We study the recruitment of individuals in the political sector. We propose an equilibrium model of political recruitment by two political parties competing in an election. We show that political parties may deliberately choose to recruit only mediocre politicians, in spite of the fact that they could select better individuals. Furthermore, we show that when political talent is scarce this phenomenon is more likely to occur in proportional than in majoritarian electoral systems.

œ © 2015 Elsevier B.V. All rights reserved.

We’d all like to vote for the best man, but he is never a candidate.

[F. McKinney Hubbard]

Our current political system ensures not that the worst will get on top—though they often do—but that the best will never even apply.

[Paul Jacob]

1. Introduction

The quality of politicians has long been an issue of great concern in all democracies. A widespread sentiment summarized by the opening quotes above is that by and large the political class is typically not the best a country has to offer. At the same time, however, it is also fair to say that they are not the worst either. Anecdotal evidence from around the world abounds. Former U.S. President George W. Bush was a “C student” at Yale University. Nevertheless, he has an Ivy League college degree. Göran Persson (Sweden) is not a college graduate. Nevertheless, he successfully completed all but a few credits to earn a social science degree at Örebro University. Pedro Miguel de Santana Lopes (Portugal) was a sports commentator. John Major (U.K.) was a clerk in an insurance brokerage firm. These are all examples of politicians that were selected to run for some of the highest elected offices in their countries. In addition, there are thousands of lesser political offices everywhere that are occupied by “average Joes and Janes.” In sum, it seems that in many different countries the political class is for the most part composed of mediocre people. We refer to this observation, which represents the focus of our work, as mediocracy:2

Anecdotal evidence also suggests that political parties may deliberately choose to recruit only mediocre politicians, in spite of the fact that they could select better individuals. George McGovern, the winner of the 1972 U.S. presidential primaries of the Democratic Party against frontrunners Edmund Muskie and Hubert Humphrey, had only 3 percent national support among Democrats in the Gallup Poll and had not attracted significant press coverage by January 1972. His nomination led to a landslide victory of his republican opponent Richard Nixon in the 1972 U.S. Presidential elections. Looking at the development of events, it also appears that Luigi Bersani, the winner of the 2011 primaries of the Italian Democratic Party against Matteo Renzi (the current Prime Minister in Italy), was probably not the best candidate that the party could have selected.

1 The former city mayors of New York (Ed Koch), Chicago (Richard Daley), and Los Angeles (Antonio Villaraigosa) all went to law school but failed the bar exam.

2 According to the Webster’s Third New International Dictionary of the English language, mediocracy is defined as: “rule by the mediocre.”
A number of recent studies have also documented that the quality of politicians varies significantly across countries, and that part of this variation is related to differences in the electoral system and, in particular, in the competitiveness of the electoral environment. For example, Gagliarducci et al. (2011) find that Italian politicians elected under proportional representation have higher absenteeism rates than their counterparts elected under plurality rule. Galasso et al. (2009) also document that the fraction of legislators without a high school degree is significantly larger in the Italian Parliament (which at the time of the study was elected under proportional representation), than in the United States Congress (which is elected with a majoritarian system).4 Furthermore, Galasso and Nannicini (2014) document that Italian political parties field relatively “better” candidates (in terms of their education) in relatively contested majoritarian electoral districts. Finally, Galasso and Nannicini (2011) show that in the three elections in which Italian politicians were elected with a two-tier, mixed (proportional and majoritarian) system, only 69% of candidates elected with the proportional system had a college degree compared to 74% of candidates elected with the majoritarian system in competitive districts.

In this paper, we provide a novel explanation for mediocracy by focusing on the recruitment of individuals in the political sector and study the effect of the competitiveness of the electoral environment on the incentives of political parties to select good politicians. We propose an equilibrium model of political recruitment by two political parties competing in an election. We show that competing parties may deliberately choose not to recruit the best politicians independent of the electoral system. However, when political talent is scarce, a mediocre equilibrium selection is more likely to arise in less competitive electoral systems, such as proportional representation, than in more competitive ones, such as majoritarian systems.

Two important elements of our theory are that political parties play an important role in the process of political selection, and that the incentives that voters and parties face within this process are not perfectly aligned. Indeed, in most countries, relatively few individuals start off their political careers by running for a public office. More frequently, they first test their political aspirations by holding positions within party organizations, which represent “breeding grounds” from which the vast majority of elected officials come from. The role of party service as an essential qualification for pursuing a political career is especially important in countries with a strong party system, such as, Australia, Germany, Italy, Japan, the Netherlands, Sweden, and the U.K.4 In these countries, the individuals who are recruited by political parties determine the quality of the pool of potential electoral candidates.5

With regard to the potential conflict between voters and political parties in the political selection process, Strom (1990), among others, notes that political parties are “going concerns” and “successful political parties require extensive organizational capabilities [...] to meet the different needs faced by aspiring politicians under competitive circumstances” (p. 575). While the success of political parties ultimately depends on their electoral success, the very existence and survival of party organizations hinge on the willingness of their members to exert their best effort on the party’s behalf and perform a variety of services including gathering and disseminating information, organizing and mobilizing supporters, and raising funds. Crucially, given the limited availability of direct monetary compensation, the main incentive a party has to offer to reward such effort is the party electoral nomination. We show that these considerations entail a fundamental trade-off which may play an important role in a party’s recruiting decisions. On the one hand, recruiting the best possible individuals may enhance the party’s electoral prospects in a competitive electoral environment (competition effect). On the other hand, recruiting a relatively “mediocre” but homogeneous group of individuals may maximize their collective effort on behalf of the party since the presence of “superstars” may discourage other party members and induce them to shirk (discouragement effect). In equilibrium, there will either be “mediocracy” if parties choose not to recruit the best politicians, or “aristocracy” if they do. In either case, parties never recruit the worst politicians. Because of their winner-takes-all nature, majoritarian electoral systems are more competitive than proportional systems, thus making the electoral returns to candidates’ quality relatively higher and hence mediocrity less likely.

Before describing our model of political recruitment, it is important to stress that political ability is a rather vague concept, which is very difficult to define, let alone quantify. While there is little doubt that competence, honesty, and integrity should all represent positive traits of a politician, there is no obvious way to define unambiguously what it takes to be a good politician. In this paper, we adopt the simplest possible approach and define political ability as the marginal cost of exerting effort in the political sector. We believe that this definition captures several characteristics that jointly define political ability. For example, a high-ability politician will effectively contribute in shaping the party’s electoral platform. Also, a high-ability politician is most probably successful in raising funds on behalf of the party. Finally, if nominated as an electoral candidate, a high-ability politician will most likely be able to run a successful campaign and attract votes for his party.6 Furthermore, we assume that political ability is observable by parties. Indeed, people who are potentially interested in becoming politicians typically begin their involvement in politics by engaging in a variety of voluntary political activities that are organized and monitored by political parties (e.g., student political organizations, campaign teams, party internships). These activities thus provide opportunities for a political party to observe the political skills of individuals it may be potentially interested in recruiting.

The remainder of the paper is organized as follows. In Section 2, we review the related literature. In Section 3, we present the model. In Section 4, we analyze a simplified version of the model where elections are uncontested. This allows us to abstract from electoral competition and illustrate the discouragement effect. In Section 5, we introduce electoral competition and present our main results. In Section 6, we discuss our main assumptions and the robustness of our results.

3 However, this is not the case in the general population, where the fraction of high school dropouts in the two countries is comparable (see, e.g., Checchi et al., 1999).
4 Norris and Lovenduski (1995) document that in the 1992 British general election, about 95% of Labour candidates and 90% of Conservative candidates had held a position within the party. Rydon (1986) and Cotta (1979) suggest similar levels of party involvement among members of parliament in Australia and in the post-war Italy, respectively. See also Best and Cotta (2000). In other countries, like for example, Canada, Finland, and the U.S., party service is not necessarily a pre-requisite for advancement in political careers. Even in these countries, however, the fraction of party professionals in the political sector has grown considerably over the years. See, e.g., Norris (1997).
5 Competitive democratic elections offer citizens a choice of alternative parties, governments and policies. [...] Which candidates get on the ballot, and therefore who enters legislative office, depends on the prior recruitment process. [...] In most countries recruitment usually occurs within political parties, influenced by party organizations, rules and culture.” Norris (1997) (pp. 1–14).
6 Brown (2011) provides empirical support for the existence of an adverse “superstar effect”, which is analogous to our discouragement effect, in the context of sports contests. Using panel data from professional golf tournaments, she finds that the presence of a superstar (Tiger Woods) is associated with lower performance by the other golfers. The idea that there might be a discouragement effect in tournaments is not new. See, e.g., the seminal paper by Lazear and Rosen (1997) for an analysis of incentives in tournaments.
7 Aristocracy, from the Greek word aristokratia is defined as: “the government of the best”.
8 As Besley (2005) argues: “the idea that potential politicians differ in their competence is no different from a standard assumption in labor market models that individual have specific skills so that they will perform better or worse when matched in certain jobs” (p. 48). This line of research has been pursued by Matteozi and Merlo (2008) in their study of the careers of politicians.
conclude in Section 7 by suggesting some possible extensions. The proofs are in the Appendix A.

