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Abstract

We study how professional players and college students play zero-sum two-
person strategic games in a laboratory setting. We first ask professionals to
play a 2x2 game that is formally identical to a strategic interaction situation
that they face in their natural environment. We find that these subjects play
in the laboratory exactly as in the field, that is as the equilibrium of the game
dictates: (i) they equate payoffs across strategies, and (ii) generate sequences
of choices that are random. In sharp contrast with them, however, we also
find that college students play the game far from the equilibrium predictions.
We then study the behavior of professional players and college students in
the classic O’Neill’s 4x4 zero-sum game, a game that none of the subjects
have encountered previously, and find the same drastic differences in behavior
between these two subject pools. The transfer of skills and experience from
the familiar field to the unfamiliar laboratory observed for professional players
is relevant, from a methodological perspective, to evaluate the circumstances
under which behavior in a laboratory setting may be a reliable indicator of
behavior in a naturally occurring setting. From a cognitive perspective, it is
useful for research on recognition processes, intuition, and similarity as a basis
for inductive reasoning.
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“We transfer our experience in past instances to objects
which are resembling, but are not exactly the same with
those concerning which we have had experience. ... Tho’
the habit loses somewhat of its force by every difference,
yet’tis seldom entirely destroy’d, where any considerable
circumstances remain the same.”

David Hume, A Treatise of Human Nature (1739)

1 Introduction

Over the last two decades experiments in laboratory environments have become an
important tool in empirical economic analysis, as insights into behavior that cannot
be studied easily in the real world may be obtained in this controlled and artificial
setting. Thus, an important question for those areas of economic research that rely
on data collected in a laboratory is how applicable are these insights for predicting
behavior in natural environments.

This paper addresses this question for situations that involve strategic interaction
between subjects. Game theory is, in fact, one of the areas where it is mainly experi-
mental data collected in the laboratory, rather than in natural environments, that are
used to inform theoretical developments.1 One reason for this is that Nature does not
always create the circumstances that allow a clear view of the principles at work in
strategic situations. Furthermore, naturally occurring phenomena are typically too
complex to be empirically tractable.

Laboratory environments provide valuable control of players’ information, payoffs,
available strategies and other relevant aspects, which is important because game-
theoretic predictions are often sensitive to changes in these variables. However, as
Harrison and List (2004, pp. 1009-11) remark, “lab experiments in isolation are nec-
essarily limited in relevance for predicting field behavior, unless one wants to insist a
priori that those aspects of economic behavior under study are perfectly general ...
[The reason is that] the very control that defines the experiment may be putting the
subject on an artificial margin. Even if behavior on that margin is not different than
it would otherwise be without the control, there is the possibility that constraints on
one margin may induce effects on behavior on unconstrained margins.” These and
other doubts about the generalizability and extent to which laboratory results may
provide insights into field behavior, demand more elaborate experiments.2

1Camerer (2003) offers a comprehensive review.
2See Weibull (2004) and Lazear, Malmendier and Weber (2005) for other concerns, and Camerer

(2003), Harrison and List (2004), and Kagel and Roth (1995) for relevant references on the devel-
opment of different experiments.
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This paper is concerned with one such experiment. In particular, we conduct
a conventional experiment with a non-standard subject pool playing a game where
players are predicted to choose probabilistic mixtures. Our idea is to take advantage
of the opportunity that professional soccer provides in order to develop an “arte-
factual field experiment” to study a margin not studied previously for games with
mixed-strategy equilibria.3 The suitable circumstances this sport offers are the fol-
lowing: (i) Professional soccer players face a simple strategic game that is governed
by very detailed rules: a penalty kick; (ii) The formal structure of this game can
be reproduced in the laboratory; (iii) Previous research has found that when profes-
sional soccer players play this game in the field, their behavior is consistent with the
equilibrium predictions of the theory. These three distinct characteristics allow us to
study whether the skills and heuristics that players may have developed in a familiar
field setting transfer to the unfamiliar laboratory, and the extent to which field and
laboratory behavior are different. Put it differently, they allow to study, for the first
time to the best of our knowledge, the role of laboratory context as a “treatment” in
a strategic interaction situation requiring use of mixed strategies. A positive answer
to the question of whether field and laboratory behavior are sufficiently similar may
then indicate that laboratory findings are reliable for predicting field behavior. A
negative answer would suggest the opposite.

We proceed as follows. We first analyze the behavior of professional soccer players
in a laboratory setting playing a simultaneous two-person zero-sum 2x2 game that
is formally identical to a penalty kick. The equilibrium of the game is unique and
requires each player to use a mixed strategy. The procedure we follow makes no ref-
erences to any type of soccer terminology that may trigger psychological motivations,
and we use much lower stakes than in real life. To test our methodological hypothesis,
we also implement exactly the same controlled laboratory experiment with subjects
drawn from the standard subject pool of college students with no soccer experience.

