Bayesian Games and Mechanism Design

Definition of Bayes Equilibrium

Harsanyi [1967]

- What happens when players do not know one another's payoffs?
- Games of "incomplete information" versus games of "imperfect information"
- Harsanyi's notion of "types" encapsulating "private information"
- Nature moves first and assigns each player a type; player's know their own types but not their opponents' types
- Players do have a common prior belief about opponents' types

Bayesian Games

There are a finite number of types $\theta_{i} \in \Theta_{i}$
There is a common prior $p(\theta)$ shared by all players
$p\left(\theta_{-i} \mid \theta_{i}\right)$ is the conditional probability a player places on opponents' types given his own type
The stage game has finite action spaces $a_{i} \in A_{i}$ and has utility functions $u^{i}(a, \theta)$

Bayesian Equilibrium

A Bayesian Equilibrium is a Nash equilibrium of the game in which the strategies are maps from types $s_{i}: \Theta_{i} \rightarrow A_{i}$ to stage game actions A_{i}

This is equivalent to each player having a strategy as a function of his type $s_{i}\left(\theta_{i}\right)$ that maximizes conditional on his own type θ_{i} (for each type that has positive probability)
$\max _{s_{i}} \sum_{\theta_{-i}} u_{i}\left(s_{i}, s_{-i}\left(\theta_{-i}\right), \theta_{i}, \theta_{-i}\right) p\left(\theta_{-i} \mid \theta_{i}\right)$

Cournot Model with Types

- A duopoly with demand given by $p=17-x$
- A firm's type is its cost, known only to that firm: each firm has a 5050 chance of cost constant marginal cost 1 or 3.
profits of a representative firm

$$
\pi_{i}\left(c_{i}, x\right)=\left[17-c_{i}-\left(x_{i}+x_{-i}\right)\right] x_{i}
$$

Let us look for the symmetric pure strategy equilibrium

Finding the Bayes-Nash Equilibrium
x^{1}, x^{3} will be the output chosen in response to cost

$$
\begin{aligned}
\pi_{i}\left(x_{i}, c_{i}\right)= & .5\left[17-c_{i}-\left(x_{i}+x^{1}\right)\right] x_{i} \\
& +.5\left[17-c_{i}-\left(x_{i}+x^{3}\right)\right] x_{i}
\end{aligned}
$$

maximize with respect to x_{i} and solve to find
$x^{1}=11 / 2, x^{3}=9 / 2$
industry output
probability $1 / 411$
probability $1 / 210$
probability $1 / 49$

Suppose by contrast costs are known
If both costs are 1 then competitive output is 16 and Cournot output is 2/3rds this amount 10 2/3

If both costs are 3 then competitive output is 14 and Cournot output is 9 1/3

If one cost is 1 and one cost is 3 Cournot output is 10
With known costs, mean industry output is the same as with private costs, but there is less variation in output

Sequentiality and Signaling

Cho-Kreps [1987]

Sequentiality

Kreps-Wilson [1982]
Subforms
Beliefs: assessment a_{i} for player i probability distribution over nodes at each of his information sets; belief for player i is a pair $b_{i} \equiv\left(a_{i}, \pi_{-i}^{i}\right)$, consisting of is assessment over nodes a_{i}, and is expectations of opponents' strategies $\pi_{-i}^{i}=\left(\pi_{j}^{i}\right)_{j \neq i}$
Beliefs come from strictly positive perturbations of strategies
belief $b_{i} \equiv\left(a_{i}, \pi_{-i}^{i}\right)$ is consistent (Kreps and Wilson [17]) if $a_{i}=\lim _{n \rightarrow \infty} a_{i}^{n}$ where a_{i}^{n} obtained using Bayes rule on a sequence of strictly positive strategy profiles of the opponents, $\pi_{-i}^{i, m} \rightarrow \pi_{-i}$
given beliefs we have a well-defined decision problem at each information set; can define optimality at each information set

A sequential equilibrium is a behavior strategy profile π and an assessment a_{i} for each player such that $\left(a_{i}, \pi_{-i}^{i}\right)$ is consistent and each player optimizes at each information set

Chain Store Paradox

Kreps-Wilson [1982], Milgrom-Roberts [1982]

finitely repeated model with long-run versus short-run

Reputational Model

two types of long-run player $\omega \in \Omega$
"rational type" and "committed type"
"committed type" will fight no matter what
types are privately known to long-run player, not known to short run player

Kreps-Wilson; Milgrom-Roberts
Solve for the sequential equilibrium; show that at the time-horizon grows long we get no entry until near the end of the game
"triumph of sequentiality"

The Holdup Problem

- Chari-Jones, the pollution problem
- problem of too many small monopolies
ρ is the profit generated by an invention with a monopoly with a patent, drawn from a uniform distribution on $[0,1]$, private to the inventor
ϕ^{F} is the fraction of this profit that can be earned without a patent
To create the invention requires as input N other existing inventions It costs ε / N to make copies of these other inventions, where $\varepsilon<1 / 2$ and $\varepsilon / \phi^{F}<1$