2. Related literature

Our paper is related to the literature on the endogenous selection of politicians. In his survey of this literature, Besley (2005) suggests that electoral competition may discourage a party from selecting a bad candidate: “Candidates are typically chosen by political parties. This fact raises the question of why a party would ever put a bad candidate up for election. One possibility is that if rents are earned by parties as well as successful candidates, and protection of those rents is dependent on selecting bad politicians with little public service motivation, then the party may have an interest in putting up bad candidates. The problem that parties face in making this choice arises from the risk that voters will choose the other party” (p. 55). Our theory identifies a fundamental trade-off between electoral and organizational concerns of political parties and shows how the competitiveness of elections affects the parties’ recruitment decisions and ultimately the quality of elected representatives.

Bernheim and Kartik (2011), Caselli and Morelli (2004), Dal Bo et al. (2006), Galasso and Nannicini (2014), Mattozzi and Merlo (2008), and Messner and Polborn (2004) provide alternative explanations for why bad politicians may be elected to office, and analyze the relationship between the salary of elected officials and their quality. Caillaud and Tirole (2002), Carrillo and Mariotti (2001), Castanheira et al. (2010), Jackson et al. (2007) and Snyder and Ting (2002) study the internal organization of parties and the selection of electoral candidates within parties. None of these contributions, however, studies the issue of political recruitment or the effect of alternative electoral systems on the recruiting decisions of political parties. A notable exception is Besley et al. (2014) on the “crisis of the mediocre man,” which studies the effects of gender quotas on the overall quality of elected politicians. Although their focus is very different from our paper, they provide an alternative rationale for why political parties may want to recruit mediocre politicians in proportional electoral systems. Unlike our theory, they focus on the existence of mediocre party leaders concerned about losing their power (see also Egorov and Sonin, 2011).

Our work is also related to the literature on the relative performance of different electoral systems (see, e.g., the survey by Persson and Tabellini, 2003). Myerson (1993) studies the relative effectiveness of different electoral systems for reducing government corruption. He finds that while proportional representation is fully effective (in the sense that in all equilibria corrupt parties never win any legislative seats), plurality voting is only partly effective (in the sense that there always exist some equilibria where corrupt parties are excluded from office, and some equilibria where corrupt parties are included). Lizzieri and Persico (2001) study the incentives for politicians to provide public goods under different electoral systems. They find that in majoritarian systems public goods are provided less often than in proportional systems. Our work focuses on the incentives for political parties to recruit the best possible politicians and shows that majoritarian systems may be relatively more desirable than proportional systems in this respect. Finally, our work relates to the theoretical literature on all-pay contests. In particular, we build on results by Baye et al. (1993), Baye et al. (1996), and Hillman and Riley (1989) that study all-pay auctions with complete information. Also, a recent paper by Kaplan and Sela (2010) studies two-stage political contests with private entry costs. They analyze a primary election where there is an entry stage and a campaigning stage and show that low-ability contestants (those with a higher marginal cost of exerting effort) may enter more often than high-ability contestants. Contrary to our paper, however, in their model the party does not choose contestants (i.e., there is no recruitment), since individuals can choose whether or not to participate in the contest at a (private) cost and, more importantly, there is no electoral competition.

3. The model

There are two political parties competing in an election and two identical pools of potential recruits, one for each party.9 Potential recruits are heterogeneous with respect to their marginal cost of exerting effort in the political sector or political ability. A politician’s ability is observable by parties and affects his performance both as a party member and as an electoral candidate. Parties serve the role of gatekeepers: individuals can only run for public office if they are members of a party and are nominated by their party.10

After each party has selected its members (the recruitment phase), the new recruits exert costly effort that benefits the party (the organizational phase), and the politician who exerts the highest effort for each party is rewarded by being selected to be the party’s electoral candidate. In the electoral phase, the two candidates (one for each party) then compete by exerting costly effort in the form of campaign activities, which affect the electoral outcome. In a majoritarian (first-past-the-post) system, the candidate who exerts the highest level of campaign effort wins the election. In a proportional system, the probability that each candidate wins the election is proportional to his campaign effort.11

Each party benefits from the total effort of its members during the organizational phase, and also receives an additional benefit if its candidate wins the election. A party member obtains a positive payoff if he is selected by his party as the electoral candidate, and enjoys an additional benefit if he wins the election. We model both the organizational phase and the electoral phase as all-pay contests. The equilibrium of the model determines the ability of the politicians each party recruits, the effort exerted by the parties’ members in the organizational phase, the ability and the campaign effort of the electoral candidates, and the ability of the elected politician.

Formally, we consider two competing political parties indexed by \(h = (i, R) \), and two identical populations of individuals seeking public office. Abusing notation, we use the same index \(h \) for a party and its pool of recruits. Each population \(h \) is composed of \(N > 3 \) individuals. Each individual \(i \) of population \(h \) is endowed with a characteristic \(\theta_i \geq 0 \) representing his political ability. We assume that political abilities are strictly ordered, that is, \(\theta_1 < \theta_2 < \ldots < \theta_N \). The individual cost of exerting effort \(e \geq 0 \) in the political sector is equal to \(e/\theta_i \) (i.e., the higher is political ability the smaller is the marginal cost of exerting effort).13

The game has three stages. In Stage 0 (the recruitment phase), parties simultaneously select their members at a fixed hiring cost \(v > 0 \) per party member. Let \(S_h \) be the set of party \(h \) members, where \(|S_h| \leq N \). An individual who is not selected by a party earns a payoff of zero. In Stage 1 (the organizational phase), party members exert effort \(e \in S_h \) which benefits the party (where the first subscript denotes the stage) at a cost equal to \(e/\theta_i \). The party member who exerts the highest effort is nominated to be the party’s electoral candidate, which

9 We ignore inter-party competition in the recruitment of politicians and assume that each party can select its members from identical pools of recruits. In general, inter-party competition for potential politicians seems of secondary importance, as ideological preferences are more likely to draw individuals toward specific parties. In fact, the lack of within-sector competition for sector-specific skills is a distinctive feature of the political sector.

10 The restrictions applied to candidacy vary a lot across countries with a strong party system, and they sometimes call for additional requirements other than party membership. For example, according to Offer (1974), a potential candidate in the Belgian Socialist Party must: “(1) have been a member at least five years prior to the primary; (2) have made annual minimum purchases from the Socialist co-op; (3) have been a regular subscriber to the party’s newspaper; (4) have sent his children to state rather than Catholic schools; and (5) have his wife and children enrolled in the appropriate women’s and youth organizations” (p. 180).

11 We discuss this reduced-form way of modeling elections in Section 6.3.

12 We discuss the argument of two exogenously given political parties in Section 7.

13 Linearity of the cost function is not essential for our results. We discuss this in Section 6.1.

14 In general, the value of the outside option can be itself a function of political ability. See, e.g., Mattozzi and Merlo (2008). Here, we abstract from this possibility.
we denote by $i^*\xi$ (accordingly, $e_{1,i^*\xi}$ denotes the highest effort exerted in the organizational phase), and he earns a payoff equal to $\beta \in (0, 1)$. Hence, β is the value of being the party’s nominee.\(^{15}\) We define “non active” a party member who chooses not to exert effort in Stage 1 ($e_{1,h} = 0$).

In Stage 2 (the electoral phase), the two candidates nominated by their parties compete in an election. The electoral outcome is a function of the effort exerted by candidates in the electoral campaign, and the properties of this function depend on the electoral system. Specifically, in a majoritarian electoral system (FPP), $i^*\eta$ is elected if and only if $e_{2,h} > e_{2,j}$, where $e_{2,h}$ ($e_{2,j}$) is Stage 2 effort of party h (j)’s nominee, and ties are broken randomly. In a proportional electoral system (PR), $i^*\eta$ is elected with probability $e_{2,h}/(e_{2,h} + e_{2,j})$. The elected politician earns a payoff normalized to 1. The individual cost of campaigning in the election phase is equal to $e_{2,h}/\theta_{h1}$.\(^{16}\)

Since behavior is invariant to affine transformations, for convenience we consider an equivalent specification where the effort cost function is the identity function (i.e., $c(e) = e$), and the value of nomination and election equal $\beta\theta_{h}$ and θ_{h}, respectively. According to this equivalent interpretation, a high-ability politician is an individual who values the election phase is equal to $\beta\theta_{h}$.

Formally, by letting $e_{i} = (e_{i,h}, e_{i,j})$ denote the effort profile in stage $T = (1, 2)$, the payoff of individual i in party h in a majoritarian electoral system is equal to

$$
\pi_{h,i}(e_{1}, e_{2}) = \begin{cases}
0 & \text{if } h \notin K_h \\
\theta_{h}(1 + \beta) - e_{1,h} - e_{2,h} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} > e_{2,j}, \\
\theta_{h}(\beta) - e_{1,h} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} = e_{2,j}, \\
\theta_{h} - e_{1,h} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} < e_{2,j}, \\
\theta_{h} & \text{otherwise,}
\end{cases}
$$

where $Z_{h} = \{ j \in K_h : e_{1,h} = \max_{i \in K_h} (e_{1,i,h}) \}$. Similarly, the payoff of individual i in party h in a proportional electoral system is equal to

$$
\pi_{h,i}(e_{1}, e_{2}) = \begin{cases}
0 & \text{if } h \notin K_h \\
\frac{\theta_{h}}{\theta_{j}} \left(\frac{e_{2,h}}{\theta_{j}} + \frac{\beta}{\theta_{j}} \right) - e_{2,j} - e_{1,h} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} > e_{2,j}, \\
\frac{\theta_{h}}{\theta_{j}} e_{1,h} - e_{1,j} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} = e_{2,j}, \\
\frac{\theta_{h}}{\theta_{j}} e_{1,h} & \text{if } e_{1,h} \geq \max_{i \in K_h} (e_{1,i,h}) \text{ and } e_{2,h} < e_{2,j}, \\
\theta_{h} & \text{otherwise,}
\end{cases}
$$

and if $e_{2,h} = e_{2,j} = 0$ each candidate is elected with equal probability.