Palacios-Huerta (2003) found that the behavior of professional players in the soc-
cer field was consistent with equilibrium play in every respect: (i) their winning
probabilities were statistically identical across strategies; (ii) their choices were seri-
ally independent.4 The results we obtain in this paper can be summarized as follows.
We find that professional players continue to behave remarkably consistent with the
implications of equilibrium in this entirely different setting. Interestingly, we also find
that their behavior is in sharp contrast with that of college students who play quite
poorly from the perspective of the equilibrium of the game: they do not to equate win-
ning probabilities across strategies and consistently generate sequences that exhibit
negative autocorrelation. We interpret these results as evidence that professionals
transfer their learning across these vastly different environments and circumstances.

3This term follows the classification suggested in Harrison and List (2004).
4See also Chiappori, Levitt and Groseclose (2002) and Azar and Bar-Eli (2005) for further evi-

dence in support of equilibrium behavior.
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As such, the nature of the subject pool is important for drawing inferences about the
predictive power of the equilibrium of the game.

These results may be of special interest in the context of understanding the de-
terminants of randomization, which is a testable hypothesis shared by every game
that admits a mixed strategy equilibrium. An extensive literature in experimental
economics, game theory, and psychology consistently finds that subjects are unable to
generate i.i.d. sequences in the laboratory. Instead, they tend to exhibit a significant
bias against repeating the same choice.5 We find, however, that professional soccer
players do generate perfectly random sequences in the laboratory whereas, consistent
with the extensive evidence available in the literature, college students do not.

In an attempt to evaluate whether professional players may behave differently in
a game they have not encountered previously in any setting, we ask them to play
the 4x4 zero-sum two-person simultaneous game developed in O’Neill (1987), and
further studied in Brown and Rosenthal (1990), Shachat (2002) and Walker and
Wooders (2001). We again compare their behavior with that of college students. The
results show that students behave as previous authors have found, that is far from
the predictions of the unique equilibrium of the game. Although we use much greater
monetary incentives and subjects play more repetitions than in previous studies of
this game, students do not equate winning probabilities across strategies and continue
generating sequences of choices that are not random. In sharp contrast with this
behavior, we find that professional soccer players play, again, remarkably consistent
with equilibrium: (i) their distribution of play is not statistically different from the
equilibrium distribution, and (ii) their choices are serially independent. While we
have considered various extensions that will be discussed later, such as experiments
with students that have soccer experience at the amateur level, these are the main
findings of the 2x2 and 4x4 zero-sum games that we would like to emphasize.

We interpret the results that professionals who play a given strategic game in a
field setting according to its equilibrium predictions continue to behave as the equi-
librium predicts in the laboratory, under lower monetary stakes than in real life, and
even when facing an unfamiliar game, as supporting the idea that the vast differ-
ences in environments do not undermine the skills these subjects use in the field.
The fact that the behavior of professional soccer players is distinctly different from
that of college students, the subject pool typically considered in a vast experimental
literature, suggests that the game-theoretic equilibrium predictions may have greater
empirical content than previously considered for explaining behavior in both natural
and experimental settings. It also suggests that in these games the nature of the
subject pool may be a critical ingredient of the laboratory experiment for predicting
field behavior.

5See Neuringer (2002) and Camerer (1995) for surveys of the relevant literature.
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From a methodological viewpoint, we see the artefactual field experiments imple-
mented in this paper as being complementary to traditional laboratory experiments
of games where players are predicted to choose probability mixtures.6

These results have implications for the literature on cognition and similarity as a
basis for inductive reasoning.7 Camerer, Loewenstein and Prelec (2005) review evi-
dence showing how “much of the brain implements ‘automatic’ processes, which are
faster than conscious deliberation” and how “with experience at a task or a problem,
the brain seems to gradually shift processing toward brain regions and specialized
systems that can solve problems automatically and efficiently with low effort.” Sim-
ilarly, Smith (2005) considers that “human activity is diffused and dominated by
unconscious, autonomic, neuropsychological systems that enable people to function
effectively without always calling upon the brain’s scarcest resource—attention and
reasoning circuitry.” He also discusses evidence showing how the challenge of any
unfamiliar action or problem appears first to trigger a search in the brain to bring to
the conscious mind what one knows that is related to the decision context, and how
systems built into the brain do their work automatically and largely outside of our
conscious awareness.8

From this viewpoint, the results in this paper support the hypothesis that cog-
nitive skills may exist beyond those that subjects are aware of, and that these skills
are the outcome of learning over an extended period of time in a field setting. The
facts that they exist in the context of strategic interaction situations involving mixed
strategies, and that they transfer to a highly unfamiliar environment where data to
inform economic theories are often obtained, are the main findings of our analysis.

2 Experimental Procedures

We implement two different zero-sum games, each one with two different subject
pools: professional soccer players and college students. The experiments were con-
ducted during the period November 2003-October 2004. Each of the two zero-sum
games we study was played by 40 professional soccer players working in twenty pairs
and 40 college students with no soccer experience working in twenty pairs. We also
recruited an additional set of 40 college students with soccer experience at the ama-
teur level working in twenty pairs for each of the two games.

6While perfectively competitive games do not represent the entire universe of strategic games in-
volving mixed strategies, a number of authors consider that “zero-sum games are a vital cornerstone”
of game theory (Aumann, 1987). See also von Neumann (1928) and Binmore et al (2001).

7See, for instance, Hume (1748), Gilboa and Schmeidler (2001), Gigerenzer and Todd (1999),
Selten (1998), Simon (1983), and other references therein.

