best responses to the action B of player 1. Given these actions,
player 1’s expected payoff to B is 2

3
(because with probability 1

3
the state is

1 and player 2 chooses C and with probability 2

3
the state is 2 and player 2

chooses B) and her expected payoff to C is 1

3
. Thus player 1’s action B is a

best response to the actions of the two types of player 2.

State 1 (probability 1

3
)

B C
B 1, 0 0, 1
C 1, 1 1, 0

State 2 (probability 2

3
)

B C
B 1, 1 0, 0
C 1, 0 0, 1

Figure 5. A Bayesian game.

3. Extensive games

Although situations in which players choose their actions sequentially may
be modeled as strategic games, they are more naturally modeled as extensive
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games. In Section 3.1 I discuss a model in which each player, when choosing
an action, knows the actions taken previously. In Section 3.2 I discuss a more
complex model that allows players to be imperfectly informed. (The notion of
an extensive game is due to von Neumann and Morgenstern (1944) and Kuhn
(1950, 1953). The formulation in terms of histories is due to Ariel Rubinstein.)

3.1 Extensive games with perfect information

An extensive game with perfect information describes the sequential structure
of the players’ actions. It does so by specifying the set of sequences of actions
that may occur and the player who chooses an action after each subsequence.
A sequence that starts with an action of the player who makes the first move
and ends when no move remains is called a terminal history.

Definition 11 An extensive game with perfect information consists of

• a set N (the set of players)

• a set H of sequences (the set of terminal histories) with the property
that no sequence is a proper subhistory of any other sequence

• a function P (the player function) that assigns a player to every proper
subsequence of every terminal history

and for each player i ∈ N

• a preference relation %i over the set H of terminal histories.

The restriction on the set H is necessary for its members to be interpreted as
terminal histories: if (x, y, z) is a terminal history then (x, y) is not a terminal
history, because z may be chosen after (x, y). We refer to subsequences of
terminal histories as histories.

The sets of actions available to the players when making their moves, while
not explicit in the definition, may be deduced from the set of terminal histories.
For any history h, the set of actions available to P (h), the player who moves
after h, is the set of actions a for which (h, a) is a history. We denote this set
A(h).

Two simple examples of extensive games with perfect information are
shown in Figure 6. In the game on the left, the set of terminal histories is
{(X, w), (X, x), (Y, y), (Y, z)} and the player function assigns player 1 to the
empty history (a subsequence of every terminal history) and player 2 to the
histories X and Y . The game begins with player 1’s choosing either X or
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YX

1

x

0, 0

w

2, 1

2

z

0, 0

y

1, 2

2

X

2, 0

W

1

y

3, 1

x

2

Z

0, 0

Y

1, 2

1

Figure 6. Two extensives games with perfect information. Player 1’s payoff is the first
number in each pair.

Y . If she chooses X, then player 2 chooses either w or x; if she chooses Y ,
then player 2 chooses either y or z. In the game on the right, the set of
terminal histories is {(W, x, Y ), (W, x, Z), (W, y), X} and the player function
assigns player 1 to the empty history and the history (W, x), and player 2 to
the history W .

Another example of an extensive game with perfect information is a sequen-
tial variant of Cournot’s model of oligopoly in which firm 1 chooses an output,
then firm 2 chooses an output, and so on. In this game, the set of terminal
histories is the set of all sequences (q1, . . . , qn) of outputs for the firms; the
player function assigns player 1 to the empty history and, for k = 1, . . . , n−1,
player k +1 to every sequence (q1, . . . , qk). (Because a continuum of actions is
available after each nonterminal history, this game cannot easily be represented
by a diagram like those in Figure 6.)

A further example is the bargaining game of alternating offers studied in
Chapter ??. This game has terminal histories of infinite length (those in which
every offer is rejected).

3.1.1 Strategies A key concept in the analysis of an extensive game is that
of a strategy. The definition is very simple: a strategy of any player j is a
function that associates with every history h after which player j moves a
member of A(h), the set of actions available after h.

Definition 12 A strategy of player j in an extensive game with perfect in-
formation 〈N, H, P, (%i)〉 is a function that assigns to every history h (subse-
quence of H) for which P (h) = j an action in A(h).

