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Repeated Games
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Long-Run versus Short-Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ

actions a A1 1∈  a finite set

utility u a a1 1 2( , )

Player 2 is short-run with discount factor 0

actions a A2 2∈  a finite set

utility u a a2 1 2( , )

the “short-run” player may be viewed as a kind of “representative” of
many “small” long-run players
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Repeated Game

history h a a at t= ( , , , )1 2 !

null history h0

behavior strategies α σt
i i

th= −( )1
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Equilibrium
Nash: usual definition

Subgame perfect: usual definition, Nash after each history

Observation: the repeated static equilibrium of the stage game is a
subgame perfect equilibrium of the finitely or infinitely repeated game

strategies: play the static equilibrium strategy no matter what

“perfect equilibrium with public randomization”

may use a public randomization device at the beginning of each period
to pick an equilibrium

key implication: set of equilibrium payoffs is convex
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Example: chain store game

2

(2,0) 1

(-1,-1) (1,1)

InOut

Give InFight

normal form

out in

fight 2,0* -1,-1

give in 2,0 1,1**
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Nash

subgame perfect is In,Give In

variation on chain store

out in

fight 2-ε , 0 -1,-1

give in 2,0 1,1**

now the only equilibrium  is In, Give In
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payoff at static Nash equilibrium to LR player: 1

precommitment or Stackelberg equilibrium

precommit to fight get 2 − ε

minmax payoff to LR player: 1 by giving in
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utility to long-run player

  precommitment/Stackelberg = 2 − ε

  best dynamic equilibrium = ?

  static Nash = 1

  worst dynamic equilibrium = ?

  minmax = 1

Set of dynamic
equilibria
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Repeated Chain Store

finitely repeated game

final period: In, Give, so in every period

Do you believe this??
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Infinitely repeated game

begin by playing Out, Fight

if Fight has been played in every previous period then play Out, Fight

if Fight was not played in a previous period play In, Give In (reversion
to static Nash)

claim: this is subgame perfect
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clearly a Nash equilibrium following a history with Give In

SR play is clearly optimal

for LR player

may Fight and get 2 − ε

or give in and get ( )1 2 1− +δ δ

so condition for subgame perfection

2 − ≥ − +
≥

ε δ δ
δ ε

( )1 2 1
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equilibrium utility for LR

2 − ε

0                                                                 δ

                   ε                                      1
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General Deterministic Case
Fudenberg, Kreps and Maskin [1990]
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utility to long-run player

  max u a1( )

  mixed precommitment/Stackelberg

  pure precommitment/Stackelberg

  v 1 best dynamic equilibrium

 static Nash

  v1 worst dynamic equilibrium

  minmax

  min u a1( )

Set of dynamic
equilibria
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Characterization of Equilibrium Payoff
α α α= ( , )1 2  where α 2  is a b.r. to α 1

α  represent play in the first period of the equilibrium

w a1 1( )  represents the equilibrium payoff beginning in the next period

v u a w a

v u a w a a

1 1 1 2 1 1

1 1 1 2 1 1 1 1

1

1 0

≥ − +

= − + >

( ) ( , ) ( )

( ) ( , ) ( ), ( )

δ α δ
δ α δ α

v w a v1 1 1 1≤ ≤( )



17

Characterization of Best/Worst Equilibrium Payoffs
maximize v 1, minimize v1 subject to

α α α= ( , )1 2  where α 2  is a b.r. to α 1

v u a w a

v u a w a a

1 1 1 2 1 1

1 1 1 2 1 1 1 1

1

1 0

≥ − +

= − + >

( ) ( , ) ( )

( ) ( , ) ( ), ( )

δ α δ
δ α δ α

v u a w a

v u a w a a

1 1 1 2 1 1

1 1 1 2 1 1 1 1

1

1 0

≥ − +

= − + >

( ) ( , ) ( )

( ) ( , ) ( ), ( )

δ α δ
δ α δ α

v w a v1 1 1 1≤ ≤( )
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Remarks

1)  problem simplifies if static Nash = minmax

2) if v u a w a1 1 1 2 1 11≥ − +( ) ( , ) ( )δ α δ  then v u a v1 1 1 2 11≥ − +( ) ( , )δ α δ
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simplification: split into two problems by defining n1 as static Nash
payoff

n w a v

v w a n

1 1 1 1

1 1 1 1

≤ ≤

≤ ≤

( )

( )

as δ → 1 w a v v1 1 1 1( ) ,→  in the two problems so this is OK
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max problem
fix α α α= ( , )1 2  where α 2  is a b.r. to α 1

v u a w a

v u a w a a

1 1 1 2 1 1

1 1 1 2 1 1 1 1

1

1 0

≥ − +

= − + >

( ) ( , ) ( )

( ) ( , ) ( ), ( )

δ α δ
δ α δ α

n w a v1 1 1 1≤ ≤( )

how big can w a1 1( )  be in = case?