8These ideas are also supported in Gneezy, Rustichini and Vostruknutov (2005) who study experi-
mentally how human subjects solve a complex problem, and find that processes involving unconscious
reasoning are active in the solution of sophisticated and novel problems.
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Next we provide details about the recruiting process for these 240 subjects and
other aspects of the experimental procedure, and then describe the experimental
designs of the two games we study.

2.1 Subjects

Each subject served in only one game and one session, and those who knew each other
were not allowed to participate in the same pair. Sessions lasted about an hour, and
subjects received their winnings as payment.

Professional Players. These subjects were recruited from professional soccer
clubs in Spain. Professional soccer teams play most of their games in domestic league
competitions. As in many other European and South American countries, league
competition in Spain is hierarchical. It has three professional divisions: Primera
Division with 20 teams, Segunda Division A with 22 teams, and Segunda Division B
with 80 teams divided into four groups of twenty teams each.9 Our subjects come from
a number of clubs in the north of Spain, a region with a high density of professional
teams. For example, within 150 miles of the city of Bilbao, there are 25 professional
soccer clubs participating in league competitions in those three divisions. Teams
typically have about 22-26 players in their roster, 2-4 of which are goalkeepers.
Eighty male soccer players (40 kickers and 40 goalkeepers) were recruited from

these teams with telephone calls and visiting teams in daily practices.10 Marca (2005)
offers a vitae of every player in Primera Division and Segunda Division A that includes
personal information, professional playing history and other records. Forty kicker-
goalkeeper pairs were formed randomly using the last two digits of their national
ID card with the only requirement that subjects that were currently playing or had
played in the past for the same team were not allowed to participate in the same pair.

Undergraduate students. One hundred and sixty male subjects were re-
cruited with fliers around the campus of the Universidad del Páıs Vasco in Bilbao,
and by visiting different undergraduate classes. We recruited no subjects majoring in
Economics or Mathematics. Half of the subjects we recruited had no soccer experi-
ence. The other half had soccer experience at the amateur level as they were required
that they should be currently participating in regular league competitions in regional
amateur divisions, that is Tercera Division and below. These leagues follow exactly

9The next division in the hierarchy, Tercera Division, also includes some players who are profes-
sional in that their salaries plus bonuses are similar to the average household salary in Spain. There
are 240 teams in Tercera Division in Spain, sorted regionally according to geographical distance into
twelve groups of twenty teams each. Teams in divisions lower in the hierarchy, playing in “regional
leagues,” do not typically have any professional players. Our sample of amateur players comes from
Tercera Division and these regional leagues.
10No player that had played professionally for less than two years at the time of the experiment

was recruited.
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the same structure, calendar schedule, and are governed by the same rules (FIFA,
2005) as the professional leagues.
Pairs were formed randomly using the last two digits of their national ID card.

For subjects with soccer experience, those that were currently playing or had previ-
ously played for the same team were not allowed to participate in the same pair.

2.2 Experimental Designs

2.2.1 Experiment 1: Penalty Kick

Before discussing how the formal structure of a penalty kick may be reproduced in a
laboratory setting, it is first useful to go over its basic rules and structure, and the
evidence from the field.
In soccer, a penalty kick is awarded against a team which commits one of the ten

punishable offenses inside its own penalty area while the ball is in play. The world
governing body of this sport, the Fédération Internationale de Football Association
(FIFA), describes in detail the simple rules that govern this strategic interaction
situation in the Official Laws of the Game (FIFA, 2005):11

• “The ball is placed on the penalty mark in the penalty area.
• The player taking the penalty kick is properly identified.
• The defending goalkeeper remains on the goal line, facing the kicker, between

the goalposts, until the ball has been kicked.
• The player taking the penalty kicks the ball forward.
• He does not play the ball a second time until it has touched another player.
• A goal may be scored directly from a penalty kick.”

Each penalty kick involves two players: a kicker and a goalkeeper. In the typi-
cal kick the ball takes about 0.3 seconds to travel the distance between the penalty
mark and the goal line; that is, it takes less than the reaction time plus goalkeeper’s
movement time to any possible path of the ball.12 Hence, both kicker and goalkeeper
must move simultaneously. The penalty kick has only two possible outcomes: score
or no score, actions are observable, and the outcome of the penalty kick is decided
almost immediately after players choose their strategies.13

11The dimensions of the field of play, including the penalty area, the position of the penalty mark,
and the distance to the goals, are described in detail in Law 1 of FIFA (2005).
12Miller (1998) reports evidence on ball speed, reaction times, and movement times from all the

penalty kicks in four World Cups.
13The spin of the kick plays no role. There are no second penalties in case a goal is not scored.