We assume that party h selects its members in order to maximize the following objective

$$
V^{\pi}(e_{2,h}, e_{2,j}) + E(\Sigma_{h \notin K_h} e_{1,h}) = K \nu,$$

where the last two terms represent the party’s expected payoff from the recruiting and organizational phases (i.e., the expected total effort of party members in the organizational phase net of hiring costs), and $V^{\pi}(\cdot, \cdot) \in \{PR, FPP\}$, is the party’s expected payoff from the electoral phase. In particular,

$$
V^{PR}(e_{2,h}, e_{2,j}) = \begin{cases}
\gamma & \text{if } e_{2,h} > e_{2,j}, \\
\gamma & \text{if } e_{2,h} = e_{2,j}, \\
0 & \text{otherwise,}
\end{cases}
$$

$$
V^{FPP}(e_{2,h}, e_{2,j}) = \gamma \frac{e_{2,h}}{e_{2,j} + e_{2,j}}.
$$

In the next two sections, we characterize the subgame perfect equilibrium of the game where the profile of effort choices in the electoral phase is a Nash equilibrium of the all-pay contest between candidates, and the profile of effort choices in the organizational phase and the recruiting strategy of the party are optimal given subsequent play. We focus on the case of arbitrarily small hiring cost per party member (i.e., $\nu \to 0$). We say that there is “mediocracy” if parties choose not to recruit the best (i.e., the individual with the highest political ability) nor the worst individuals. On the other hand, we say that there is “aristocracy” if parties choose to recruit the best individuals.

4. The case of a safe seat

In order to disentangle the various forces at work behind our results, we begin by considering a simplified version of the model where electoral competition is absent: the case of a safe seat or an uncontested election. In this case, the recruiting decisions of the two parties are completely independent and do not depend on the electoral system. Hence, we can focus without loss of generality on a situation in which there is only one party that can recruit politicians and a single population of N individuals seeking office.

Consider, as before, that political ability $\theta_{j} > 0$ is perfectly observable and such that $\theta_{1} > \theta_{2} > \ldots > \theta_{N}$. Since the election is uncontested, the party’s nominee is elected with probability one and earns a payoff equal to 1.\(^{17}\) An individual who is not selected to be a party member earns a payoff of zero. Considering the equivalent specification where the effort cost function is the identity function and the payoff from being elected equals θ_{i} and letting e_{i} denote the effort profile, we have that the payoff of individual i is equal to

$$
\pi_{i}(e_{i}) = \begin{cases}
0 & \text{if } i \notin K_h \\
\theta_{i} - e_{i} & \text{if } e_{i} \geq \max_{j \notin K_h} (e_{j}), \\
\theta_{i} & \text{otherwise,}
\end{cases}
$$

where $Z = \{ j \notin K_h : e_{j} = \max_{j \notin K_h} (e_{j}) \}$ represents the set of party members winning the nomination (ties are resolved with equal probability). The party selects its members in order to maximize their expected total effort on behalf of the party net of hiring costs: that is, the party’s payoff is equal to $E(\Sigma_{h \notin K_h} e_{1,h}) - K \nu$, and we restrict attention to the case of ν being arbitrarily small.

We assume the following condition throughout the rest of the paper:

Condition TH: “Tails Heterogeneity”

$$
k = \arg \max_{k} \left(1 + \frac{\theta_{k-1}}{\theta_{k}} \right) \frac{\theta_{k-1}}{2} \in [2, N-2].
$$

This condition guarantees that “superstars” are indeed so (i.e., the best politician is significantly better than the next best one). This is the most interesting scenario where the possibility of mediocrity arising in equilibrium is the most concerning, since there are no close substitutes for superstars. While the role of this condition will become clear shortly, we defer to Section 6.4 for a more in-depth discussion of Condition TH. We can now state our first result:

Proposition 1. If Condition TH holds then mediocrity is the unique equilibrium.\(^{18}\)

\(^{15}\) In Section 7, we consider the case in which β is endogenous.

\(^{16}\) Assuming that the cost of exerting effort is the same across stages is not necessary for our results. In Section 6.3, we discuss a possible way to micro-founded this reduced form model of elections.

\(^{17}\) In the absence of electoral competition, distinguishing between the payoff of winning the nomination and the payoff of winning the election is inconsequential.
Notice that the organizational phase is equivalent to an all-pay auction with complete information and strictly ordered valuations equal to \(\theta_i \). In the unique equilibrium of this game, the only party members that choose to be active (i.e., exert positive effort) are those with the two highest valuations. Furthermore, the expected equilibrium payoff of the best politician in the party is equal to \(\theta_{\text{max}} - \theta_{\text{max}+1} \), where \(\theta_{\text{max}} \) and \(\theta_{\text{max}+1} \) denote the abilities of the best politician in the party and of the second best, respectively. Furthermore, the second best politician in the party completely dissipates his rents. Following Theorem 1 and Lemma 1 of Baye et al. (1993), which builds on a previous result by Hillman and Riley (1989), the expected total effort of party members in equilibrium equals

\[
E(\mathcal{X}_{\text{org}}; e_i) = \left(1 + \frac{\theta_{\text{max}+1}}{\theta_{\text{max}}} \right) \theta_{\text{max}+1} / 2.
\]

Hence, under Condition TH, the party has an incentive not to select the highest-ability individual (i.e., \(\theta_1 \)). Furthermore, since the “prize” (i.e., the party nomination) cannot be shared, in the unique equilibrium, only the two highest-ability politicians selected by the party will be active. Hence, for arbitrarily small \(\gamma \) the party will never select the worst available individuals.

The intuition for the result is simple. In the unique equilibrium of the organizational phase of the game, the two best politicians recruited by the party (i.e., the party recruits with the two highest values of \(\theta \)) randomize over the same interval of effort levels. However, while the highest-ability one randomizes uniformly over the interval, the second-highest’s equilibrium strategy has a mass point on zero effort. In other words, the two best politicians selected by the party will almost mimic each other, but the “underdog” will shirk with some positive probability. When the difference in ability between the best party member and the second best is relatively large, the chances that the latter wins the party nomination are relatively low. This implies that the second-best party member will shirk more often in equilibrium. We refer to this as the discouragement effect: the presence of a “superstar” discourages individuals of lesser ability from exerting high levels of effort (see also Brown, 2011). As a consequence, competition within the party will be relatively low and hence expected total effort by all party members will be low as well. By excluding the potential recruit with the highest ability, and recruiting mediocre but relatively homogenous politicians, the party can increase intra-party competition (i.e., reduce the discouragement effect), and hence the collective effort of its recruits on behalf of the party, which maximizes its payoff. This result is an application of the “exclusion principle” for all-pay auctions with complete information discovered by Baye et al. (1993). In the next section, we introduce electoral competition and study how the interaction between intra-party and inter-party competition affects the equilibrium selection of politicians.

5. Electoral competition

Consider now the general environment described in Section 3 where the two parties compete in an election. In a competitive electoral environment, having a high-ability candidate improves a party’s electoral prospects (competition effect). Hence, a mediocre selection of politicians negatively affects a party’s chances of winning a contested election. This situation entails an interesting trade-off between two opposing effects: the competition effect (due to inter-party competition) and the discouragement effect (due to intra-party competition). The specifics of this trade-off depend on the electoral system, which affects the competitiveness of elections.

We begin by providing a characterization of the subgame perfect equilibrium of the game in the next theorem.

Theorem 1. If Condition TH holds, for each electoral system \(s = \{FPP, PR\} \) there exists a threshold \(\gamma^* \) such that mediocracy is the unique equilibrium if and only if \(\gamma < \gamma^* \).

Theorem 1 completely characterizes the equilibrium of the model. The proof of this result, which is provided in the Appendix A, constructs the subgame perfect equilibrium for each electoral system. In equilibrium, both parties will either select the two highest-ability individuals (aristocracy) or two mediocre individuals with consecutive abilities (mediocracy). The reason why the existence of mediocracy depends on the value of \(\gamma \) is rather intuitive. When \(\gamma \) is small, parties care relatively more about the expected total effort of their members in the organizational phase than about winning the election. Hence, the discouragement effect is more important than the competition effect. In this case, a mediocre selection provides the best incentives for all party members to exert effort on their party’s behalf in the organizational phase. On the other hand, as \(\gamma \) becomes larger, the payoff from winning elections increases and having mediocre but hard-working party members may no longer be optimal from the party’s perspective, since a mediocre candidate will most probably run an unsuccessful campaign.

Next, we investigate the effects of changing the incentives of party members in the organizational phase (i.e., varying the value \(\beta \) of obtaining the party nomination) on the likelihood that mediocracy arises in equilibrium. An increase in \(\beta \) has two opposite effects on \(\gamma^* \): it decreases the parties’ gains in the recruitment phase from excluding the highest-ability individual (the discouragement effect is less severe), which leads to a decrease in \(\gamma^* \); but, it also increases the probability of winning the election following a downward deviation in the recruitment phase (the competition effect is weaker), which leads to an increase in \(\gamma^* \). The former effect is due to intra-party competition and is very intuitive: an increase in the value of winning the nomination increases intra-party competition and hence reduces the discouragement effect. The latter effect is more subtle and pertains to the interaction between intra-party and inter-party competition.

