Bayesian Games and Mechanism Design

Definition of Bayes Equilibrium

Harsanyi [1967]

- What happens when players do not know one another's payoffs?
- Games of "incomplete information" versus games of "imperfect information"
- Harsanyi's notion of "types" encapsulating "private information"
- Nature moves first and assigns each player a type; player's know their own types but not their opponents' types
- Players do have a common prior belief about opponents' types

Bayesian Games

There are a finite number of types $\theta_i \in \Theta_i$

There is a common prior $p(\theta)$ shared by all players

 $p(\theta_{-i} \mid \theta_i)$ is the conditional probability a player places on opponents' types given his own type

The *stage* game has finite action spaces $a_i \in A_i$ and has utility functions $u^i(a, \theta)$

Bayesian Equilibrium

A *Bayesian Equilibrium* is a Nash equilibrium of the game in which the strategies are maps from types $s_i : \Theta_i \to A_i$ to stage game actions A_i

This is equivalent to each player having a strategy as a function of his type $s_i(\theta_i)$ that maximizes conditional on his own type θ_i (for each type that has positive probability)

$$\max_{s_i} \sum_{\theta_{-i}} u_i(s_i, s_{-i}(\theta_{-i}), \theta_i, \theta_{-i}) p(\theta_{-i} \mid \theta_i)$$

Cournot Model with Types

- A duopoly with demand given by p = 17 x
- A firm's type is its cost, known only to that firm: each firm has a 50-50 chance of cost constant marginal cost 1 or 3.

profits of a representative firm

$$\pi_i(c_i, x) = [17 - c_i - (x_i + x_{-i})]x_i$$

Let us look for the symmetric pure strategy equilibrium

Finding the Bayes-Nash Equilibrium

 x^1, x^3 will be the output chosen in response to cost

$$\pi_i(x_i, c_i) = .5 [17 - c_i - (x_i + x^1)] x_i + .5 [17 - c_i - (x_i + x^3)] x_i$$

maximize with respect to x_i and solve to find

$$x^1 = 11/2$$
, $x^3 = 9/2$

industry output probability 1/4 11 probability 1/2 10

probability 1/4 9

Suppose by contrast costs are known

If both costs are 1 then competitive output is 16 and Cournot output is 2/3rds this amount 10 2/3

If both costs are 3 then competitive output is 14 and Cournot output is 9 1/3

If one cost is 1 and one cost is 3 Cournot output is 10

With known costs, mean industry output is the same as with private costs, but there is less variation in output

Sequentiality and Signaling

Cho-Kreps [1987]

Sequentiality Kreps-Wilson [1982]

Subforms

Beliefs: assessment a_i for player *i* probability distribution over nodes at each of his information sets; *belief* for player *i* is a pair $b_i \equiv (a_i, \pi^i_{-i})$, consisting of *i*'s assessment over nodes a_i , and *i*'s expectations of opponents' strategies $\pi^i_{-i} = (\pi^i_j)_{j \neq i}$

Beliefs come from strictly positive perturbations of strategies

belief $b_i \equiv (a_i, \pi_{-i}^i)$ is *consistent* (Kreps and Wilson [17]) if $a_i = \lim_{n \to \infty} a_i^n$ where a_i^n obtained using Bayes rule on a sequence of strictly positive strategy profiles of the opponents, $\pi_{-i}^{i,m} \to \pi_{-i}$

given beliefs we have a well-defined decision problem at each information set; can define optimality at each information set

A sequential equilibrium is a behavior strategy profile π and an assessment a_i for each player such that (a_i, π_{-i}^i) is consistent and each player optimizes at each information set

Chain Store Paradox

Kreps-Wilson [1982], Milgrom-Roberts [1982]

finitely repeated model with long-run versus short-run

Reputational Model

two types of long-run player $\omega \in \Omega$

"rational type" and "committed type"

"committed type" will fight no matter what

types are privately known to long-run player, not known to short run player

Kreps-Wilson; Milgrom-Roberts

Solve for the sequential equilibrium; show that at the time-horizon grows long we get no entry until near the end of the game

"triumph of sequentiality"

The Holdup Problem

- Chari-Jones, the pollution problem
- problem of too many small monopolies

 ρ is the profit generated by an invention with a monopoly with a patent, drawn from a uniform distribution on [0,1], private to the inventor

 ϕ^F is the fraction of this profit that can be earned without a patent

To create the invention requires as input N other existing inventions

It costs ε / N to make copies of these other inventions, where $\varepsilon < 1/2$ and $\varepsilon / \phi^F < 1$

Case 1: Competition

if $\phi^F \rho \ge \varepsilon$ the new invention is created, probability is $1 - \varepsilon / \phi^F$.

Case 2: Patent

Each owner of the existing inventions must decide a price p_i at which to license their invention; ϕN current inventions are still under patent

Subgame Perfection/Sequentiality implies that the new invention is created when $(\phi + \phi^F) \rho \ge \sum_i p_i + \varepsilon$

Profit of preexisting owners
$$(1 - \frac{(\phi N - 1)p + p_i - \varepsilon}{\phi + \phi^F})p_i$$

FOC
$$1 - \frac{(\phi N - 1)p + 2p_i + \varepsilon}{\phi + \phi^F} = 0$$

symmetric equilibrium $p = (\phi + \phi^F - \varepsilon)/(\phi N + 1)$; $\sum_i p_i = \phi N p$

corresponding probability of invention $(\phi + \phi^F - \varepsilon)/[(\phi + \phi^F)(\phi N + 1)]$

Micro Mechanism Design

An "auction" problem

- Single seller has a single item
- Seller does not value item
- Two buyers with independent valuations

 $0 \le v^l < v^h$ low and high valuations $\pi^l + \pi^h = 1$ probabilities of low and high valuations what is the best way to sell the object

- Auction
- Fixed price
- Other

The Revelation Principle

Design a game for the buyers to play

- Auction game
- Poker game
- Etc.