The initial location of both the ball and the goalkeeper is always the same: the ball is placed on the
penalty mark and the goalkeeper positions himself on the goal line, equidistant to the goalposts.
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The clarity and simplicity of the rules and structure of this simultaneous one-shot
interaction suggest not only that it can be studied empirically, but also that it may
be easily reproduced in an artificial setting such as a laboratory. The basic structure
of a penalty kick may be represented by the following simple 2× 2 game:

i\j
L
R

L R
πLL, 1− πLL πLR, 1− πLR
πRL, 1− πRL πRR, 1− πRR

,

where πij denotes the kicker’s probabilities of scoring when he chooses i and the
goalkeeper chooses j, for i, j ∈ {L,R}. This game has a unique Nash equilibrium
when πLR > πLL < πRL and πRL > πRR < πLR, which requires each player to use
a mixed strategy. When this game is repeated, equilibrium theory yields two sharp
testable predictions about the behavior of the players:

1. The probability that a goal will be scored should be the same across strategies
for each player, and equal to the equilibrium success probability: p for the kicker and
1− p for the goalkeeper, with p = (πLRπRL − πLLπRR) /(πLR − πLL + πRL − πRR).
2. Each player’s choices must be serially independent. That is, intertemporal links

between occurrences must be absent. Hence, players’ choices must be independent
draws from a random process and should not depend on one’s own previous play, on
the opponent’s previous play, or on any other previous actions and outcomes.

Using data on over a thousand penalty kicks during a five year period in three
countries, Palacios-Huerta (2003) finds strong support for the two implications of this
2x2 model. We adopt this model and take it to the laboratory. The payoffs we will
use in the experiment are:

πLL = 0.60; πLR = 0.95; πRL = 0.90; πRR = 0.70,

which come from a sample of 2,717 penalty kicks collected from professional leagues
in Europe during the period 1995-2004.14 No other field referents are used in the
experiment, and no references are made to soccer terminology or any aspect of the
natural environment that may trigger any type of psychological motivations.15 In
particular, subjects are not told that the structure of the game corresponds to a
penalty kick or that the payoffs correspond to empirically observed probabilities.

The rules of the experiment, which follow as closely as possible O’Neill’s (1987),
are the following. The players sat opposite each other at a table. Kickers played the

14The exact empirical probabilities in the sample are πLL = 0.597, πLR = 0.947, πRL = 0.908,
and πRR = 0.698. The sample includes the 1,417 penalties studied in Palacios-Huerta (2003), which
discusses how to treat the few ocassions in which the strategy of “center” may be observed in the
soccer field.
15As is well known, the choice of parameters can add some field context to experiments. The idea,

pioneered by Grether and Plott (1984) and Hong and Plott (1982), is to estimate parameters that
are relevant to field applications and take these into the lab.
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role of row player and goalkeepers the role of column player. Each held two cards
(A and B) with identical backs. A large board across the table prevented them from
seeing the backs of each opponent’s cards. The experimenter gave them one page
with the following instructions (in Spanish), which he then read aloud to them:

“We are interested in how people play a simple game. You will first
play this game for about 15 hands for practice, just to make sure you
are clear about the rules and the results. Then, you will play a series of
hands for real money at 1 euro per hand. Before we begin, first examine
these dice. They will be used at some point during the experiment. They
generate a number between 1 and 100 using a 10-face die for the decimal
place and another 10-face die for the units. The faces of each die are
marked from ‘0’ to ‘9,’ so the resulting number goes from ‘01’ to ‘99,’
where ‘00’ means 100. [The two subjects examine the dice and play with
them.] The rules are as follows:
1. Each player has two cards: A and B.
2. When I say “ready” each of you will select a card from your hand

and place it face down on the table. When I say “turn,” turn your card face
up and determine the winner. (I will be recording the cards as played).
3. The winner should announce “I win,” and will then receive 1 euro.
4. Then return the card to your hand, and get it ready for the next

round.
I will explain how the winner is determined next. Are there any ques-

tions so far?
Now, the winner is determined with the help of the dice as follows:
• If there is a match AA, [row player’s name] wins if the dice yield a

number between 01 and 60; otherwise [column player’s name] wins.
• If there is a match BB, [row player’s name] wins if the dice yield a

number between 01 and 70; otherwise [column player’s name] wins.
• If there is a mismatch AB, [row player’s name] wins if the dice yield

a number between 01 and 95; otherwise [column player’s name] wins.
• If there is a mismatch BA, [row player’s name] wins if the dice yield

a number between 01 and 90; otherwise [column player’s name] wins.

The following diagram may be useful:

1\2 A B
A .60 .95
B .90 .70

.

Are there any questions?”
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Thus, the game was presented with the help of a matrix, and subjects learned
the rules by a few rounds of practice. The unique mixed-strategy equilibrium in this
game is 0.3636 and 0.4545 for the probability of choosing left for the row and column
player respectively. They played 15 rounds for practice and then 150 times for real
money, proceeding at their own speed. They were not told the number of hands they
will play. If they happened to make an error announcing the winner, the experimenter
corrected them.
The typical session lasted about one hour and fifteen minutes, proceeding at about

2 hands per minute. From the perspective of the response times study of Rubinstein
(2005) on instinctive and cognitive reasoning, it may be of interest to note that
professionals took on average 70.0 minutes, which is 15 percent less time than the
average time taken by college students: 81 minutes and 24 seconds. The difference is
statistically significant.

