Repeated Games

Long-Run versus Short-Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ
actions $a^{1} \in A^{1}$ a finite set
utility $u^{1}\left(a^{1}, a^{2}\right)$

Player 2 is short-run with discount factor 0
actions $a^{2} \in A^{2}$ a finite set
utility $u^{2}\left(a^{1}, a^{2}\right)$
the "short-run" player may be viewed as a kind of "representative" of many "small" long-run players

Repeated Game

history $h_{t}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$
null history h_{0}
behavior strategies $\alpha_{t}^{i}=\sigma^{i}\left(h_{t-1}\right)$

Equilibrium

Nash: usual definition
Subgame perfect: usual definition, Nash after each history

Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game
strategies: play the static equilibrium strategy no matter what
"perfect equilibrium with public randomization"
may use a public randomization device at the beginning of each period to pick an equilibrium
key implication: set of equilibrium payoffs is convex

Example: chain store game

normal form
fight
out

give in | $2,0^{*}$ | $-1,-1$ |
| :--- | :--- |
| 2,0 | $1,1^{* *}$ |

Nash

subgame perfect is In, Give In
variation on chain store

out
fight give in
$2-\varepsilon, 0$ $-1,-1$ 2,0 $1,1^{* *}$

now the only equilibrium is In, Give In
payoff at static Nash equilibrium to LR player: 1
precommitment or Stackelberg equilibrium precommit to fight get $2-\varepsilon$
minmax payoff to LR player: 1 by giving in
utility to long-run player
precommitment/Stackelberg $=2-\varepsilon$
best dynamic equilibrium = ?
Set of dynamic equilibria
static Nash = 1
worst dynamic equilibrium = ?
$\operatorname{minmax}=1$

Repeated Chain Store

finitely repeated game
final period: In, Give, so in every period
Do you believe this??

Infinitely repeated game

begin by playing Out, Fight
if Fight has been played in every previous period then play Out, Fight
if Fight was not played in a previous period play In, Give In (reversion to static Nash)
claim: this is subgame perfect
clearly a Nash equilibrium following a history with Give In

SR play is clearly optimal
for LR player
may Fight and get $2-\varepsilon$
or give in and get $(1-\delta) 2+\delta 1$
so condition for subgame perfection

$$
\begin{aligned}
& 2-\varepsilon \geq(1-\delta) 2+\delta 1 \\
& \delta \geq \varepsilon
\end{aligned}
$$

equilibrium utility for LR

General Deterministic Case

Fudenberg, Kreps and Maskin [1990]
utility to long-run player
$\max u^{1}(a)$
mixed precommitment/Stackelberg
pure precommitment/Stackelberg
\bar{v}^{1} best dynamic equilibrium
Set of dynamic equilibria
static Nash
\underline{v}^{1} worst dynamic equilibrium
minmax
$\min u^{1}(a)$

Characterization of Equilibrium Payoff $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
α represent play in the first period of the equilibrium
$w^{1}\left(a^{1}\right)$ represents the equilibrium payoff beginning in the next period
$v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$v^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$

Characterization of Best/Worst Equilibrium Payoffs

 maximize \bar{v}^{1}, minimize \underline{v}^{1} subject to$$
\begin{aligned}
& \alpha=\left(\alpha^{1}, \alpha^{2}\right) \text { where } \alpha^{2} \text { is a b.r. to } \alpha^{1} \\
& \bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right) \\
& \bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0 \\
& \underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right) \\
& \underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0 \\
& \underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}
\end{aligned}
$$

Remarks

1) problem simplifies if static Nash $=$ minmax
2) if $v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$ then $v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
simplification: split into two problems by defining n^{1} as static Nash payoff

$$
\begin{aligned}
& n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1} \\
& \underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}
\end{aligned}
$$

as $\delta \rightarrow 1 w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1}, \underline{v}^{1}$ in the two problems so this is OK

max problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
how big can $w^{1}\left(a^{1}\right)$ be in = case?

Biggest when $u^{1}\left(a^{1}, \alpha^{1}\right)$ is smallest, in which case
$w^{1}\left(a^{1}\right)=\bar{v}^{1}$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \bar{v}^{1}$
conclusion for fixed α
$\min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
i.e. worst in support
$\bar{v}^{1}=\max _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
observe:
mixed precommitment $\geq \bar{v}^{1} \geq$ pure precommitment

Modified Chain Store Example

	out	in
fight	$2-\varepsilon, 0$	$-1,-1$
give in	2,0	1,1

p (fight)	BR	worst in support
1	out	$2-\varepsilon$
$1 / 2<p<1$	out	$2-\varepsilon$
$0<p<1 / 2$	in	-1
$p=0$	in	1

check: $w^{1}\left(a^{1}\right)=\frac{\bar{v}^{1}-(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)}{\delta} \geq n^{1}$ as $\delta \rightarrow 1$ then $w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1} \geq n^{1}$
min problem
fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}$

Biggest $u^{1}\left(a^{1}, \alpha^{1}\right)$ must have smallest $w^{1}\left(a^{1}\right)=\underline{v}^{1}$
$\underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
conclusion
$\underline{v}^{1}=\max u^{1}\left(a^{1}, \alpha^{2}\right)$
or
$\underline{v}^{1}=\min _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \max u^{1}\left(a^{1}, \alpha^{2}\right)$
that is, constrained minmax

Sample Calculation

	L	M	R
U	$0,-3$	1,2	0,3
D	$0,3^{*}$	2,2	0,0

static Nash gives 0
minmax gives 0
worst payoff in fact is 0
pure precommitment also 0

Mixed Precommitment

p is probability of up
to get more than 0 must get $S R$ to play M
$-3 p+(1-p) 3 \leq 2$ and $3 p \leq 2$
first one
$-3 p+(1-p) 3 \leq 2$
$-3 p-3 p \leq-1$
$p \geq 1 / 6$
second one
$3 p \leq 2$
$p \leq 2 / 3$
want to play D so take $p=1 / 6$
get $1 / 6+10 / 6=11 / 6$
utility to long-run player
$\max u^{1}(a)=2$
mixed precommitment/Stackelberg=11/16
\bar{v}^{1} best dynamic equilibrium=1
pure precommitment/Stackelberg=0
Set of dynamic equilibria
static Nash=0
\underline{v}^{1} worst dynamic equilibrium=0
minmax=0
$\min u^{1}(a)=0$

Calculation of best dynamic equilibrium payoff

p is probability of up

p	${ }^{2} R^{2}$	worst in support
$<1 / 6$	L	0
$1 / 6<p<5 / 6$	M	1
$\mathrm{p}>5 / 6$	R	0

so best dynamic payoff is 1

