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Extensive Form Examples
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with a hard-nosed government

The Model

multiple types of long-run player 
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 is a countable set of types

type is fixed forever (does not change from period to period)
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 utility depends on type

strategy 
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 depends on type

types are privately known to long-run player, not known to short run player

strategy 
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 does not depend on type
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 probability distribution over 
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 commonly known short-run player prior over types

Truly Committed Types

type 
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 has a dominant strategy to play 
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 in the repeated game: 
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for example

A truly committed type “can't be bargained with…can't be reasoned with…doesn't feel pity, or remorse, or fear.”

Let 
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 in any Nash equilibrium

Fix a type 
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: let 
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 be a pure strategy Stackelberg strategy for that type with corresponding committed type 
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Note the use of min rather than max in the second spot

let 
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 be the least possible utility for type 
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Theorem:  Suppose 
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.  Then there is a constant 
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Proof

define 
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 to be the probability at the beginning of period 
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 by the short-run player that the long-run player will play 
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Let 
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Lemma 1: There is 
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 the SR player plays a best response to 
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· Why?

Lemma 2:  Suppose that LR plays 
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 always.  Then for any history 
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 that has positive probability
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· Why do the Lemmas imply the Theorem?

Proof of Lemma 1

Bayes Law
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given 
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 player 1 and 2 play independently
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repeating from the previous page
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since player 1’s type isn’t known to player 2 rewrite denominator
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player 1’s strategy is to always play 
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the conclusion reiterated:
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· what does this say?

the Lemma now derives from the fact that 
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Observational Equivalence
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here the min can have real bite
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Chain Store Game

strategies that are observationally equivalent
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weak best responses

fight: out

give: in, out

mixed: in, out?

Best case fight:out so 
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Quality Game

strategies that are observationally equivalent
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hi: in, out

lo: out

mixed: in?, out

in every case out is a weak best response so 
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Moral Hazard and Mixed Commitments
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 outcome function

expand space of types to include types committed to mixed strategies: leads to technical complications because it requires a continuum of types
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 probability distribution over outcomes conditional on the history (a vector)
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 probability distribution over outcomes conditional on the history and the type being in 
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 such that if 
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 is true there is probability less than 
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 that there are more than 
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  periods with
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look for tight bounds

let 
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 be best and worst Nash payoffs to LR

try to get
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game is non-degenerate  if there is no undominated pure action 

 such that for some 
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counterexample: player 2 gets zero always, player 1 gets either zero or one depending only on player 2’s action

game is identified if for all 
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condition for identification 
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 has full row rank for all 
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Patient Short Run Players: Schmidt

short run preferences 
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long run preferences
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pure coordination
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commitment type
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indifferent type

strategies:

normal: play U except if you previously did D, then switch to D

commitment: always play U

indifferent type: U until deviation then D

SR: play L then alternate between R and L (on path)

if 1 deviated to D switch to R forever

if 2 deviated play L; if 1 reacts with U continue with L

                                      reacts with D continue with R
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 then this is a subgame perfect equilibrium

· interesting deviation for SR when supposed to do R deviate to L; but then indifferent type switches to D forever

· for the normal type to prove he’s not type “i” he must play D revealing he is not the commitment type

Suppose that LR can minmax SR in a pure strategy 
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Theorem: LR gets at least 
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let 
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 be SR minmax

let 
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commit to 
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Lemma: suppose 
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 with positive probability, then SR must believe that in 
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· why is this sufficient?

Proof of Lemma:
2 can get at least 
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if 
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suppose the optimum is not a br; consider deviating to a br

gain at least 
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if you hadn’t deviated, starting at 
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 would have earned at most


[image: image107.wmf]212

2

22

2

1

(1)((1))

N

tN

t

uuu

ddeed

+

=

--++

å


but we chose 
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 and 
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 so that the loss exceeds the gain
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