2.2.2 Experiment 2: O’Neill (1987)

The design of this experiments closely follows O’Neill’s original design. The players
sat opposite each other at a table. Each held four cards with identical backs. A
large board across the table prevented them from seeing the backs of each opponent’s
cards. The experimenter gave one page with the following instructions (in Spanish)
to the participants, which he then read aloud to them:

“We are interested in how people play a simple game. You will first
play this game for about 15 hands for practice, just to make sure you are
clear about the rules and results. Then, you will play a series of hands
for money at 1 euro per hand. The rules are as follows:
1. Each player has four cards: {Red, Brown, Purple, Green}.
2. When I say “ready” each of you will select a card from your hand

and place it face down on the table. When I say “turn,” turn your card face
up and determine the winner. (I will be recording the cards as played).
3. The winner should announce “I win,” and will then receive 1 euro.
4. Then return the card to your hand, and get it ready for the next

round.

Are there any questions?

Now, to determine the winner: [subject 1’s name] wins if there is a
match of Greens (two Greens played) or a mismatch of other cards (Red-
Brown for example); hence, [subject 2’s name] wins if there is a match of
cards other than Green (Purple-Purple for example) or a mismatch of a
Green (one Green, one other card).”

9



Thus, the game was presented without the help of a matrix and subjects learned
the rules by practice. The payoff structure of the game is:

1\2 Red Brown Purple Green
Red − + + −
Brown + − + −
Purple + + − −
Green − − − +

where the ‘+’ and ‘−’ symbols denote a win by the row and column player respectively.
The stage and the repeated games have a unique equilibrium which requires both
players to randomize with probabilities 0.2, 0.2, 0.2, 0.4, respectively. Subjects played
15 rounds for practice and then 200 times for real money, proceeding at their own
speed. They were not told the number of hands they will play. If they happened to
make an error in determining the winner, the experimenter corrected them.

A first difference with respect to O’Neill’s design is that the subjects engage in
200 stage games instead of 105. A second difference involves renaming the elements of
the action space. Rather than using {Ace, Two, Three, Joker}, we use {Red, Brown,
Purple, Green}, as in Shachat (2002), in order to avoid the previously observed
Ace bias.16 Yet, in order to avoid confusion and to facilitate comparison with the
literature, actions will be refereed to by the names used in O’Neill’s experiment for the
remaining exposition of the paper: 1 (Ace) for Red, 2 (Two) for Brown, 3 (Three)
for Purple, and J (Joker) for Green. A final difference involves using much greater
stage game payoffs (the winner receives 1 euro for a win, that is about 1.30 dollars
using the exchange rate at the time the experiment took place, rather than 5 cents),
and not giving any initial endowments to the players.
For the experiment with college students, these differences are useful to study

the extent to which, relative to the implementation in O’Neill, a larger number of
repetitions and much greater number of payoffs may take students in the direction of
the unique equilibrium of the game.

The typical session lasted slightly above one hour, proceeding at about 3.3 hands
per minute. As in the previous case, professionals took less time than college students
(in this case about 11 percent less time on average: 61.2 versus 67.9 minutes). The
difference is statistically significant.

16See O’Neill (1987) and Brown and Rosenthal (1991).
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3 Empirical Evidence

This section is structured as follows. We first describe the evidence from the penalty
kick experiment for both the professionals and the college students with no soccer
experience, and then the results for O’Neill’s experiment for each of these two pools
of subjects. In section 4 we discuss the results for the college students with soccer
experience in both experiments, and other extensions.

3.1 Penalty Kick Experiment

3.1.1 Professional Soccer Players

Table 1A presents aggregate statistics describing the outcomes of the experiment.
In what follows we use the standard notation of L and R instead of A and B. In
the top panel each interior cell reports the relative frequency with which the pair of
moves corresponding to that cell occurred. In parenthesis are the Minimax relative
frequencies and in brackets the standard deviation for the observed relative frequen-
cies under the Minimax hypothesis. At the bottom and to the right are the overall
relative frequencies with which players were observed to play a particular card, again
accompanied by the corresponding relative frequencies and standard deviations under
the Minimax model. Observed and Minimax win frequencies for the row player are
reported in the bottom panel.

[Table A1 here]

These aggregate data seem to conform well to the equilibrium predictions. There
is a general consistency with the Minimax model in the pattern of observed rela-
tive frequencies for each pair of choices, especially for the pair that is played more
frequently, RR. As to the marginal frequencies of actions for the players, they are
extremely close to the Minimax predictions for the column player. Row players, on
the other hand, choose frequencies 0.333 for L and 0.667 for R, which are close to the
Minimax predictions but statistically different from them. As to the aggregate row
player observed win frequency (0.7947), it is less than one standard deviation away
from the theoretically expected value (0.7909).

Data at the individual pair level allow a closer scrutiny of the extent to which
Minimax play may be supported for most individual subjects and most pairs of play-
ers. Table A2 reports the relative frequencies of choices for each of the twenty pairs
in the sample and some initial tests of the model.

[Table A2 here]
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The Minimax hypothesis implies that the choices of actions represent independent
drawings from a binomial distribution where the probabilities of L are 0.363 and 0.454
for the raw and column players, respectively. We should then expect a binomial test
of conformity with Minimax play to reject the null hypothesis for 2 players at the
5 percent significance level, and 4 players at the 10 percent level. The results show
that indeed these are precisely the number of rejections at those confidence levels.
Clearly, these initial findings may be taken as consistent with the hypothesis that

professional soccer players play according to the equilibrium of the game. Yet, they
lend only partial support at this point. One reason is that equilibrium behavior also
implies that action combinations should be realizations of independent drawings of
a multinomial distribution. In principle, it might well be the case that the marginal
frequencies conform well to the equilibrium strategies while at the same time the
players’s actions are highly correlated.
In order to test whether the players’ actions are correlated we perform two tests.