Design the game so that there is a Nash equilibrium that yields highest possible revenue to the seller

The revelation principle says that it is enough to consider a special game

- strategies are "announcements" of types
- the game has a "truthful revelation" equilibrium

In the Auction Environment

Fudenberg and Tirole section 7.1.2

 q^{l}, q^{h} probability of getting item when low and high p^{h}, p^{l} expected payment when low and high

individual rationality constraint

 $(\mathsf{IR}) \qquad q^i v^i - p^i \ge 0$

• if you announce truthfully, you get at least the utility from not playing the game

incentive compatibility constraint

(IC) $q^i v^i - p^i \ge q^{-i} v^i - p^{-i}$

• you gain no benefit from lying about your type

the incentive compatibility constraint is the key to equilibrium

Other constraints

 q^{l}, q^{h} probability of getting item when low and high they can't be anything at all:

probability constraints

(1) $0 \le q^i \le \pi^{-i} + \pi^i / 2$

(win against other type, 50% chance of winning against self)

(2)
$$\pi^l q^l + \pi^h q^h \le 1/2$$

(probability of getting the good before knowing type less than 50%)

Seller Problem

Maximize seller utility $U = \pi^l p^l + \pi^h p^h$

Subject to IC and IR

To solve the problem we make a guess:

IR binds for low value

$$q^l v^l - p^l = 0$$

IC binds for high value

$$q^h v^h - p^h = q^l v^h - p^l$$

The solution

 $p^{l} = q^{l}v^{l}$ from low IR substitute into high IC $p^{h} = (q^{h} - q^{l})v^{h} + q^{l}v^{l}$

plug into utility of seller

$$U = \pi^{l}q^{l}v^{l} + \pi^{h}((q^{h} - q^{l})v^{h} + q^{l}v^{l})$$
$$U = q^{l}(\pi^{l}v^{l} - \pi^{h}v^{h} + \pi^{h}v^{l}) + \pi^{h}q^{h}v^{h}$$
$$\pi^{l} + \pi^{h} = 1 \text{ so}$$
$$U = q^{l}(v^{l} - \pi^{h}v^{h}) + \pi^{h}q^{h}v^{h}$$

22

Case 1: $v^{l} > \pi^{h}v^{h}$

$$U = q^{l}(v^{l} - \pi^{h}v^{h}) + \pi^{h}q^{h}v^{h}$$
(1) $0 \le q^{i} \le \pi^{-i} + \pi^{i}/2$
(2) $\pi^{l}q^{l} + \pi^{h}q^{h} \le 1/2$

Make q^l, q^h large as possible so $\pi^l q^l + \pi^h q^h = 1/2$

$$U = \frac{1/2 - \pi^h q^h}{\pi^l} (v^l - \pi^h v^h) + \pi^h q^h v^h$$
$$U = \frac{1}{2\pi^l} (v^l - \pi^h v^h) + q^h \frac{\pi^h}{\pi^l} (v^h - v^l)$$

23

so q^h should be as large as possible $q^h = \pi^l + \pi^h/2$

plug back into (2) to find $q^l = \pi^l \, / \, 2$

expected payments

$$p^l = q^l v^l$$
 , $p^h = (q^h - q^l) v^h + q^l v^l$

$$p^{l} = v^{l} \pi^{l} / 2$$
$$p^{h} = v^{h} / 2 + \pi^{l} v^{l} / 2$$

Implementation of Case 1

modified auction: each player announces their value the highest announced value wins if there is a tie, flip a coin if the low value wins, he pays his value if the high value wins he pays

$$\frac{p^{h}}{q^{h}} = \frac{v^{h}/2 + \pi^{l}v^{l}/2}{\pi^{l} + \pi^{h}/2}$$

under these rules

probability that high type wins is $q^{h} = \pi^{l} + \pi^{h}/2$ probability that low type wins is $q^{l} = \pi^{l}/2$ just as in the optimal mechanism

this means the expected payments are the same too

Case 2:
$$v^{l} < \pi^{h} v^{h}$$

$$U = q^{l}(v^{l} - \pi^{h}v^{h}) + \pi^{h}q^{h}v^{h}$$
(1) $0 \le q^{i} \le \pi^{-i} + \pi^{i}/2$
(2) $\pi^{l}q^{l} + \pi^{h}q^{h} \le 1/2$

Make q^h large as possible, q^l as small as possible $q^h = \pi^l + \pi^h \,/\, 2$ $q^l = 0$

expected payments

$$p^{l} = q^{l}v^{l}$$
, $p^{h} = (q^{h} - q^{l})v^{h} + q^{l}v^{l}$

$$p^{l} = 0$$
$$p^{h} = (\pi^{l} + \pi^{h} / 2)v^{h}$$

Implementation of Case 2

set a fixed price equal to the highest valuation

$$v^{h} = \frac{p^{h}}{q^{h}} = \frac{(\pi^{l} + \pi^{h}/2)v^{h}}{\pi^{l} + \pi^{h}/2}$$