Suppose that party \(L \) is selecting the two highest-ability individuals as its members. The incentives for party \(R \) to do the same rather than opt for a mediocre selection are given by the consequences of such a choice on its expected probability of winning the election. In particular, the electoral incentives are stronger the higher the probability that party \(L \)’s nomination process will lead to the candidacy of the highest-ability individual. Since the nomination is awarded to the party member who exerts the highest level of effort, and in equilibrium the two parties have the highest values of \(\theta \) will randomize continuously on an interval of effort levels, an increase in the value of winning the nomination leads the less able politician in party \(L \) to behave more aggressively. Hence, it is more likely that the less able politician becomes party \(L \)’s electoral candidate. But this benefits party \(R \) since its chances of winning election with a mediocre selection actually increase (i.e., the competition effect is watered down). For a distribution of types that most favors mediocracy in equilibrium, this latter effect is the dominant one. Define the “marginal recruit”, the worst type that the party is willing to recruit if it were only concerned about maximizing efforts of its members. From Condition TH we know that the marginal recruit is \(\theta_{\text{max}+1} \). When the ability of the marginal recruit is very similar to the ability of the second best politician, \(\gamma^* \) is increasing in \(\beta \). This implies that the higher is the value of winning the nomination, the higher is the likelihood that mediocracy is an equilibrium.

It is interesting to point out that having a positive value of winning the party nomination (i.e., \(\beta > 0 \)) is a necessary condition for mediocracy only in the case of majoritarian elections. Indeed, when \(\beta \) approaches zero \(\gamma^* \) vanishes. On the contrary, there exist type profiles such that
The benefit of deviating depends itself on two intertwined components: i) the homogeneity of the deviating party's recruits after the deviation, and ii) how big is the continuation value of being the electoral candidate for the marginal recruit, which is related to his likelihood of winning the general election. While the first component affects the level of competition in the organizational phase (the size of the discouragement effect), the second determines an upper bound on individual effort within the party. When the marginal recruit is very similar to the second best politician in terms of ability, the first component is similar across electoral systems. On the contrary, the maximal effort exerted by politicians in the organizational phase is higher in proportional elections. The reason for this is that in majoritarian elections, the equilibrium continuation value of being the electoral candidate (net of β) is equal to zero for every party member but the very best, while in proportional elections, it is strictly positive even for mediocre politicians. Hence, the party has a stronger incentive to select mediocre politicians in proportional elections than in majoritarian elections which implies that γ_{FPP} must be smaller than γ_{PR}.

Fig. 1 represents the equilibrium selection of politicians in the space (β, γ) for a given value of θ_2/θ_1 and θ_{k_1} close to θ_2. The arrows describe the effect of an increase in θ_2/θ_1 on the boundaries of the regions.19 If we interpret the two parameters of our model, β and γ, as capturing the politicians' and the parties' weights between objectives, Fig. 1 provides some intuitive insights. First, the likelihood of mediocracy being an equilibrium increases when party service is more important than electoral success (as one moves southwest in Fig. 1). Second, for fixed γ and β, a proportional electoral system, by weakening the link between political ability and electoral performance, "endogenously" shifts parties' focus from intra-party competition to extra-party competition and it therefore makes a worse selection of politicians more likely. Finally, the less the best politician stands out with respect to the next best alternative $(\theta_2/\theta_1$ increases), the more likely it is to have a mediocre selection of politicians in equilibrium.20

Proposition 2 focuses on the relative performance of alternative electoral systems in selecting the highest-ability individuals into politics. The next proposition compares their performance in electing the highest-ability politician (i.e., a type θ_1), when it is a party member and hence a potential candidate under both electoral systems.

Proposition 3. Let $\gamma = \max(\gamma_{\text{FPP}}, \gamma_{\text{PR}})$, so that there is aristocracy in both electoral systems. There exists $q^*(\beta) \in (0, 1)$ such that the probability of electing the highest-ability politician is higher in majoritarian elections than in proportional elections if $\theta_2/\theta_1 > q^*(\beta)$.

When parties recruit the best available politicians in both electoral systems, Proposition 3 establishes that the highest-ability politician is elected more often in a majoritarian system than in a proportional system if the distribution of political talent is such that “there is no superstar” (i.e., θ_2/θ_1 is relatively large). While Proposition 3 provides only a sufficient condition, our numerical simulations suggest that this condition is also necessary, i.e., when $\theta_2/\theta_1 < q^*(\beta)$ the probability of electing the highest-ability politician is lower in majoritarian elections than in proportional elections. Furthermore, $q^*(\beta)$ is non-monotone in β, and it is equal to zero as β gets large (e.g., $\beta > 1/2$ is enough).

When β is small, a majoritarian system elects the highest-ability politician more often than a proportional system when it is less needed: i.e., when the difference between the two best politicians is small and therefore the next best alternative is relatively close to the best available option. On the other hand, a proportional system may outperform a majoritarian system in its electing performance when it matters the

19 The boundaries are depicted as straight lines only as an illustration, but in general are not linear.

20 Notice that when the marginal recruit is close to the second-best politician, we can increase the ratio of θ_2/θ_1 without violating Condition TH as long as $\theta_2 > \theta_1$.
most: i.e., when the highest-ability politician is much better than the next best alternative.21 Hence, while we have established that parties are more likely to select better politicians under a majoritarian system, the comparison between the two systems is less clear when we focus on their “electing performance”: that is, their relative performance in electing the highest-ability individual given the same initial selection of politicians.

This suggests that it may be useful to compare the two electoral systems according to the average quality of the politicians elected under each system (maintaining fixed the initial selection of party members). While the two systems cannot be ranked, the results of numerical simulations indicate that, given the same initial selection of politicians, the difference in the average quality of elected politicians in majoritarian and proportional systems is quantitatively negligible for all values of β and θ_2/θ_1. Hence, the two systems are very similar with respect to their electing performance when they both induce political parties to select the best politicians. The main difference between the two electoral systems is in their relative propensity to induce a mediocre selection by the parties.

By combining the results of Propositions 2 and 3, our analysis highlights the importance of taking into account the effects of different electoral systems on the initial recruitment of politicians. In this respect, our findings tilt the comparison between electoral systems in favor of majoritarian elections. We conclude the analysis by assessing which electoral systems on the initial recruitment of politicians. In this respect, the existence of γ^{PR} follows from continuity.

Regarding PR elections, while characterizing equilibrium behavior in contest with non-linear cost functions presents non-trivial technical challenges, convexity of the cost function guarantees existence of a unique interior solution to the last stage of the game and, at the unique equilibrium, each contestant enjoys nonnegative expected payoff.24 Hence, given that continuation payoffs are well-defined, the existence of γ^{FPP} is guaranteed.

Finally, with regard to the ranking between FPP and PR, note that the main reason why the party has a stronger incentive to select mediocre politicians in PR elections follows from two elements: the probability of winning the election with a mediocre selection of candidates is always greater in majoritarian elections than in proportional elections.

The ranking of Proposition 4 also extends to expected average campaign effort and the intuition for these results comes from the uniformly steeper incentives provided by majoritarian elections and their effects on the selection of party members and electoral candidates.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Equilibrium selection of politicians for given θ_2/θ_1.}
\end{figure}

\textbf{6. Discussion}

Our results were obtained in the context of a simple theoretical model in order to highlight the main trade-off between the discouragement and the competition effects, and their interplay with the recruitment strategies of competing parties. In this section, we discuss some of the assumptions under which we proved our results and their robustness to alternative specifications.

\textbf{6.1. Cost of effort}

In the model, we assume that an individual’s cost of effort varies linearly with the amount of effort she exerts. This assumption is relatively standard in the theoretical literature on all-pay contests.22 While it greatly simplifies the algebra and the exposition, it is possible to show that our main findings will hold under perturbations of the cost function. As such, linearity is not a necessary conditions for our results.

For example, suppose that the cost of exerting effort for an individual equals $c(e_{-i})/\theta_i$ in each stage, where $c(\cdot)$ is a strictly increasing, convex and continuous function of effort with $c(0) = 0$. The latter case clearly includes the linear one where $c(e) = e$. Using the results of Kaplan and Wettstein (2006), we know that the unique equilibrium of the all-pay auction has both individuals randomizing continuously on the same support. Furthermore, even if the CDFs is no longer linear, the support of the distributions is identical to the case of $c(e) = e$, and candidate $j-i$ places an atom on $e=0$ with the same probability as in the case of a linear cost. More importantly, individuals’ equilibrium payoff are exactly the same as before ($\theta_i - \theta_{j-i}$ and 0, respectively), and expected individual and aggregate expenditures are invariant to changes in the cost function. Finally, the probability of either individual winning is invariant as well.23 As a result, Eq. (2) is unchanged. Given that continuation payoffs are well-defined, the existence of γ^{FPP} follows from continuity.

\textbf{6.2. Party utility}

An additional simplifying assumption that deserves some discussion is the fact that parties’ utility is linearly increasing and separable in the sum of the efforts of its members. As for linearity, clearly nothing would change if parties’ utility was expressed as a nonlinear monotone

21 The reason why a proportional system performs better than a majoritarian system in electing the best politician when θ_2/θ_1 is relatively small is due to the fact that the unique equilibrium of the organizational phase is mixed strategies. In particular, when the underdog politician is much worse than the best one, to preserve indifference, he has to exert zero effort with higher probability (and hence is less likely to obtain the party nomination and become an electoral candidate), in a proportional system than in a majoritarian system.