First, Minimax play implies that action combinations are realizations of independent
drawings from a multinomial distribution with probabilities 0.165 for LL, 0.198 for
LR, 0.289 for RL and 0.347 for RR. Table A2 reports the relative frequencies of
each combination of actions for each of the twenty pairs in the sample. Using the
corresponding absolute frequencies along with their Minimax probabilities, we can
then test the joint hypothesis that players choose actions with the equilibrium fre-
quency and that their choices are stochastically independent. A Chi-square test for
conformity with Minimax play based on Pearson’s goodness of fit with 3 degrees of
freedom produces the p-values reported in the last column of the table. Under the
Minimax play we would expect to reject the null hypothesis for 1 and 2 pairs at the 5
and 10 percent significance levels. We find 0 and 2 rejections, respectively, virtually
what we would expect.

The second test is the one Brown and Rosenthal (1990) devised to check for
contemporaneous correlation in players’ choices. The results are shown in Table A3.

[Table A3 here]

The first column reports the observed win percentage. The second reports the
expected win percentage, using observed card frequencies, under the assumption that
the players’ choices are i.i.d. drawings from a pair-specific stationary binomial dis-
tribution. Column three shows the effect of chosen mixtures, which is computed as
the difference between the observed row player winning percentage and the Minimax
value of 0.7909. The difference between the first two columns measures the contribu-
tion of correlated play to observed row-player winning percentages, and it is reported
in the fourth column. It is apparent that the average absolute contributions of both
the mixture and the correlated play effects are extremely small. The Chi-square
statistics for the significance of each of these effects are minuscule, the probability
values for which are virtually unity. These results may be taken as consistent with the
hypothesis that professional players play according to the equilibrium of the game.
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We take from this initial evidence that, even though the observed aggregate fre-
quency for the row players is slightly different from the equilibrium predictions, the
hypothesis of Minimax play gets substantial support in the tests of the binomial and
multinomial models for observed choice frequencies, and in the tests of independence.
Next, we turn to testing more closely the implications of the equilibrium of the game.

i. Winning Rates and the Distribution of Play

Minimax play implies that the success probabilities of each action should be the
same for each player, and equal to 0.7909 for the row player and 0.2090 for the column
player. Further, when combined with the equilibrium strategies, we can obtain the
relative success-fail frequencies associated with each action in equilibrium.
Table A4 reports the relative frequencies of action-outcomes combinations ob-

served for each of the row and column players in the sample. Using the absolute
frequencies corresponding to these entries, we can then implement a Chi-square test
of conformity with Minimax play. This test would be identical to the one performed
in Table A2 if it were not for the fact that the success rate is determined not only by
the choice of strategies but also by the realization of the dice.

[Table A4 here]

The results of the test show that the null hypothesis is rejected for no player at
the 5 percent significance level, and for 3 players at the 10 percent significance level,
in both cases fewer than the expected number of rejections, 2 and 4 respectively.
Hence, at the individual level the hypothesis that scoring probabilities are identical
across strategies and to the equilibrium rate cannot be rejected for most players at
conventional significance levels.

With regard to whether behavior at the aggregate level may be considered to be
generated from equilibrium play, this idea may be evaluated by testing the joint hy-
pothesis that each one of the experiments is simultaneously generated by equilibrium
play. The test statistic for the Pearson joint test is simply the sum of the individual
test statistics for each type of players. Under the null hypothesis, it is distributed
as a χ2 with 60 degrees of freedom for the set of row players and likewise for the set
of column players. We find that the Pearson statistics are 40.002 and 32.486, with
associated p-value above ninety percent in both cases.17 Hence, the null hypothesis
that the data for all players were generated by equilibrium play cannot be rejected
at conventional significance levels.

We interpret these individual and aggregate results as consistent with the hy-
pothesis that these subjects equate their strategies’ payoffs to the equilibrium success
rates.

17The test statistics for the raw and column players may not be added given that within each pair
the players’ success rates are not independent.
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ii. The Serial Independence Hypothesis

The second testable implication of equilibrium play is that a player should random-
ize using the same distribution at each stage of the game. This implies that players’
choices are serially independent. The work on randomization is extensive in the ex-
perimental economics and psychological literatures. Interestingly, this hypothesis has
never found support in a laboratory setting. In particular, when subjects are asked to
generate random sequences their sequences often have negative autocorrelation, that
is, individuals exhibit a bias against repeating the same choice (see Bar-Hillel and
Wagenaar (1991), Rapoport and Budescu (1992), Rapoport and Boebel (1992) and
Mookherjee and Sopher (1994)).18 This phenomenon is sometimes referred to as the
“Law of Small Numbers” (Tversky and Kanheman (1971) and Camerer (1995)). The
only possible exception that we are aware of is Neuringer (1986) who explicitly taught
some subjects to choose randomly after several hours of training by providing them
with detailed feedback from previous blocks of responses in the experiment. These
training data are interesting in that they suggest that experienced subjects might be
able to learn to generate randomness. In our case, however, subjects have accumu-
lated their experience in an entirely different environment: a soccer field. Moreover,
professional soccer players rarely take penalty kicks in the field in rapid succession,
as they are asked to in the experiment. Instead, there is often a substantial time
delay, typically weeks, between subsequent penalties.19 Whether their experience on
randomization in the field in circumstances where repetitions are not taken in rapid
succession is useful to generate random sequences in a laboratory setting where stage
games are repeated in rapid succession is the question to which we turn next.

