Decision Theory: Risk

Lotteries and Expected Utility
Luce, D. and H. Raiffa [1957]: Games and Decisions, John Wiley chapter 2.5

there are r prizes 1,...,r

a lottery L consists of a finite vector (p,,...,p,) where p; is the
“probability” of winning prize ¢

properties of “probabilities” p, > 0,%  p, =1

Definition: the lottery L, has p, =1



Preferences > are defined over the set of lotteries

order the lotteries so that L, > L. ., that is higher numbered prizes are

worse

+1°

Usual preference assumptions:

1) transitivity
2) continuity: for each L, there exists a lottery EZ. such that p; =0 for
j=2..,r—land L ~ L

(in words: we can find probabilities of the best and worst prize that are
iIndifferent to any lottery)

Definition: w, is such that L. = (u,,0,...,0,(1 — u,))



Assumptions relating to probability:

a compound lottery is a lottery in which the prizes are lotteries

we can write a compound lottery (¢!, I}, ¢*, I7,...,¢", L") where

¢' is the probability of lottery I’ (not to be confused with L,)



1) reduction of compound lotteries

preferences are extended from simple lotteries to lotteries over lotteries
by the usual laws of probability

example: L' = (p1,p3,---,0r), I = (0,93, p7)
(a1, 0,40, ) ~ (¢'pl + &0, a2 + 03, a' D + 7))
2) substitutability (independence of irrelevant alternatives)

for any lottery L the compound lottery that replaces L. with ZZ. IS
indifferent to L

(p17p27"°7p7“) ~ (p17L17p27L27°°'7pz'7i/z’7"°7p7”7L7”)

3) monotonicity
(p,0,...,0,(1—p)) > (p',0,...,0,(1 — p')) ifand only if p > p'



Expected utility theory:

Start with a lottery L = (p,,..., p,)

Using transitivity and continuity L is indifferent to the compound lottery

~

(ple RS prLr)

Notice that the lotteries L, involve only the highest and lowest prizes

Now apply reduction of compound lotteries: this is equivalent to the
lottery

L ~ (u,0,...,0,(1 — u)) where u = Zzlpz.uz.

This says that we may compare lotteries by comparing their “expected
utility” and by monotonicity, higher utility is better



Allais Paradox
Take Q =1 billion dollars US

Decision problem 1:

Q for sure

(or)

1 x5Q, .89 x10Q, .01 x0Q

Decision problem 2:
1 x5Q,.9x00Q

(or)
11 x 10Q, .89 x 0Q



Decision problem 1:
1 x 1Q for sure [most common choice]

(or)
.1 x5Q, .89 x10Q, .01 x0Q

Decision problem 2:

1 x5Q,.9x0Q [most common choice]

(or)

11 x 1Q, .89 x 0Q

So u(1) > .1u(5) 4+ .89u(1) + .01u(0) or u(5) < 1.1u(1) — .1u(0)
And .1u(5) + .9u(0) > .11u(1) 4+ .894(0) or u(5) > 1.1u(l) — .1u(0)



Notice that the original problem had Q equal to 1 million US. This
doesn’t work well anymore because most people make the second
choice in the first problem and the first choice in the second problem,
which is consistent with expected utility

Two views:
1) this is a big problem [Tversky and Kahneman, 1979]
decent theory due to Machina [1982], Segal [1990]

2) this is a curiousity due to the unusual magnitudes of the payoffs
Rubsinsten [1988], Leland [1994]



Subjective Uncertainty

Ellsburg Paradox

Ellsberg [1961]

Two urns: each contains red balls and black balls
Urn 1: 100 balls, how many red or black is unknown
Urn 2: 50 red and 50 black

Choice 1: betonurn 1 red or urn 2 red

Choice 2: bet on urn 1 black or urn 2 black



Urn 1: 100 balls, how many red or black is unknown
Urn 2: 50 red and 50 black

Choice 1: betonurn 1 red orurn 2 red [urn 2]

Choice 2: bet on urn 1 black or urn 2 black [urn 2]

1 says that urn 2 red more likely than urn 1 red
2 says that urn 2 black more likely than urn 2 black

but this is inconsistent with probabilities that add up to 1
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Can introduce theory of “ambiguity aversion” as in Schmeidler [1989],
Ghirardato and Marinacci [2000]