22 See the review in Crocheton (2007).

23 See Kaplan and Wettstein (2006) Corollary 1 on page 1353.

24 After the transformation $c^{-1}(y) = e$ and since $c^{-1}(\cdot)$ is concave, Theorem 1 and Theorem 2 in Szidarovszky and Okuguchi (1997) apply.
increasing function of expected total effort. The linearity assumption is a way to avoid the unnecessary complication of taking expectations of a nonlinear function of random variables.

The separability assumption, on the other hand, is somewhat more substantial. Note that Eq. (1) captures in the simplest way that two key forces influence a party's recruitment decisions: First, an obvious component of political parties' objective is its desire to win the elections, which is captured by the term V_i. This would be the only objective if parties were mere electoral machines. However, political parties are long-lasting organizations that operate in the political sector on an ongoing basis. In this respect, raising funds on behalf of the party or devoting effort to membership drives is crucial also when it is not election time. Assuming that parties value the effort of their members in the organizational phase captures this latter aspect.

More specifically, we restrict attention to the limit case in which, from the party's perspective, party service and electoral success do not interact directly. The link between the two, and hence the trade-off, emerges from the fact that the main incentive a party has to offer to reward service is the party's electoral nomination. One could argue, however, that party service may also boost electoral prospects per se. Since in this case the party cares about its recipients' effort also for electoral purposes this would further reduce the incentives to recruit superstars. Furthermore, ceteris paribus, since a majoritarian system will always be less forgiving with mediocre candidates, this alternative specification should not affect the ranking between systems.

6.3. Electoral system and policy preferences

In this paper, we model the election phases as all-pay contests. Furthermore, our common-value environment departs from the standard Downsian approach and abstracts from policy preferences. The reason for these choices is that our primary goal is to describe a mechanism that we believe is an important missing piece in our understanding of how representative democracy works in the clearest and most tractable way.

Our description of alternative electoral systems is purposely stylized, and focuses primarily on one of the main features that distinguishes FPP and PR electoral systems. In FPP the candidate that collects a majority of votes wins the control of government and appropriates all office rents. On the contrary, in PR all parties obtaining a positive share of votes can aspire to influence government, and hence participate in the division of office rents. Furthermore this influence is proportional to the share of votes obtained in the election.

Regarding policy preferences, while it is certainly the case that in the Downsian tradition parties' policy platform and voters' policy preferences are central in determining the outcome of elections, it is also true that electoral candidates campaign effort are at least equally important, since some (if not all) voters are influenced by campaign activities.

Introducing policy preferences in our setting is relatively easy and, while it does not affect our results, it uncovers how modeling election as all-pay contests can be embedded in a political economy model. To see this, suppose that the two political parties have observable symmetric policy positions $[-x,x] \in [-1, 1]^2$ that are perfectly implemented by their candidates if elected. Further, following Grossman and Helpman (1996) assume that a fraction $1 - p$ of voters have policy preferences distributed symmetrically on the interval $[-1, 1]$, and are not affected by campaign spending. The remaining fraction p of voters are only affected by campaign spending. In particular we assume that this latter fraction of voters is affected by the ratio of campaign spending.

In PR elections, policy outcome is the result of a probabilistic compromise between candidates obtaining votes. In particular, the probability that the policy represented by a candidate is implemented is proportional to the candidate vote share in the election. We also assume that the expected share of rents enjoyed by each candidate is proportional to the vote share.

As such, party h in PR maximizes its share of votes that is

$$s_h = \frac{1 - p}{2} + p \frac{e_{2h}}{e_{2h} + e_{2h,n}}.$$

In FPP elections, the candidate that collects a majority of votes wins the control of government and appropriates all office rents. As such, party h in FPP is only interested in $s_h > 1/2$, which corresponds to $e_{2h} > e_{2h,n}$. It is immediate to see that in this model the key mechanism leading to mediocrity, and our results on the comparison between alternative electoral systems, will be preserved.

Notice that the mapping between candidates' effort and votes in the election need not to be linear. For FPP elections, linearity is not essential as long as the mapping is increasing. Regarding PR elections, a more general and widely used functional specification in the literature on rent-seeking games is the Tullock function (x^a+y^a) for values of $a \leq 1$, e_i is concave, and the all-pay contest is strategically equivalent to the linear contest with convex effort costs that we discussed at the end of subsection 6.1.

As a final observation, an alternative way to embed our model in a standard political economy framework would be to introduce an element of probabilistic voting. Notice, however, that in standard probabilistic voting models with large electorate, maximizing expected plurality or maximizing the probability of winning are equivalent unless parties can target pivotal groups or districts of voters. In the latter case since, contrary to PR electoral systems, FPP electoral systems are usually coupled with relatively small and homogeneous electoral districts, buying votes in pivotal districts becomes substantially more valuable than in PR where every vote has roughly the same value. Under specific assumptions on the distributions of voter ideological preferences within and across districts, obtaining just a few more votes in a pivotal district (where voters have weak ideological preferences) can map in an almost sure victory. While solving a multi-distric model of our model is beyond the scope of this paper, our all-pay auction setting to model FPP elections is meant to capture that FPP elections are substantially more competitive than PR elections.

6.4. Tails heterogeneity

We prove our results under Condition TH. This condition ensures that there is enough heterogeneity at the tails of the distribution of ability of potential politicians. In particular, the condition guarantees that there is always a “superstar” and a “lemon” (i.e., a potential recruit with relatively high ability, and one with relatively low ability with respect to the rest of the pool). Furthermore, the condition guarantees that “superstars” are indeed so (i.e., the best politician is significantly better than the next best one). Stated differently, we require that (a
subset of) mediocre politicians are all alike. This condition is necessary and sufficient for the existence of our threshold on γ such that mediocrity arises in equilibrium. Note that, if superstars are not scarce, which after all would contradict the use of the term superstar in the first place, there is no tension in the recruiting strategies of the party, who could recruit two superstars who would motivate each other.

It is not obvious how one could provide direct empirical evidence to justify Condition TH. However, from an anecdotal point of view, there are a number of examples in addition to the ones described in the Introduction, suggesting that political parties may fail to appoint an available superstar. In the 1885 U.S. Presidential campaign, the Republican Party did not choose Chester A. Arthur. President Arthur served as the vice president of James Garfield and became President after Garfield’s assassination until the end of its mandate in 1885. It is interesting to note that Mark Twain, usually one of the harshest commentators of American politics, wrote of him “[I]t would be hard indeed to better President Arthur’s administration.” More recently, Ken Livingstone’s candidacy to the first London mayoral elections since the creation of the office in 2000 was blocked by the Labour Party. Despite the opposition of his party, Livingstone decided to run as an independent candidate, and was expelled from the Labour party. He won the election with 58% of the votes. The Labour candidate came out third. In 2003, the Political Studies Association named Livingstone “Politician of the Year”.

7. Concluding remarks

In this paper, we have proposed a novel approach to study the effects of alternative electoral systems on the quality of politicians. By focusing on the recruitment of individuals in the political sector, we have identified a fundamental trade-off between organizational and electoral concerns of political parties that may lead to a mediocre selection of politicians. The main driving force behind this result is what we have called the discouragement effect: that is, the tendency of individual members of an organization, who are of lesser ability, to get discouraged from the presence of superstars in a competitive environment and hence exert little effort on behalf of the organization. This is a rather general concept which also applies to other contexts (see, e.g., Brown, 2011).

The novel contribution of this paper is to show that the discouragement effect interacts with a competition effect. By excluding superstars, and selecting instead a mediocre but relatively homogeneous group of individuals, an organization can maximize the collective effort of the group, but at the cost of possibly losing its competitive edge. Although this logic may well extend to different organizations, the value of our application to political recruitment is twofold. First, it provides a novel contribution to the small theoretical literature on the internal organizations and incentives of political parties. Second, since electoral rules determine the competitiveness of the electoral environment and, ceteris paribus, the more competitive the electoral environment, the less appealing a mediocre selection, our work contributes to the debate on the relative performance and desirability of alternative electoral systems and provides a new argument in favor of majoritarian elections (Lizzeri and Persico, 2001 and Myerson, 1993, for example, highlight some of the relative benefits of proportional systems).

We have proposed an equilibrium model that formalizes these general ideas and naturally casts them in an all-pay auction environment. To keep the analysis tractable and focused on the main ideas, the model is deliberately simple and stylized. Nevertheless, it can be extended in several directions. Here, we briefly discuss two possible generalizations.