We consider the following tests of serial independence previously performed in the
literature:

A. Runs Tests. Consider the sequence of strategies chosen by player i in the
order in which they occurred si =

n
si1, s

i
2, ..., s

i
ni

o
, where six ∈ {L,R}, x ∈ [1, ni],

ni = niL + n
i
R, and n

i
R and n

i
L are the number of R and L choices made by player i.

Let ri denote the number of runs in the sequence si. A run is defined as a succession of
one or more identical symbols which are followed and preceded by a different symbol

18Slonim, Erev and Roth (2003) find evidence of positive autocorrelation in various zero-sum 2x2
games.
19Most players are not involved in more than 15-20 penalty kick situations per season, that is in

about one such situation every two weeks. It could be argued that these time lags between penalties
might inhibit the memory of past realizations, which would in turn help players randomize correctly.
However, this conjecture may not be correct. The reason is that every penalty kick that is taken in
professional leagues is televised and a common practice among professional players is to keep written
records on their opponents’ behavior (Anthony, 2000). Keeping records may then induce, perhaps,
even better memory than if penalties were shot in rapid succession. Penalty shoot-outs that take
place in elimination tournaments to break ties are an exception in which kicks occur in a short span
of time. Even in these cases, however, only five penalties are typically taken and these involve five
different kickers facing the same goalkeeper.
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or no symbol at all. Let f(ri; si) denote the probability that there are exactly ri runs
in the sequence si. More precisely, f(r; si) is the probability of r runs of ni = niL+n

i
R

action choices, niL left and n
i
R right, when choices are independently and equally

distributed. Gibbons and Chakraborti (1992) show that this probability is given by

f(r; si) =

⎧⎪⎨⎪⎩
2
³
niL−1
r/2−1

´³
niR−1
r/2−1

´
/
³
niL+n

i
R

niL

´
if r is even³³

niL−1
(r−1)/2

´³
niR−1
(r−3)/2

´
+
³
niL−1
(r−3)/2

´³
niR−1
(r−1)/2

´´
/
³
niL+n

i
R

niL

´
if r is odd

for r = 2, 3, . . . , niL + n
i
R.

Letting F (r; si) =
Pr
k=1 f(k; s

i) denote the probability of obtaining r or fewer runs
the null hypothesis will then be rejected at the 5 percent confidence level if the
probability of r or fewer runs is less than 0.025 or if the probability of r or more runs
is less than 0.025; that is, if F (r; si) < 0.025 or if 1 − F (r − 1; si) < 0.025.20 The
results of these tests are shown in Table A5.

[Table A5 here]

We find that the null hypothesis of serial independence is rejected for very few
players at conventional significance levels: 2 players at the 5 percent significance level
and 4 players at the 10 percent level, precisely the expected number of rejections in
both cases under the null hypothesis. These results indicate that the hypothesis that
professional soccer players generate random sequences cannot be rejected according
to this test. They neither switch strategies too often nor too little, and the number
of rejections is remarkably consistent with the theory. This behavior, therefore, is in
sharp contrast with the overwhelming experimental evidence from the psychological
and experimental literatures mentioned earlier.21 In this case it shows that years
of experience in the field is quite valuable, even if it comes from situations where
repetitions are not taken in rapid succession, and from circumstances that are vastly
different from those they find in the laboratory.

B. Logit Equation for Individual Players. Brown and Rosenthal (1990)
suggest using a logit model to study whether past choices and outcomes play a role

20The critical values for the rejection of the hypothesis can also be found from the normal ap-
proximation to the null distribution that the authors offer.
21Note also that the values in columns F

¡
ri; si

¢
and F

¡
ri − 1; si¢ seem to be uniformly distributed

in the [0, 1] interval. Formally, the joint hypothesis that each of the forty experiments is serially
independent may be tested following the suggestion in Walker and Wooders (2001). Given that a
Kolmogorov-Smirnov (KS) test cannot be applied directly to F

¡
ri; si

¢
and F

¡
ri − 1; si¢ because

these values are neither identically nor continuously distributed, a KS goodness-of-fit test can be de-
veloped by constructing a random draw di from the uniform distribution U

£
F
¡
ri − 1; si¢ , F ¡ri; si¢¤

for each player i. Under the null hypothesis of serial independence di is distributed as a U [0, 1].
After performing ten thousand trials with such random draws for each player, the average p-value
of the KS test statistic that compares the cumulative distribution of the realized values di with the
uniform distribution is 0.507 with a standard deviation of 0.166. Hence, the hypothesis that each of
the forty experiments is serially independent cannot be rejected.
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in determining current choices. We follow the formulation suggested in Slonim, Erev
and Roth (2003). The dependent variable is a dichotomous indicator of the choice R.
The independent variables are a lagged indicator of the same choice, an interaction
between that indicator and whether the subject won in the past round, an interaction
between the lagged alternative choice and whether the subject won in the past round,
a lagged indicator of the opponent’s same choice, and an indicator of the opponent’s
contemporaneous choice R∗. The results are shown in Table A6.