Biggest when u a1 1 1( , )α  is smallest, in which case

w a v1 1 1( ) =

v u a v1 1 1 2 11= − +( ) ( , )δ α δ

conclusion for fixed α
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min ( , )
| ( )a a

u a1 1 0

1 1 2

α α
>

i.e. worst in support

v u a
BR a a

1

0

1 1 2
2 2 1 1 1=
∈ >

max min ( , )
( ) | ( )α α α α

observe:

mixed precommitment≥ ≥v 1 pure precommitment
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Modified Chain Store Example

out in

fight 2-ε , 0 -1,-1

give in 2,0 1,1

p(fight) BR worst in support

1 out 2 − ε

½<p<1 out 2 − ε

0<p<½ in -1

p=0 in 1
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check: w a
v u a

n1 1
1 1 1 2

11
( )

( ) ( , )= − − ≥δ α
δ

as δ → 1 then w a v n1 1 1 1( ) → ≥
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min problem
fix α α α= ( , )1 2  where α 2  is a b.r. to α 1

v u a w a1 1 1 2 1 11≥ − +( ) ( , ) ( )δ α δ

v w a n1 1 1 1≤ ≤( )

Biggest u a1 1 1( , )α  must have smallest w a v1 1 1( ) =

v u a v1 1 1 2 11= − +( ) ( , )δ α δ
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conclusion

v u a1 1 1 2= max ( , )α

or

v u a
BR

1 1 1 2
2 2 1=
∈

min max ( , )
( )α α α

that is, constrained minmax
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Sample Calculation

L M R

U 0,-3 1,2 0,3

D 0,3* 2,2 0,0

static Nash gives 0

minmax gives 0

worst payoff in fact is 0

pure precommitment also 0
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Mixed Precommitment

p  is probability of up

to get more than 0 must get SR to play M

− + − ≤3 1 3 2p p( )  and 3 2p ≤

first one

− + − ≤
− − ≤ −

≥

3 1 3 2

3 3 1

1 6

p p

p p

p

( )

/

second one
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3 2

2 3

p

p

≤
≤ /

want to play D so take p = 1 6/

get 1 6 10 6 11 6/ / /+ =
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utility to long-run player

  max u a1( )=2

  mixed precommitment/Stackelberg=11/16

    v 1 best dynamic equilibrium=1

   pure precommitment/Stackelberg=0

 static Nash=0

  v1 worst dynamic equilibrium=0

  minmax=0

  min u a1( )=0

Set of dynamic
equilibria
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Calculation of best dynamic equilibrium payoff

p  is probability of up

p BR2 worst in support

<1/6 L 0

1/6<p<5/6 M 1

p>5/6 R 0

so best dynamic payoff is 1
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Moral Hazard

choose a Ai ∈

observe y Y∈

ρ( | )y a  probability of outcome given action profile

private history: h a ai i i= ( , , )1 2 !

public history: h y y= ( , , )1 2 !

strategy σ i i ih h A( , ) ( )∈∆

“public strategies”

perfect public equilibrium
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Moral Hazard Example

mechanism design problem

each player is endowed with one unit of income

players independently draw marginal utilities of income η η η∈{ , }

player 2 (SR) has observed marginal utility of income

player 1 (LR) has unobserved marginal utility of income

player 2 decides whether or not to participate in an insurance scheme
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player 1 must either announce his true marginal utility or he may
announce η  independent of his true marginal utility

non-participation: both players get γ
η η

=
+
2

participation: the player with the higher marginal utility of income gets
both units of income
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normal form

non-participation participate

truth γ γ, η γ η γ+ +
2 2

,

lie γ γ, 3
2 2
γ η

,

p* =
η
γ

 makes player 2 indifferent
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  max u a1( )=
3
2
γ

  mixed precommitment/Stackelberg=
η γ η

γ
η+ + −

2
1

2
( )

    v 1 best dynamic equilibrium=
η γ+

2

   pure precommitment/Stackelberg=
η γ+

2

  static Nash=γ

  v1 worst dynamic equilibrium=γ

  minmax=γ

  min u a1( )=γ

Set of dynamic equilibria
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Solving the moral example

player 1 plays “truth” with probability p * or greater

player 2 plays “participate”

v w w

v w

v w w

= − + + +�
�

�
�

≥ − +

≥

( ) ( ) ( )

( ) ( )

( ), ( )

1
2

1
2

1
2

1
3
2

δ η γ δ η η

δ γ δ η

η η

w( )η  must be as large as possible, so inequality must bind; w v( )η =
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v w= − +( ) ( )1
3
2

δ γ δ η

solve two equations

v

w
v

= −

= − −

η γ

η δ γ
δ

2
1 3 2

( )
( ) /
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check that w( )η γ≥

leads to δ η
γ

≥ −���
�
��2 2

from δ < 1 this implies

η η> 3
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Long-Run Players and the Folk Theorem
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Folk Theorems