In the game at the left of Figure 6, player 1 has two strategies, X and
Y . Player 2 has four strategies, which we may represent by wy, wz, xy,
and xz, where the first component in each pair is the action taken after the
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history X and the second component is the action taken after the history Y .
This example illustrates that a strategy is a complete plan of action, specifying
the player’s action in every eventuality. Before the game begins, player 2 does
not know whether player 1 will choose X or Y ; her strategy prepares her for
both eventualities.

The game at the right of Figure 6 illustrates another aspect of the defi-
nition. Player 1 in this game has four strategies, WY , WZ, XY , and XZ.
In particular, XY and XZ are distinct strategies. (Remember that a player’s
strategy assigns an action to every history after which she moves.) I discuss
the interpretation of strategies like these in Section 3.1.3.

3.1.2 Nash equilibrium A Nash equilibrium of an extensive game with per-
fect information is defined in the same way as a Nash equilibrium of a strategic
game: it is a strategy profile with the property that no player can increase her
payoff by changing her strategy, given the other players’ strategies. Precisely,
first define the outcome O(s) of a strategy profile s to be the terminal history
that results when the players use s. (The outcome O(X, wy) of the strategy
pair (X, wy) in the game on the left of Figure 6, for example, is the terminal
history (X, w).)

Definition 13 A Nash equilibrium of the extensive game with perfect in-
formation 〈N, H, P, (%i)〉 is a strategy profile s∗ for which

O(s∗) %i O(si, s
∗
−i) for all si ∈ Si

for every player i ∈ N , where Si is player i’s set of strategies.

As an example, the game on the left of Figure 6 has three Nash equilibria,
(X, wy), (X, wz), and (Y, xy). (One way to find these equilibria is to construct
a table like the one in Figure 1 in which each row is a strategy of player 1 and
each column is a strategy of player 2.)

For each of the last two equilibria, there exists a history h such that the
action specified by player 2’s strategy after h is not optimal for her in the
rest of the game. For example, in the last equilibrium, player 2’s strategy
specifies that she will choose x after the history X, whereas only w is optimal
for her after this history. Why is such a strategy optimal? Because player 1’s
strategy calls for her to choose Y , so that the action player 2 plans to take
after the history X has no effect on the outcome: the terminal history is (Y, y)
regardless of player 2’s action after the history X.

I argue that this feature of the strategy pair (Y, xy) detracts from its status
as an equilibrium. Its equilibrium status depends on player 1’s believing that
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if she deviates to X then player 2 will choose x. Given that only w is optimal
for player 2 after the history X, such a belief seems unreasonable.

Suppose that player 1 forms her belief on the basis of her experience. If she
always chooses Y , then no amount of experience will enlighten her regarding
player 2’s choice after the history X. However, in a slightly perturbed steady
state in which she very occasionally erroneously chooses X at the start of the
game and player 2 chooses her optimal action whenever called upon to move,
player 1 knows that player 2 chooses w, not x, after the history X.

If player 1 bases her belief on her reasoning about player 2’s rational behav-
ior (in the spirit of rationalizability), she reaches the same conclusion. (Note,
however, that this reasoning process is straightforward in this game only be-
cause the game has a finite horizon and one player is indifferent between two
terminal histories if and only if the other player is also indifferent.)

In either case, we conclude that player 1 should believe that player 2 will
choose w, not x, after the history X. Similarly, the Nash equilibrium (X, wz)
entails player 1’s unreasonable belief that player 2 will choose z, rather than
y, after the history Y . We now extend this idea to all extensive games with
perfect information.

3.1.3 Subgame perfect equilibrium A subgame perfect equilibrium is a strat-
egy profile in which each player’s strategy is optimal not only at the start of
the game, but also after every history. (The notion is due to Selten (1965).)

Definition 14 A subgame perfect equilibrium of the extensive game with
perfect information 〈N, H, P, (%i)〉 is a strategy profile s∗ for which

Oh(s
∗) %i Oh(si, s

∗
−i) for all si ∈ Si

for every player i ∈ N and every history h after which it is player i’s turn to
move (i.e. P (h) = i), where Si is player i’s set of strategies and Oh(s) is the
terminal history consisting of h followed by the sequence of actions generated
by s after h.