Basically probabilities do not add up to one; remaining probability is
assigned to “nature” moving after you make a choice and choosing the
worst possibility for you. [The stock market always tumbles right after |
buy stocks.]
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Ellsburg Paradox Paradox

we should be able to break the indifference
Urn 1: 1000 balls, how many red or black is unknown
Urn 2: 501 red and 499 black

Choice 1: beton urn 1 red or urn 2 black [urn 2]

Choice 2: bet on urn 1 black or urn 2 black [urn 2]

Combine this into a single choice:
Bet on urn 1 red, urn 1 black or urn 2 black

Ambiguity aversion says go with urn 2 black...
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But this is a bad idea: flip a coin to decide between urn 1 red and urn 1
black
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Risk Aversion
Jensen’s inequality
u IS a concave function if and only if u(FEz) > Fu(z)

that is: you prefer the certainty equivalent

SO concavity = risk aversion
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Risk premium

y a random income with Fy = 0, Fy* =1

u(z — p) = Bu(z + oy)

Taylor series expansion:

w(z) — pu'(z) = Elu(z) + ou'(z)y + (1/2)0u"(z)y’ |
= u(z) + (1/2)0%u"(z)

2

u"(x) o
u'(x) 2

SO p = —

we can also consider the relative risk premium
u(x — pzr) = Fu(z + oyx)

_ u"(z) o2
P= u'(z) 2
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Measures of Risk Aversion

Absolute risk aversion

The coefficient of absolute risk aversion is —

Relative risk aversion

The coefficient of relative risk aversion is —

Changes in Risk Aversion with Wealth

We ordinarily think of absolute risk aversion as declining with wealth

(this is a condition on the third derivative of u).
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Constant relative risk aversion

1—p
u(x) = lx also known as “constant elasticity of substitution” or CES
—p

p =0

u'"(z)z  pr Pz

u'(x)  F

p = 0 linear, risk neutral

p =1 u(z) = log(z)
useful for empirical work and growth theory

note that constant relative risk aversion implies declining absolute risk
aversion

17



How risk averse are people?

Equity premium

Mehra and Prescott [1985]; Shiller [1989] data annual 1871-1984

Mean real return on bonds r, =1.9%; Mean real return on S&P 7.5%
Equity premium X = .056
Standard error of real stock return 18.1%, o = 0.181.

normalized real per capita consumption standard error s = .035

let £ denote initial wealth
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Let « be fraction of portfolio in S&P
calculate consumption

w((1—a)zx(1+ 1)+ az(l+7s + 0y)) =
u(z + zn, + iz + aoyx)

diEu(x + o1, + oAz + aoyz)

e

= AxFu'+ oxEyu'

= u' Az + XzEu"()|aoyx] + oxEyu'(x + o, + arx 4+ 0) + cxByu"() |coyz]

— u'lz + au"o’z? =0

p=x/(ao?®) =~ 1.81a!

\}

s° = var[((1 — @)z + (1l + Xz + aoyr)/z] = a’0?

ora ! ~0o/s=5.17 giving p = 8.84
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Risk Aversion in the Laboratory

In laboratory experiments we often observe what appears to be risk
averse behavior over small amount of money (typical payment rates
are less than $50/hour, and play rarely lasts two hours)

How can people be risk averse over gambles involving such an
Insignificant fraction of wealth?

Rabin [2000]: Risk aversion in the small leads to impossible results in
the large

“Suppose we knew a risk-averse person turns down 50-50 lose
$100/gain $105 bets for any lifetime wealth level less than $350,000,
but knew nothing about the degree of her risk aversion for wealth levels
above $350,000. Then we know that from an initial wealth level of
$340,000 the person will turn down a 50-50 bet of losing $4,000 and
gaining $635,670.”
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Risk Aversion in the Field

There is surprisingly little systematic evidence about how risk averse
people are.

One exception: Hans Binswanger [1978] took his grant money to rural
India and conducted a series of experiments involving gambles for a
significant fraction of annual income.

His findings: risk aversion is high (p on the order of 20), and

iInconsistent with expected utility theory — initial wealth plays a greater
role than the theory allows, along much the same lines discussed by
Rabin.

Remark: it is easy to see that deviations from the amount that is
“expected to be earned” play some role. But it is a long leap from that
to a systematic theory.
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