• socially feasible

• individually rational

Statement of Folk Theorem
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Player 2

Player 1 don’t confess confess

don’t confess 32,32 28,35

confess 35,28 30,30
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20 28 30 35
20

28

30

35

32

32
socially feasible set

U1

U2
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20 28 30 35
20

28

30

35

32

32

individually rational set

U1

U2
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20 28 30 35
20

28

30

35

32

32
SFIR

U1

U2
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• Nash with time averaging

• perfect Nash threats with discounting

• Fudenberg and Maskin [1986]
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The Downside of the Folk Theorem

4,4 1,1

1,1 0,0

�� �E �

D in first period

If DD in first period UU forever after

Else start over

In equilibrium get ����	� ����	� �� �

Deviation get ����	� ����	� ��� � ���� � �
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In general want ��� 	� � � �� 	� �E E E E E� � � p � �

Or

�� � � �

� �� � � ��
�����

� �

E E

E

p � �

o � �
� � x

For E  close to 1 the worst equilibrium is near �  for both players
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Tit-for-tat
Play the same thing that your opponent did in the previous period,
cooperate in the first period

3,3 0,4

4,0 1,1

If your opponent is playing tit-for-tat, use dynamic programming

Four markov strategies:

Do the same as opponent: 3

Do opposite of opponent: �
� �

�
��

E
EE

�
�

��
(=3 at �� �E � )

Always cooperate: 3

Always cheat: �� 	� � � �E E E� � � � (=3 at �� �E � )

So tit-for-tat an equilibrium for �� �E p
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Matching and Information Systems

Juvenal in the first century A.D.

“Sed quis custodiet ipsos custodes?”

translation: “Who shall guard the guardians?”

answer: they shall guard each other.
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Contagion Equilibrium
players randomly matched in a population; observe only opponent’s
current play

Ellison [1993]: could have cooperation due to contagion effects

3,3 0,4

4,0 1,1

Strategy: cooperate as long as everyone you have ever met
cooperated; if you have ever met a cheater, then cheat

With these strategies the number of cheaters is a Markov chain with
two aborbing states: all cheat, none cheat



51

Playing the proposed equilibrium strategy results in non cheat and a
utility of 3; deviating results eventually in all cheat; this aborbing state is
approached exponentially fast; the amount of time depends on the
population size, but not the discount factor, so for discount factor close
enough to one it is optimal not to cheat

But contagion effects diminish as population size grows, and the
equilibrium is not robust to noise, which will trigger a collapse
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Information Systems-Example

Overlapping generations; young matched against old:

Only the young have a move – give a gift to old person

Gift worth �X �  to old person; costs 1 to give the gift

Information  system: assigns a young person a flag based on their
action and the old person’s flag

Consider the following information system and strategies:

Cooperate against a green flag -> green flag

Cheat against a red flag -> green flag

On the other hand

Cheat against green flag -> red flag

Cooperate against red flag -> red flag
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If you meet a green flag:

Cooperate you get �X �

Cheat you get �

If you meet a red flag

Cheat you get X

Cooperate you get ��

So it is in fact optimal to cooperate against green (your team) and
cheat against red (the other team)

Notice that this is a strict Nash equilibrium if there is noise (so that
there are some red flags)

Notice that always cheat no matter what the flags is also a strict Nash
equilibrium
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Information Systems-Folk Theorem
Kandori [1992]

u ai( )

I  a finite set of information states

η: A I I× →2  an information system

if at t you and your opponent played at  and had states η ηt
i

t
i, − , then your

next state is η η η ηt
i

t t
i

t
ia+

−=1 ( , , )

players randomly matched in a population

observe their current opponents current state
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Folk Theorem for information systems: socially feasible individually
rational payoff – exists an information system that supports it
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Example

Prisoner’s dilemma

C D

C x x, 0 1, x +

D x +1 0, 1,1

I r g= { , }

η η

η
η
η
η

( , )

( , ) ,

( , ) ,

( , ) ,

( , ) ,

a

G a C G

R a C R

R a D G

G a D R

i i

i i

i i

i i

i i

−

−

−

−

−

=

=
=
=
=

%
&
KK

'
KK
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"green team strategy"

defect on red

cooperate on green

V g x

V r x

( )

( )

=
= δ

C ( ) ( )1− + =δ δx V g x

D 
( )( ) ( ) ( )( )

( ) ( )

1 1 1 1

1 1

2

2

− + + = − + + =

− + − +

δ δ δ δ
δ δ δ

x V r x x

x
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So 

x x

x

x

≥ − + − +
− ≥ −

≥

( ) ( )

( ) ( )

/

1 1

1 1

1

2δ δ δ
δ δ δ
δ