For any nonterminal history h, define the subgame following h to be the part
of the game that remains after h has occurred. With this terminology, we have
a simple result: a strategy profile is a subgame perfect equilibrium if and only
if it induces a Nash equilibrium in every subgame. Note, in particular, that a
subgame perfect equilibrium is a Nash equilibrium of the whole game. (The
function O in Definition 13 is the same as the function O∅ in Definition 14,
where ∅ denotes the empty history.) The converse is not true, as we have
seen: in the game at the left of Figure 6, player 2’s only optimal action after
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the history X is w and her only optimal action after the history Y is y, so
that the game has a single subgame perfect equilibrium, (X, wy), whereas it
has three Nash equilibria.

Now consider the game at the right of Figure 6. Player 1’s only optimal
action after the history (W, x) is Y ; given that player 1 chooses Y after (W, x),
player 2’s only optimal action after the history W is x; and given that player 2
chooses x after the history W , player 1’s only optimal action at the start of
the game is X. Thus the game has a unique subgame perfect equilibrium,
(XY, x).

Note, in particular, that player 1’s strategy XZ, which generates the same
outcome as does her strategy XY regardless of player 2’s strategy, is not part
of a subgame perfect equilibrium. That is, the notion of subgame perfect
equilibrium differentiates between these two strategies even though they cor-
respond to the same “plan of action”. This observation brings us back to a
question raised in Section 3.1.1: how should the strategies XZ and XY be
interpreted?

If we view a subgame perfect equilibrium as a model of a perturbed steady
state in which every player occasionally makes mistakes, the interpretation
of player 1’s strategy XY is that she chooses X at the start of the game,
but if she erroneously chooses W and player 2 subsequently chooses x, she
chooses Y . More generally, a component of a player’s strategy that specifies
an action after a history h precluded by the other components of the strategy
is interpreted to be the action the player takes if, after a series of mistakes,
the history h occurs. Note that this interpretation is strained in a game in
which some histories occur only after a long series of mistakes, and thus are
extremely unlikely.

In some finite horizon games, we may alternatively interpret a subgame
perfect equilibrium to be the outcome of the players’ calculations about each
other’s optimal actions. If no player is indifferent between any two terminal
histories, then every player can deduce the actions chosen in every subgame
of length 1 (at the end of the game); she can use this information to deduce
the actions chosen in every subgame of length 2; and she can similarly work
back to the start of every subgame at which she has to choose an action.
Under this interpretation, the component Y of the strategy XY in the game
at the right of Figure 6 is player 2’s belief about player 1’s action after the
history (W, x) and also player 1’s belief about the action player 2 believes
player 1 will choose after the history (W, x). (This interpretation makes sense
also under the weaker condition that whenever one player is indifferent between
the outcomes of two actions, every other player is also indifferent (a sufficient
condition for each player to be able to deduce her payoff when the other players
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act optimally, even if she cannot deduce the other players’ strategies).)
This interpretation, like the previous one, is strained in some games. Con-

sider the game that differs from the one at the right of Figure 6 only in that
player 1’s payoff of 3 after the history (W, y) is replaced by 1. The unique sub-
game perfect equilibrium of this game is (XY, x) (as for the original game).
The equilibrium entails player 2’s belief that player 1 will choose Y if player 2
chooses x after player 1 chooses W . But choosing W is inconsistent with
player 1’s acting rationally: she guarantees herself a payoff of 2 if she chooses
X, but can get at most 1 if she chooses W . Thus it seems that player 2 should
either take player 1’s action W as an indication that player 1 believes the game
to differ from the game that player 2 perceives, or view the action as a mistake.
In the first case the way in which player 2 should form a belief about player 1’s
action after the history (W, x) is unclear. The second case faces difficulties in
games with histories that occur only after a long series of mistakes, as for the
interpretation of a subgame perfect equilibrium as a perturbed steady state.

The subgame perfect equilibria of the games in Figure 6 may be found by
working back from the end of the game, isolating the optimal action after any
history given the optimal actions in the following subgame. This procedure,
known as backwards induction, may be used in any finite horizon game in
which no player is indifferent between any two terminal histories. A modified
version that deals appropriately with indifference may be used in any finite
horizon game.