First, in our model the value of being nominated as an electoral candidate, β, is exogenous. Suppose, on the other hand, that β is endogenous. For example, suppose that β can be optimally chosen by parties at cost c(β), and different electoral systems may lead to a different optimal β∗. Clearly, if parties can increase β at no cost (i.e. c(β) = 0), they will do so in both electoral systems and βFPP = βPR = 1. In this case, our results about the relative desirability of majoritarian elections both in terms of selection and election of good politicians are reinforced. If instead c(β) is increasing and convex, it can be shown that there exists a threshold t such that βFPP > βPR if and only if βFPP > βPR, our ranking of electoral systems in terms of both the selection and election of high-ability politicians is preserved. On the other hand, if βFPP < βPR, the relative performance of alternative electoral systems may also depend on the convexity of c(β).32

Second, we focus on two exogenously given political parties. In the case of majoritarian electoral systems, both theory and empirical evidence suggest that this assumption is to a large extent plausible.33 This is not necessarily the case for proportional electoral systems. However, for any number of parties in proportional elections, the marginal impact of individual campaign effort on the probability of winning the election will always be bounded. On the contrary, the winner-takes-all nature of majoritarian elections entails that an increase in campaign effort just above the competitors’ levels will lead to a discrete jump in the probability of winning. This suggests that the probability of electing the best candidate will always be higher in majoritarian elections than in proportional elections for any number of candidates.34

Appendix A

To simplify notation and without any loss of generality, we assume in the proofs that the marginal recruit θh = θ. Hence, in the recruitment phase of the game the optimal selection for each party is either the two highest-ability individuals (θ1 and θ2) or the second and the third highest-ability individuals (θ2 and θ3).

Proof of Theorem 1. We first analyze the subgame perfect equilibrium of the game with a FPP electoral system. We proceed by backward induction. First, note that election phase of the game is an all-pay auction between the two nominees with valuations θ1 and θ2, respectively. Without loss of generality, assume that θ1 ≥ θ2. Using well-known equilibrium properties of all-pay auctions, we have that the equilibrium is unique. Furthermore, we have two possible situations:

1. If θ1 = θ2, the equilibrium is symmetric and both candidates randomize continuously on [0, θ2]. Their expected payoff is zero.
2. If θ1 > θ2, candidate 1 randomizes continuously on [0, θ1], and earns an expected equilibrium payoff of (θ1 − θ2). Candidate 2 randomizes continuously on [0, θ2], he places an atom of size at (θ2 − θ2)/θ2 at zero, and earns a payoff of zero.

We now move to the organizational phase of the game and define by θ(h,x₅) and θ(h,x₄), the highest quality among politicians selected in party h and the identity of the highest quality politician selected in party h, respectively. In order to save notation let θmax₅ = θmax₄ and max₅ = max₄. We consider two cases:

Case 1 θmax₅ = θmax₄
Consider the following strategy profile: in each party h the highest quality politician randomizes continuously on [0, βθmax₅+1]. The second highest quality politician randomizes continuously on [0, βθmax₅+1] and places an atom of size θ₅ at zero. All other politicians are not active. Note that, if politicians in party L follow this profile, the expected value of participating

32 Preliminary analysis suggests however that this additional component is of second-order importance. For example, in the case of a quadratic cost function, when θ₂θ₁ < t and hence βFPP > βPR, the ratio βFPP/βPR is approximately equal to 1 and therefore treating β as exogenous is inconsequential.

33 There is a large theoretical literature providing a formalization of the well-known Duverger’s law, namely that majoritarian elections lead to a two-party system. See, e.g., laryczower and Mattozzi (2013) and references therein.

34 For example, it can be shown that the probability that the best candidate wins a proportional election when he is facing two competitors is always bounded above by the probability of winning when he is facing only one competitor.
in the election for party R's politicians is zero (net of the nomination prize) for all potential candidates with less than highest quality, and it is equal to

\[(\theta_{\text{max}} - \theta_{\text{max} - 1}) \left(1 - \frac{\alpha_0}{2}\right) \]

for the highest quality politician (\(\theta_{\text{max}}\)). By defining

\[\nu_{1_k} = \beta \theta_{\text{max}} + \left(\theta_{\text{max}} - \theta_{\text{max} - 1}\right) \left(1 - \frac{\alpha_0}{2}\right) \]

and

\[\nu_{j_k} = \beta \theta_{\text{max} + j - 1} \quad \text{for all } j = \{2, \ldots, |K_k|\}. \]

it follows that the strategy profile described above is the unique best response for party R's politicians since they are playing an all-pay auction with complete information and valuations \(v_j, j = \{1, \ldots, |K_k|\}\) defined above. Finally, we can pin down the unique value of \(\alpha_0\) by using the fact that the highest quality candidate must be indifferent within his mixed-strategy support, and that his expected payoff must equal \(v_{1_k} - v_{2_k}\). This implies that if a politician with quality \(\theta_{\text{max} - 1}\) exerts effort \(e\) according to the distribution function \(F_{\text{max} - 1}\), it must be that \(v_{1_k} - v_{2_k} = 0\) for all \(e \in [0, \beta \theta_{\text{max} - 1}]\). Hence, by solving

\[F_{\text{max} - 1}(0) = 1 - \frac{v_{2_k}}{v_{1_k}(\alpha_0)} = \alpha_0, \]

and letting \(z = \theta_{\text{max} - 1}/\theta_{\text{max}}\), we obtain that

\[\alpha_0 = 1 - \sqrt{\frac{\beta^2 + 2(2z(1-z) - \beta)}{1-z}}, \]

which is decreasing in \(\beta\) and \(z\).

Case 2 \(\theta_{\text{max}}>\theta_{\text{max} - 1}\)

For simplicity we focus on the case where \(\theta_{\text{max} - 1} = \theta_{\text{max}}\). The case in which \(\theta_{\text{max} - 1} > \theta_{\text{max}}\) can be analyzed in a similar way. Consider the following strategy profile: In party R the highest quality politician randomizes continuously on \([0, \beta \theta_{\text{max} - 1]}\). The second highest quality politician randomizes continuously on \([0, \beta \theta_{\text{max} - 1}]\) and places an atom of size \(\alpha_0^*\) at zero. In party L the highest quality politician randomizes continuously on \([0, x]\), where

\[x = \beta \theta_{\text{max} - 1} + \left(\theta_{\text{max} - 1} - \theta_{\text{max}}\right) \left(1 - \frac{\alpha_0^*}{2}\right). \]

The second highest quality politician randomizes continuously on \([0, x]\) and places an atom of size \(\alpha_0^*\) at zero. All other politicians are not active. Note that, if politicians in party L follow the candidate profile, the expected value of participating in the election for all party R's politicians is zero (net of the nomination prize), which implies that by redefining \(v'_{j_k} = \beta \theta_{\text{max} - 1} + \left(\theta_{\text{max} - 1} - \theta_{\text{max}}\right) \left(1 - \frac{\alpha_0^*}{2}\right)\), for all \(j = \{1, \ldots, |K_k|\}\) and \(\alpha_0^* = 1 - \theta_{\text{max} - 1}/\theta_{\text{max}}\), their strategy profile is optimal (it is the unique equilibrium of an all-pay auction with complete information and strictly ordered valuations). On the other hand, if politicians in party R follow the candidate profile, the expected value of participating in the election for party L's politicians is zero (net of the nomination prize) for all potential candidates with less than second highest quality, and it is equal to

\[(\theta_{\text{max}} - \theta_{\text{max} - 1}) \left(1 - \frac{\alpha_0^*}{2}\right) \]

for the highest quality politician, and equal to

\[(\theta_{\text{max} - 1} - \theta_{\text{max} - 2}) \left(1 - \frac{\alpha_0^*}{2}\right) \]

for the second highest quality politician. By redefining

\[v_{1_k}' = \beta \theta_{\text{max}} + \left(\theta_{\text{max}} - \theta_{\text{max} - 1}\right) \left(1 - \frac{\alpha_0^*}{2}\right) + \left(\theta_{\text{max} - 1} - \theta_{\text{max} - 2}\right) \left(1 - \frac{\alpha_0^*}{2}\right), \]

and

\[v_{j_k}' = \beta \theta_{\text{max} - 1} + \left(\theta_{\text{max} - 1} - \theta_{\text{max} - 2}\right) \left(1 - \frac{\alpha_0^*}{2}\right) \quad \text{for all } j = \{3, \ldots, |K_k|\}, \]

and letting

\[\alpha_0^* = 1 - \frac{v_{2_k}'}{v_{1_k}'(\alpha_0^*)} = 1 - \frac{\beta \theta_{\text{max}} + \left(\theta_{\text{max}} - \theta_{\text{max} - 1}\right) \left(1 - \frac{\alpha_0^*}{2}\right) + \left(\theta_{\text{max} - 1} - \theta_{\text{max} - 2}\right) \left(1 - \frac{\alpha_0^*}{2}\right)}{\beta \theta_{\text{max}} + \left(\theta_{\text{max}} - \theta_{\text{max} - 1}\right) \left(1 - \frac{\alpha_0^*}{2}\right)}, \]

it follows that their strategy profile is optimal (it is the unique equilibrium of an all-pay auction with complete information and strictly ordered valuations).