Case 1: Competition

if $\phi^{F} \rho \geq \varepsilon$ the new invention is created, probability is $1-\varepsilon / \phi^{F}$.
Case 2: Patent
Each owner of the existing inventions must decide a price p_{i} at which to license their invention; ϕN current inventions are still under patent Subgame Perfection/Sequentiality implies that the new invention is created when $\left(\phi+\phi^{F}\right) \rho \geq \sum_{i} p_{i}+\varepsilon$
Profit of preexisting owners $\left(1-\frac{(\phi N-1) p+p_{i}-\varepsilon}{\phi+\phi^{F}}\right) p_{i}$
FOC $1-\frac{(\phi N-1) p+2 p_{i}+\varepsilon}{\phi+\phi^{F}}=0$
symmetric equilibrium $p=\left(\phi+\phi^{F}-\varepsilon\right) /(\phi N+1) ; \sum_{i} p_{i}=\phi N p$
corresponding probability of invention $\left(\phi+\phi^{F}-\varepsilon\right) /\left[\left(\phi+\phi^{F}\right)(\phi N+1)\right]$

Micro Mechanism Design

An "auction" problem

- Single seller has a single item
- Seller does not value item
- Two buyers with independent valuations
$0 \leq v^{l}<v^{h}$ low and high valuations
$\pi^{l}+\pi^{h}=1$ probabilities of low and high valuations
what is the best way to sell the object
- Auction
- Fixed price
- Other

The Revelation Principle

Design a game for the buyers to play

- Auction game
- Poker game
- Etc.

Design the game so that there is a Nash equilibrium that yields highest possible revenue to the seller
The revelation principle says that it is enough to consider a special game

- strategies are "announcements" of types
- the game has a "truthful revelation" equilibrium

In the Auction Environment

Fudenberg and Tirole section 7.1.2
q^{l}, q^{h} probability of getting item when low and high
p^{h}, p^{l} expected payment when low and high
individual rationality constraint
(IR) $\quad q^{i} v^{i}-p^{i} \geq 0$

- if you announce truthfully, you get at least the utility from not playing the game
incentive compatibility constraint
(IC) $q^{i} v^{i}-p^{i} \geq q^{-i} v^{i}-p^{-i}$
- you gain no benefit from lying about your type
the incentive compatibility constraint is the key to equilibrium

Other constraints

q^{l}, q^{h} probability of getting item when low and high they can't be anything at all:
probability constraints
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(win against other type, 50% chance of winning against self)
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$
(probability of getting the good before knowing type less than 50\%)

Seller Problem

Maximize seller utility $U=\pi^{l} p^{l}+\pi^{h} p^{h}$
Subject to IC and IR

To solve the problem we make a guess:

IR binds for low value
$q^{l} v^{l}-p^{l}=0$

IC binds for high value
$q^{h} v^{h}-p^{h}=q^{l} v^{h}-p^{l}$

The solution

$p^{l}=q^{l} v^{l}$ from low IR
substitute into high IC
$p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l}$
plug into utility of seller
$U=\pi^{l} q^{l} v^{l}+\pi^{h}\left(\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l}\right)$
$U=q^{l}\left(\pi^{l} v^{l}-\pi^{h} v^{h}+\pi^{h} v^{l}\right)+\pi^{h} q^{h} v^{h}$
$\pi^{l}+\pi^{h}=1$ so
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$

Case 1: $v^{l}>\pi^{h} v^{h}$
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$

Make q^{l}, q^{h} large as possible so
$\pi^{l} q^{l}+\pi^{h} q^{h}=1 / 2$
$U=\frac{1 / 2-\pi^{h} q^{h}}{\pi^{l}}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
$U=\frac{1}{2 \pi^{l}}\left(v^{l}-\pi^{h} v^{h}\right)+q^{h} \frac{\pi^{h}}{\pi^{l}}\left(v^{h}-v^{l}\right)$
so q^{h} should be as large as possible
$q^{h}=\pi^{l}+\pi^{h} / 2$
plug back into (2) to find
$q^{l}=\pi^{l} / 2$
expected payments
$p^{l}=q^{l} v^{l}, p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l}$
$p^{l}=v^{l} \pi^{l} / 2$
$p^{h}=v^{h} / 2+\pi^{l} v^{l} / 2$

Implementation of Case 1

modified auction: each player announces their value the highest announced value wins
if there is a tie, flip a coin
if the low value wins, he pays his value
if the high value wins he pays
$\frac{p^{h}}{q^{h}}=\frac{v^{h} / 2+\pi^{l} v^{l} / 2}{\pi^{l}+\pi^{h} / 2}$
under these rules
probability that high type wins is $q^{h}=\pi^{l}+\pi^{h} / 2$
probability that low type wins is $q^{l}=\pi^{l} / 2$
just as in the optimal mechanism
this means the expected payments are the same too

Case 2: $v^{l}<\pi^{h} v^{h}$
$U=q^{l}\left(v^{l}-\pi^{h} v^{h}\right)+\pi^{h} q^{h} v^{h}$
(1) $0 \leq q^{i} \leq \pi^{-i}+\pi^{i} / 2$
(2) $\pi^{l} q^{l}+\pi^{h} q^{h} \leq 1 / 2$

Make q^{h} large as possible, q^{l} as small as possible
$q^{h}=\pi^{l}+\pi^{h} / 2$
$q^{l}=0$
expected payments

$$
\begin{aligned}
& p^{l}=q^{l} v^{l}, p^{h}=\left(q^{h}-q^{l}\right) v^{h}+q^{l} v^{l} \\
& p^{l}=0 \\
& p^{h}=\left(\pi^{l}+\pi^{h} / 2\right) v^{h}
\end{aligned}
$$

Implementation of Case 2

set a fixed price equal to the highest valuation
$v^{h}=\frac{p^{h}}{q^{h}}=\frac{\left(\pi^{l}+\pi^{h} / 2\right) v^{h}}{\pi^{l}+\pi^{h} / 2}$