3.2 Extensive games with imperfect information

In an extensive game with perfect information, each player, when taking an
action, knows all actions chosen previously. To capture situations in which
some or all players are not perfectly informed of past actions we need to
extend the model. A general extensive game allows arbitrary gaps in players’
knowledge of past actions by specifying, for each player, a partition of the set
of histories after which the player moves. The interpretation of this partition
is that the player, when choosing an action, knows only the member of the
partition in which the history lies, not the history itself. Members of the
partition are called information sets. When choosing an action, a player has to
know the choices available to her; if the choices available after different histories
in a given information set were different, the player would know the history
that had occurred. Thus for an information partition to be consistent with a
player’s not knowing which history in a given information set has occurred, for
every history h in any given information set, the set A(h) of available actions
must be the same. We denote the set of actions available after the information
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set Ii by A(Ii).

Definition 15 An extensive game consists of

• a set N (the set of players)

• a set H of sequences (the set of terminal histories) with the property
that no sequence is a proper subhistory of any other sequence

• a function P (the player function) that assigns a player to every proper
subsequence of every terminal history

and for each player i ∈ N

• a partition Ii of the set of histories assigned to i by the player function
(player i’s information partition) such that for every history h in
any given member of the partition (information set), the set A(h) of
actions available is the same

• a preference relation %i over the set H of terminal histories.

(A further generalization of the notion of an extensive game allows for
events to occur randomly during the course of play. This generalization in-
volves no significant conceptual issue, and I do not discuss it.)

An example is shown in Figure 7. The dotted line indicates that the histo-
ries X and Y are in the same information set: player 2, when choosing between
x and y, does not know whether the history is X or Y . (Formally, player 2’s
information partition is {{X, Y }, {Z}}. Notice that A(X) = A(Y ) (= {x, y}),
as required by the definition.)

Z

2, 4

X Y

1

y

1, 1

x

3, 3

y

0, 2

x

4, 3

2

Figure 7. An extensive game with imperfect information. The dotted line indicates that
the histories X and Y are in the same information set.

A strategy for any player j in an extensive game associates with each of
her information sets Ij a member of A(Ij).
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Definition 16 A strategy of player j in an extensive game 〈N, H, P, (Ii),
(%i)〉 is a function that assigns to every information set Ij ∈ Ij of player j an
action in A(Ij).

Given this definition, a Nash equilibrium is defined exactly as for an ex-
tensive game with perfect information (Definition 13)—and, as before, is not
a satisfactory solution. Before discussing alternatives, we need to consider the
possibility of players’ randomizing.

In an extensive game with perfect information, allowing players to random-
ize does not significantly change the set of equilibrium outcomes. In an exten-
sive game with imperfect information, the same is not true. A straightforward
way of incorporating the possibility of randomization is to follow the theory of
strategic games and allow each player to choose her strategy randomly. That
is, we may define a mixed strategy to be a probability distribution over (pure)
strategies. An approach more directly suited to the analysis of an extensive
game is to allow each player to randomize independently at each information
set. This second approach involves the notion of a behavioral strategy, defined
as follows.

Definition 17 A behavioral strategy of player j in an extensive game
〈N, H, P, (Ii), (%i)〉 is a function that assigns to each information set Ij ∈ Ij

a probability distribution over the actions in A(Ij), with the property that each
probability distribution is independent of every other distribution.

For a large class of games, mixed strategies and behavioral strategies are
equivalent: for every mixed strategy there exists a behavioral strategy that
yields the same outcome regardless of the other players’ strategies, and vice
versa. (This result is due to Kuhn (1950, 1953).) In the discussion that follows,
I work with behavioral strategies.

The notion of subgame perfect equilibrium for an extensive game with per-
fect information embodies two conditions: whenever a player takes an action,
(a) this action is optimal given her belief about the other players’ strategies
and (b) her belief about the other players’ strategies is correct. In such a
game, each player needs to form a belief only about the other players’ future
actions. In an extensive game with imperfect information, players need also
to form beliefs about the other player’s past actions. Thus in order to impose
condition b on a strategy profile in an extensive game with imperfect informa-
tion, we need to consider how a player choosing an action at an information
set containing more than one history forms a belief about which history has
occurred and what it means for such a belief to be correct.
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Consider the game in Figure 7. If player 1’s strategy is X or Y , then
the requirement that player 2’s belief about the history be correct is easy to
implement: if player 1’s strategy specifies X then she believes X has occurred,
whereas if player 1’s strategy specifies Y then she believes Y has occurred. If
player 1’s strategy is Z, however, this strategy gives player 2 no basis on which
to form a belief—we cannot derive from player 1’s strategy a belief of player 2
about player 1’s action. The main approach to defining equilibrium avoids
this difficulty by specifying player 1’s belief as a component of an equilibrium.
Precisely, we define a belief system and an assessment as follows.