In order to show that this is the unique equilibrium of the organizational phase, suppose that party R's members play any strategy \(\alpha_j : \theta \to \Delta(0, b_j), j = \{\max_k, \ldots, |K_k|\}\), where \(\Delta(0, b)\) denotes a probability distribution on the interval \([0, b]\) and \(b < b << \infty\). The profile \(\sigma = (\alpha_{\max_0}, \ldots, \alpha_{|K_k|})\) generates a probability of winning party R's nomination \(q_j(\sigma)\) in \([0, 1]\) for \(j = \{\max, \ldots, |K_k|\}\) such that \(\sum q_j(\sigma) = 1\) and, if \(\max > 1\), \(q_j(\sigma) = 0\) for \(j = \{1, \ldots, \max\}\). The expected value of winning the nomination in party L is therefore

\[v_j = \beta \theta_{\text{max} - 1} + \sum_{s=\max+1}^{|K_k|} q_s(\sigma) (\theta_{\text{max} - 1} - \theta_{s-1}), \]

for \(j = \{1, \ldots, |K_k|\}\). Furthermore,

\[v_j - v_{j+1} = \left(\beta + \sum_{s=\max+1}^{|K_k|} q_s(\sigma)\right) (\theta_{\text{max} - 1} - \theta_{j+1}) > 0. \]

Hence, for any strategy profile \(\sigma = (\sigma_{\max_0}, \ldots, \sigma_{|K_k|})\) of party R's members, the organizational phase of the game for party L's members is an all-pay auction with complete information and strictly ordered expected valuations \(v_j\) defined above, which has a unique equilibrium (for any set of strictly ordered valuations \(v_j\)). Finally, when members of both parties are playing optimally, expected valuations (for each party) are uniquely defined and hence overall uniqueness of the equilibrium follows.

We now move to the recruitment phase of the game and show that there exists a \(\mathcal{FP}\) such that a necessary and sufficient condition to have a mediocracy equilibrium is \(\gamma < \mathcal{FP}\). In order to show this, suppose that we want to support a symmetric selection profile where aristocracy arises in equilibrium, i.e., each party in the recruitment phase selects only \(\{\theta_1, \theta_2\}, h = \{R, L\}\). Note that the selection that maximizes expected total effort in each party is either \(\{\theta_2, \theta_3\}\) or \(\{\theta_1, \theta_2\}\). Since the probability of winning the election decreases by selecting worse politicians, it follows that it is enough to check that a party does not want to deviate to a selection \(\{\theta_2, \theta_3\}\).
The expected payoff of each party h in an aristocracy equilibrium is
\[\gamma = \frac{1 + \theta v_h}{\theta v_h} \frac{v_h}{2} \]
where
\[v_h = \beta \theta_1 + \left(\frac{\theta_1 - \theta_2}{2} \right) \frac{1 - \alpha}{2} \]
and
\[v_2 = \beta \theta_2, \]
and, using (3) and suppressing the party index,
\[\alpha = 1 - \sqrt{\beta^2 \theta_1^2 + 2 \beta \theta_2 (\theta_1 - \theta_2) - \beta \theta_1}. \]

By deviating to $\{\theta_2, \theta_4\}$ (without loss of generality let h be the deviating party), party h's payoff is
\[\gamma P_h = \left(1 + \frac{v_h}{v_2} \right) \frac{v_3}{2} \]
where $v_3 = \beta \theta_3$, and $P_h < 1/2$ is the probability that party h wins the election. Hence, a necessary and sufficient condition for party h not to deviate is
\[\gamma > \frac{\theta_3}{\theta_2} \]
Further, by defining
\[\rho_1 = Pr(e_{12} < e_{13}) = Pr(e_{12}, e_{13} < e_{12}) = \frac{\theta_3}{\theta_2} \]
\[\rho_2 = Pr(e_{11} < e_{12}) = \frac{2 \beta \theta_1}{2 \beta + 2 (\theta_1 - \theta_2)} \]
\[\rho_3 = Pr(e_{21} < e_{22}) = \frac{\theta_2}{\theta_1} \]
where Condition TH implies that $\rho_2 < \rho_3 < \rho_1$, we obtain that P_h equals
\[P_h = (1 - \rho_1 (1 - 2 \rho_1)) \left(\frac{\rho_2}{2} + (1 - \rho_2) \rho_3 \right) \in (\rho_2, \rho_3). \]
which is increasing in β since ρ_2 is increasing in β and $\rho_3 < 1/2$. Further, it is immediate to see that $P_h > \rho_3$, while Condition TH and tedious algebra delivers that P_h is increasing in θ_2 and that $P_h < \rho_1$. In a similar fashion it can be shown that a necessary and sufficient condition to support a symmetric selection profile where each party in the recruitment phase selects only $\{\theta_2, \theta_4\}, h \in \{R, L\}$ is $\gamma < \frac{\theta_3}{\theta_2}$.

Since $P_h < 1/2$, the denominator of (4) is always positive. Further, since the numerator vanishes as β approaches zero, we have that $\lim_{\beta \to 0} \frac{\theta_3}{\theta_2} = 0$. When γ vanishes, mediocracy arises if and only if
\[1 + \frac{v_3}{v_2} = \frac{1 + v_2}{\theta_2}, \]
and Condition TH is a sufficient condition for the above inequality to hold since $v_3/v_2 < v_2/\theta_2$.

We now analyze the subgame perfect equilibrium of the game with a PR electoral system. Consider first the election phase of the game in a PR electoral system. In this case, in the unique equilibrium, the nominees will choose
\[\hat{\theta}_2 = \frac{\theta_3^2 \theta_4}{(\theta_4^2 + \theta_4^2)}, \]
and
\[\hat{\theta}_4 = \frac{\theta_3^2 \theta_4}{(\theta_4^2 + \theta_4^2)}. \]

Furthermore, $\hat{\theta}_2^2$ and $\hat{\theta}_4^2$ will earn payoffs $\frac{\theta_3^2}{(\theta_4^2 + \theta_4^2)}$ and $\frac{\theta_3^2}{(\theta_4^2 + \theta_4^2)}$, respectively.

We now move to the organizational phase of the game. Consider the following strategy profile: in each party the highest quality politician randomizes continuously on $[0, w_{\max}].$ The second highest quality politician randomizes continuously on $[0, w_{\max} + 1]$ and places an atom of size δ_0 at zero. All other politicians are not active. Note that, if politicians in party $- h$ follow this profile, the expected value of participating in the election for a party h politician with quality θ_3 is
\[1 + \delta_h - \frac{\theta_3^2}{(\theta_3 + \theta_4^2)} \frac{1}{2} + \frac{1}{2} \theta_3^2 \]
By defining
\[w_h = \beta \theta_3 \frac{1 + \delta_h}{2} \frac{\theta_3^2}{(\theta_3 + \theta_4^2)} \frac{1}{2} \theta_3^2 \]
and noticing that w_h is strictly increasing in θ_3, it follows that the strategy profile described above is the unique equilibrium that arises. We can pin down the equilibrium value of δ_h solving the system
\[\delta_h = 1 - \frac{w_{\max} + 1 + (\theta_3 - \theta_4)}{w_{\max} (\theta_3 - \theta_4)} \]
Since each equation of the system in (6) is a continuous function of θ_4 that maps the unit interval into itself, a solution always exists. If $\max_1 L = \max_2 \theta_4$ (6) has trivially a unique solution where $\delta_h = \delta - \theta = \delta^*$, and it is easy to show that δ^* is decreasing in β and decreasing in $\theta_{\max} / \theta_{\min}$. If instead $\max_1 L \neq \max_2 \theta_4$, it must be the case that $\delta_0 \neq \delta - \theta$ and tedious but straightforward algebra shows that the solution is still unique. In order to show that this is the unique equilibrium of the organizational phase, we apply the same argument as before and suppose that party R's members play any strategy $\delta_j : \delta_j \in \Delta_0, j \in \{r, r_{\min}, \ldots, \delta_{\max}\}$, where Δ_0, j denotes a probability distribution on the interval $[0, b_j]$ and $b_j < b < \infty$. The profile $A = (\delta_{\max}, \ldots, \delta_{\min})$ generates a probability of winning party R's nomination $q_i(\sigma) \in [0, 1]$ for $j = \{1, \ldots, \delta_{\max}\}$ such that $\sum q_i(\sigma) = 1$ and, if $\max_1 L > 1, q_i(\sigma) = 0$ for $j = \{1, \ldots, \delta_{\min}\}$. The expected value of winning the nomination in party L is therefore
\[\bar{w}_j = \beta \theta_{\max} + \frac{1}{\theta_{\max}^2} \sum_{i=1}^{\delta_{\max}} q_i(\sigma) \left(\frac{\theta_{\max}^3}{\theta_{\max}^2 + \theta_{\max}^2} \right) \]
for $j = \{1, \ldots, \delta_{\max}\}$. Furthermore,
\[\bar{w}_j = \delta(\theta_{\max} - \theta_{\min}) + \sum_{i=1}^{\delta_{\max}} q_i(\sigma) \times \left(\frac{\theta_{\max}^3}{\theta_{\max}^2 + \theta_{\max}^2} \right) \]
Hence, for any strategy profile $\sigma = (\sigma_{\max}, \ldots, \sigma_{\min})$ of party R's members, the organizational phase of the game for party L's members is an all-pay auction with complete information and strictly ordered expected valuations \bar{w}_j defined above. Uniqueness follows as in the case of FPP.
We now move to the recruitment phase of the game and show that there exists a γPR such that a necessary and sufficient condition to have a mediocrity equilibrium is γ < γPR. In order to support a symmetric selection profile where aristocracy arises in equilibrium, i.e., {θ1, θ2}, h = [R, L], it is enough to check that a party does not want to deviate to a selection {θ3, θ3}. The expected payoff of party h in an aristocracy equilibrium is

\[\gamma + \left(1 + \frac{w_2(\delta^*)}{w_1(\delta^*)} \right) \frac{w_3(\delta^*)}{w_2(\delta^*)} \frac{1}{2}, \]

where

\[w_h(\delta^*) = \beta_0 + 1 + \frac{1}{2} \left(\frac{\theta_0^3}{\theta_1 + \theta_2} + \frac{1}{2} \cdot \frac{\theta_0^3}{\theta_1 + \theta_2} \right)^2, \]

and \(\delta^* \) is the unique solution to (6) when \(\max_h = \max_{-h} = 1 \). By deviating to \(\{\theta_3, \theta_3\} \) party h’s payoff is

\[\gamma \frac{\beta_h}{2} + \left(1 + \frac{w_2(\delta^*)}{w_1(\delta^*)} \right) \frac{w_3(\delta^*)}{w_2(\delta^*)} \frac{1}{2}, \]

where \(\beta_h < 1/2 \), and \(\{\delta^*_h, \delta^*_3\} \) solve (6) when \(\max_{-h} = 1 \) and \(\max_h = 2 \). Hence, a necessary and sufficient condition for party h not to deviate is

\[\gamma > \gamma_{PR} = \frac{1}{2} \left(\frac{w_3(\delta^*)}{w_2(\delta^*)} \right) \left(\frac{1}{2} + \frac{w_3(\delta^*)}{w_2(\delta^*)} \right) \frac{1}{2} - 2 P_h. \]

