Extensive Form Games II

Trembling Hand Perfection

Selten Game

	L	R
U	$-1,-1$	2,0
D	1,1	1,1

subgame perfect
equilibria:
UR is subgame perfect
D and . 5 or more L is Nash but not subgame perfect
can also solve by weak dominance
or by trembling hand perfection

Example of Trembling Hand not Subgame Perfect

Lu=Ld	A	D	($\mathrm{n}-2) / \mathrm{n}$
	2,1	2,1	
Ru	3,3	0,2	1/n
Fd	1,0	0,2	1/n
	1/n	($\mathrm{n}-1$)/2	

Here Ld,D is trembling hand perfect but not subgame perfect
definition of the agent normal form
each information set is treated as a different player, e.g. 1a, 1b if player 1 has two information sets; players 1 a and 1b have the same payoffs as player 1
extensive form trembling hand perfection is trembling hand perfection in the agent normal form
what is sequentiality??

Robustness - The Selten Game

genericity in normal form

	L	R
U	$-1,-1$	$2^{* *}, 0^{* *}$
D	$1^{* *}, 1^{*}(\pm \varepsilon)$	1,1

Self Confirming Equilibrium

$s_{i} \in S_{i}$ pure strategies for $i ; \sigma_{i} \in \Sigma_{i}$ mixed
H_{i} information sets for i
$\bar{H}(\sigma)$ reached with positive probability under σ
$\pi_{i} \in \Pi_{i}$ behavior strategies
$\hat{\pi}\left(h_{i} \mid \sigma_{i}\right)$ map from mixed to behavior strategies
$\hat{\rho}(\pi), \hat{\rho}(\sigma) \equiv \hat{\rho}(\hat{\pi}(\sigma))$ distribution over terminal nodes
μ_{i} a probability measure on Π_{-i}
$u_{i}\left(s_{i} \mid \mu_{i}\right)$ preferences

$$
\Pi_{-i}\left(\sigma_{-i} \mid J\right) \equiv\left\{\pi_{-i} \mid \pi_{i}\left(h_{i}\right)=\hat{\pi}\left(h_{i} \mid \sigma_{i}\right), \forall h_{i} \in H_{-i} \cap J\right\}
$$

Notions of Equilibrium

Nash equilibrium
a mixed profile σ such that for each $s_{i} \in \operatorname{supp}\left(\sigma_{i}\right)$ there exist beliefs μ_{i} such that

- $\quad s_{i}$ maximizes $u_{i}\left(\cdot \mid \mu_{i}\right)$
- $\quad \mu_{i}\left(\Pi_{-i}\left(\sigma_{-i} \mid H\right)\right)=1$

Unitary Self-Confirming Equilibrium

- $\quad \mu_{i}\left(\Pi_{-i}\left(\sigma_{-i} \mid \bar{H}(\sigma)\right)\right)=1$
(=Nash with two players)

Fudenberg-Kreps Example

A_{1}, A_{2} is self-confirming, but not Nash
any strategy for 3 makes it optimal for either 1 or 2 to play down but in self-confirming, 1 can believe 3 plays R; 2 that he plays L

Heterogeneous Self-Confirming equilibrium

- $\quad \mu_{i}\left(\Pi_{-i}\left(\sigma_{-i} \mid \bar{H}\left(s_{i}, \sigma\right)\right)\right)=1$

Can summarize by means of "observation function"

$$
J\left(s_{i}, \sigma\right)=H, \bar{H}(\sigma), \bar{H}\left(s_{i}, \sigma\right)
$$

Public Randomization

Remark: In games with perfect information, the set of heterogeneous self-confirming equilibrium payoffs (and the probability distributions over outcomes) are convex

Ultimatum Bargaining Results

Raw US Data for Ultimatum

x	Offers	Rejection Probability
$\$ 2.00$	1	100%
$\$ 3.25$	2	50%
$\$ 4.00$	7	14%
$\$ 4.25$	1	0%
$\$ 4.50$	2	100%
$\$ 4.75$	1	0%
$\$ 5.00$	13	0%
	27	

US $\$ 10.00$ stake games, round 10

Trials	Rnd	Cntry Stake	Case	Expected Loss			$\begin{aligned} & \text { Max } \\ & \text { Gain } \end{aligned}$	Ratio
				Pl 1	PI 2	Both		
27	10	US	H	\$0.00	\$0.67	\$0.34	\$10.00	3.4\%
27	10	US	U	\$1.30	\$0.67	\$0.99	\$10.00	9.9\%
10	10	USx3	H	\$0.00	\$1.28	\$0.64	\$30.00	2.1\%
10	10	USx3	U	\$6.45	\$1.28	\$3.86	\$30.00	12.9\%
30	10	Yugo	H	\$0.00	\$0.99	\$0.50	\$10?	5.0\%
30	10	Yugo	U	\$1.57	\$0.99	\$1.28	\$10?	12.8\%
29	10	Jpn	H	\$0.00	\$0.53	\$0.27	\$10?	2.7\%
29	10	Jpn	U	\$1.85	\$0.53	\$1.19	\$10?	11.9\%
30	10	Isrl	H	\$0.00	\$0.38	\$0.19	\$10?	1.9\%
30	10	Isrl	U	\$3.16	\$0.38	\$1.77	\$10?	17.7\%
	WC		H			\$5.00	\$10.00	50.0\%

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary

Comments on Ultimatum

- every offer by player 1 is a best response to beliefs that all other offers will be rejected so player 1's heterogeneous losses are always zero.
- big player 1 losses in the unitary case
- player 2 losses all knowing losses from rejected offers; magnitudes indicate that subgame perfection does quite badly
- as in centipede, tripling the stakes increases the size of losses a bit less than proportionally (losses roughly double).

Centipede Game: Palfrey and McKelvey

Numbers in square brackets correspond to the observed conditional probabilities of play corresponding to rounds $6-10$, stakes $1 \times$ below.

This game has a unique self-confirming equilibrium; in it player 1 with probability 1 plays T_{1}

Summary of Experimental Results

Trials Rnd	Rnds	Stake	$\begin{aligned} & \mathrm{Ca} \\ & \mathrm{se} \end{aligned}$	Expected Loss			$\begin{aligned} & \text { Max } \\ & \text { Gain } \end{aligned}$	Ratio
				Pl 1	PI 2	Both		
29*	6-10	1x	H	\$0.00	\$0.03	\$0.02	\$4.00	0.4\%
29^{*}	6-10	1x	U	\$0.26	\$0.17	\$0.22	\$4.00	5.4\%
	WC	1x	H			\$0.80	\$4.00	20.0\%
29	1-10	1x	H	\$0.00	\$0.08	\$0.04	\$4.00	1.0\%
10	1-10	4x	H	\$0.00	\$0.28	\$0.14	\$16.00	0.9\%

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary
*The data on which from which this case is computed is reported above.

Comments on Experimental Results

- heterogeneous loss per player is small; because payoffs are doubling in each stage, equilibrium is very sensitive to a small number of player 2's giving money away at the end of the game.
- unknowing losses far greater than knowing losses
- quadrupling the stakes very nearly causes $\bar{\varepsilon}$ to quadruple
- theory has substantial predictive power: see WC
- losses conditional on reaching the final stage are quite large-inconsistent with subgame perfection. McKelvey and Palfrey estimated an incomplete information model where some "types" of player 2 liked to pass in the final stage. This cannot explain many players dropping out early so their estimated model fits poorly.