Definition 18 A belief system is a function that assigns to every infor-
mation set a probability distribution over the set of histories in the set. An
assessment is a pair consisting of a profile of behavioral strategies and a
belief system.

We may now define an equilibrium to be an assessment satisfying conditions
a and b. To do so, we need to decide exactly how to implement b. One option
is to require consistency of beliefs with strategies only at information sets
reached if the players follow their strategies, and to impose no conditions on
beliefs at information sets not reached if the players follow their strategies.
The resulting notion of equilibrium is called a weak sequential equilibrium.3

Definition 19 An assessment (β, µ), where β is a behavioral strategy profile
and µ is a belief system µ, is a weak sequential equilibrium if it satisfies
the following two conditions.

Sequential rationality Each player’s strategy is optimal in the part of the
game that follows each of her information sets, given the other players’
strategies and her belief about the history in the information set that
has occurred. Precisely, for each player i and each information set Ii of
player i, player i’s expected payoff to the probability distribution over ter-
minal histories generated by her belief µi at Ii and the behavior prescribed
subsequently by the strategy profile β is at least as large as her expected
payoff to the probability distribution over terminal histories generated by
her belief µi at Ii and the behavior prescribed subsequently by the strategy
profile (γi, β−i), for each of her behavioral strategies γi.

3The name “perfect Bayesian equilibrium” is sometimes used, although the notion with
this name defined by Fudenberg and Tirole (1991) covers a smaller class of games and
imposes an additional condition on assessments.
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Weak consistency of beliefs with strategies For every information set
Ii reached with positive probability given the strategy profile β, the proba-
bility assigned by the belief system to each history h in Ii is the probability
of h occurring conditional on Ii being reached, as given by Bayes’ law.

Consider the game in Figure 7. Notice that player 2’s action x yields her a
higher payoff than does y regardless of her belief. Thus in any weak sequential
equilibrium she chooses x with probability 1. Given this strategy, player 1’s
only optimal strategy assigns probability 1 to Y . Thus the game has a unique
weak sequential equilibrium, in which player 1’s strategy is Y , player 2’s strat-
egy is x, and player 2’s belief assigns probability 1 to the history Y .

Now consider the game in Figure 8. I claim that the assessment in which
player 1’s strategy is (1

2
, 1

2
, 0), player 2’s strategy is (1

2
, 1

2
), and player 2’s belief

assigns probability 1

2
to X and probability 1

2
to Y is a weak sequential equilib-

rium. Given her beliefs, player 2’s expected payoffs to x and y are both 2, and
given player 2’s strategy, player 1’s expected payoffs to X and Y are both 5

2

and her payoff to Z is 2. Thus each player’s strategy is sequentially rational.
Further, player 2’s belief is consistent with player 1’s strategy. This game has
an additional weak sequential equilibrium in which player 1’s strategy is Z,
player 2’s strategy is y, and player 2’s belief assigns probability 1 to the his-
tory Y . Note that the consistency condition does not restrict player 2’s belief
in this equilibrium, because player 1 chooses neither X nor Y with positive
probability.

Z

2, 4

X Y

1

y

1, 1

x

4, 2

y

0, 3

x

5, 2

2

Figure 8. An extensive game with imperfect information.

In some games the notion of weak sequential equilibrium yields sharp pre-
dictions, but in others it is insufficiently restrictive. Some games, for example,
have weak sequential equilibria that do not satisfy a natural generalization
of the notion of subgame perfect equilibrium. In response to these problems,
several “refinements” of the notion of a weak sequential equilibrium have been
studied, including sequential equilibrium (due to Kreps and Wilson (1982))
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and perfect Bayesian equilibrium (due to Fudenberg and Tirole (1991)). Chap-
ter ?? is devoted to this topic.
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