(7)

By letting

\[\hat{\gamma}_1 = \text{Pr}(1,1,1) = 1 \text{Pr}(1,0,0) = \frac{1}{2} \left(1 - \delta_0^* \right) q_{\rho_1}, \]

and

\[\hat{\gamma}_3 = \text{Pr}(1,1,1) = 1 \text{Pr}(1,0,0) = \frac{1}{2} \left(1 - \delta_0^* \right) q_{\rho_3}, \]

it follows that

\[\hat{\gamma}_h = \hat{\gamma}_1 \left(1 - \hat{\gamma}_1 \theta_1 \right) \theta_1 + \left(1 - \hat{\gamma}_1 \theta_1 \right) \theta_1 \left(1 - \hat{\gamma}_1 \right) \left(1 - \hat{\gamma}_3 \theta_2 + \left(1 - \hat{\gamma}_3 \theta_2 \right) \theta_3 \right) \left(1 - \hat{\gamma}_3 \right), \]

(8)

In a similar fashion it can be shown that a necessary and sufficient condition to support a symmetric selection profile where each party in the first stage selects only \{θ2, θ3\}, \(h = [R, L] \), the denominator of (7) is always positive. Further, when \(\theta_1 > \theta_2 \) and \(\theta_3 \) approaches \(\theta_2, w_3(\delta^*) \) approaches \(w_3(\delta^*), \) where \(\delta^*_{-h} = \lim_{\theta_2 \to \theta_3} \delta^*_{-h}, \) and the numerator of (7) simplifies to

\[2 w_2(\delta^*) \left(1 + \frac{w_3(\delta^*)}{w_2(\delta^*)} \right) w_3(\delta^*) = 2 w_2(\delta^*) \left(2 - \delta^* \right) w_3(\delta^*). \]

The last expression is strictly positive and tedious but straightforward algebra delivers that it is increasing in \(\theta_1, w_2(\delta^*) < w_3(\delta^*) \) if and only if \(\delta^*_{-h} > \delta^* \), and there exists a βs-0 such that \(\delta^*_{-h} > \delta^* \) if and only if \(\beta < \beta_s \). Note that contrary to the case of \(\theta_2 > \theta_3, \) when \(\theta_2 > \theta_2 \) and \(\theta_3 \) is exactly equal to \(\theta_3, \) the equilibrium of the organizational phase of the game is not unique anymore (Baye et al., 1993). Here, we focus on the limit of the unique equilibrium described above, i.e., when \(\theta_2 < \theta_2 < \epsilon \) for \(\epsilon \) positive and small. It is worth mentioning that even in the case of \(\theta_2 = \theta_2 \) the equilibrium that we described above exists and it is the one that maximizes expected effort in the organizational phase, see Baye et al. (1993). In conclusion, mediocrity arises in PR if and only if \(\gamma < \gamma_{PR} \) and, when \(\theta_1 > \theta_2 \) and \(\theta_3 \) approaches \(\theta_2, \gamma_{PR} \) is strictly positive for all values of \(\beta. \)

Proof of Proposition 2. Using Eqs. (4) and (7), let \(Q(\beta, \theta_2/\theta_1) \) denote the ratio \(\gamma_{PR}/\gamma_{PR} \) when \(\theta_1 \) approaches \(\theta_2. \) Then, tedious algebra delivers that \(Q(\beta, \theta_2/\theta_1) \) is decreasing in \(\beta \) and therefore \(Q(\beta, \theta_2/\theta_1) > Q(1, \theta_2/\theta_1) \geq 1, \) where the last inequality follows from the fact that \((1, \theta_2/\theta_1) \geq (1, 0, 1) = 1. \)

Proof of Proposition 3. Let \(Z \) be the probability of electing a type \(\theta_1 \) in electoral system \(s \in \{FPP, PR\} \), then in the case of FPP we have that

\[Z_{FPP} = \frac{(1 + \alpha^2)^2}{4} + \frac{1}{4} \left(1 - \frac{1}{2} \right), \]

where

\[\alpha(\beta, q) = 1 - \frac{\sqrt{\beta^2 + 2q(1 - q) - \beta}}{1 - q}, \]

and \(q = \frac{\theta_2}{\theta_1}. \)

In the case of PR we have that

\[Z_{PR} = \frac{(1 + \alpha^2)^2}{4} + \frac{1}{4} \left(1 - \frac{1}{2} \right), \]

where \(\delta(\beta, q) = 0 (1, 0, 1) \) is the unique solution to (6) when \(\max_h = 1 \) and \(\max_h = 2. \) Fix a \(\beta \in (0, 1) \) and note that since \(1 - q/2 \geq 1/(1 + q) \) with strict inequality if \(q \in (0, 1), \) we have that

\[Z_{FPP} = Z_{PR} = \frac{(1 + \alpha^2)^2}{4} + \frac{1}{4} \left(1 - \frac{1}{2} \right), \]

and

\[\frac{\partial \delta(\beta, q)}{\partial q} = \frac{\partial \delta(\beta, q)}{\partial q} \mid_{q=0} = - \left(2\beta + (1 - \alpha) \right), \]

and

\[\frac{\partial \delta(\beta, q)}{\partial q} = \frac{\partial \delta(\beta, q)}{\partial q} \mid_{q=0} = - \left(2\beta + (1 - \alpha) \right), \]

we have that there exist \(q(\beta) \in (0, 1) \), such that \(q(\beta) < (1, 0, 1) \), with \(q(\beta) > (1, 0, 1) \), such that \(\alpha \leq \delta \) if \(q \geq q(\beta) \) and \(\alpha \leq \delta \) if \(q < q(\beta). \)

Since \(Z_{FPP} > Z_{PR} \) when \(\alpha = \delta \), \(q \in (0, 1) \), we can conclude that there exist \(q(\beta) < (1, 0, 1) \) such that \(q > q(\beta) \) the probability of electing a type \(\theta_1 \) is higher in FPP than in PR.

Proof of Proposition 4. Consider the case of \(\gamma \leq \min(\gamma_{PR}, \gamma_{FPP}) \) or \(\gamma \geq \max(\gamma_{PR}, \gamma_{FPP}) \) and let \(q = \theta_{max} + \rho \theta_{max} \) and let \(\text{Pr}(\theta_0, \theta_0) \) denote the equilibrium probability that the election is contested between
politicians of quality $θ_1$ and $θ_2$. Then, the expected total campaign effort of electoral candidates in FPP is equal to

$$
\Pr(θ_{max}, θ_{max}) + \Pr(θ_{max}, 1, θ_{max}) θ_{max} + 2 \Pr(θ_{max}, 1, θ_{max}) θ_{max} + 2 \Pr(θ_{max}, 1, θ_{max}) θ_{max} = θ_{max} \left(\frac{(1 + θ_1^2)}{4} + \frac{(1 - θ_1^2)}{4} q + (1 - θ_2^2) q \right),
$$

where the last inequality follows from the fact that the term in parentheses is increasing in $α$, and $α = (1 - q - \sqrt{β^2 + 2q(1 - q) + β}) / (1 - q)$ is decreasing in $β$. Hence,

$$
\frac{(1 + θ_1^2)}{4} + \frac{(1 - θ_1^2)}{4} q + (1 - θ_2^2) q \left(\frac{q + θ_{max}}{q + θ_{max}} \right),
$$

and the last expression is only a function of q and it is always decreasing by $1/2$. On the other hand, the expected total campaign effort of electoral candidates in PR is equal to

$$
\Pr(θ_{max}, θ_{max}) + \Pr(θ_{max}, 1, θ_{max}) θ_{max} + 2 \Pr(θ_{max}, 1, θ_{max}) θ_{max} + 2 \Pr(θ_{max}, 1, θ_{max}) θ_{max} = \frac{θ_{max}}{2} \left(\frac{(1 - θ_1^2)}{4} q + (1 - θ_1^2) q \right),
$$

since

$$
\frac{(1 + θ_1^2)}{4} + \frac{(1 - θ_1^2)}{4} q + (1 - θ_2^2) q \left(\frac{q + θ_{max}}{q + θ_{max}} \right),
$$

Finally, since when $θ_1$ is relatively close to $θ_2$ the only case left is $γ ∈ (γ^{pp}, γ^{pr})$, and in this case it is immediate to check that the expected total campaign effort of electoral candidates is higher in FPP than in PR, we are done.

References