[Table A6 here]

Consistent with the evidence from the runs tests, the main finding is that the
null hypothesis that all the explanatory variables are jointly statistically insignificant
(hypothesis #1), i.e., that professional subjects follow a stationary binomial choice
process, can be rejected for only 2 players at the 5 percent level and 4 players at the
10 percent level.
The table also reports the tests of other hypotheses of interest. Hypothesis

#2, which studies whether one’s past choices significantly help to determine current
choices, is rejected for only 2 and 5 players at the 5 and 10 percent levels respectively.
Not surprisingly, it is rejected for some of the players that in the previous table had
either a high or a low number of runs.22 The “reinforcement” hypotheses #3 and
#4, which evaluate whether subjects are more likely to repeat an action in round t
if they won in round t− 1 (β3 > 0, β4 < 0) or less likely (β3 < 0, β4 > 0), only find
support in at most two cases at the 5 percent level. The results for hypothesis #5
support the idea that players believe that his opponent is using a stationary choice
rule in every case except 3 and 4 at the 5 and 10 percent levels. Lastly, the tests of
hypothesis #6 show no effect of contemporaneous opponent’s choice on one’s current
choice for any player except one.

These results are consistent with the previous test of serial independence and
indicate that the choices of most players are unrelated to their own previous choices, to
opponents’ previous choices, and to past outcomes. We thus take the results of the two
tests of randomness as consistent with the hypothesis that the strategies followed by
professional soccer players are serially independent. As such, this evidence represents
the first time that individuals have been found to display statistically significant serial
independence in a strategic game in a laboratory setting. Jointly with the evidence
supporting the hypothesis that subjects equate payoffs across strategies and to the
equilibrium success rates, these results also represent the first time that any subjects
reach a predicted equilibrium in the laboratory in games where players are predicted
to choose probabilistic mixtures. Hence, laboratory findings are entirely reliable for
predicting field behavior for these subjects.

22For row player #5 and column players #3 and #5 the reason is β2 < 0, and for row player #7
and column player #11 it is β2 > 0.
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3.1.2 College Students

The results for this subject pool are presented in a way that parallels the presenta-
tion of the evidence for the professional soccer players. Table B1 presents aggregate
statistics describing the aggregate outcomes of the experiment.

[Table B1 here]

Interestingly, the aggregate data for these players also seem to conform to the
equilibrium predictions quite well. There is a broad consistency of the observed rela-
tive frequencies with those implied by the Minimax model, especially for the diagonal
pairs of choices. Moreover, as in the case of professionals, the observed aggregate win
frequency for the row player (0.7877) is also below one standard deviation away from
the expected value. Despite these appearances, however, a closer look quickly reveals
that observed behavior is far from the Minimax predictions. For instance, observed
marginal frequencies for both the row and column players are substantially different
from the predicted values, somewhere between 4 to 6 standard deviations away from
them.23 An interesting aspect worth noting is that both players choose very similar
frequencies, roughly 0.40 for L and 0.60 for R. This suggests the possibility that
these subjects, contrary to the way professionals appear to perceive the game, may
not appreciate the slight differences in payoffs in the off-diagonal elements of the
payoff matrix, differences that induce players to adopt strategies different from the
opponent.

The rejections of Minimax play are even more apparent in Table B2, which reports
the marginal frequencies for each player and the relative frequencies of choices at the
pair level.

[Table B2 here]

First, the binomial test for conformity with Minimax play indicates that the model
is rejected for 6 and 22 players at the five and ten percent levels respectively. This
excessively high amount of rejections, three and more than five times greater than
those predicted by the equilibrium of the game at those levels, may be taken as an
indication that we are going to find substantial deviations from equilibrium play in the
subsequent tests of the Minimax hypothesis. Indeed, using the absolute frequencies
corresponding to the observed joint choices reported in the table and their associated
Minimax probabilities, a Chi-square test for conformity with Minimax play indicates
that the model is rejected for 6 and 9 pairs at the five and ten percent levels of
significance when we would only expect 1 and 2 rejections, respectively, under the
null hypothesis.

23The Chi-square test for the conformity with Minimax play based on Pearson goodness of fit has
a p-value of 2 × 10−13, which is minuscule compared to professionals (4.8 percent) and decisively
rejects the Minimax model at conventional significance levels.
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The case of pairs #12 and #20 is interesting. Although the marginal frequencies
with which the players choose each action are not statistically different from the
equilibrium strategies, their joint behavior rejects the equilibrium multinomial model.
As can be seen from the data, their joint behavior is highly correlated in that they
tend to choose main diagonal entries too frequently. As we did for professionals,
this aspect is studied further by decomposing the players’ observed behavior into a
mixture effect and a correlation effect. The results are in Table B3.

[Table B3 here]

We find that the average absolute contribution of the mixture effect is extremely
small: the Chi-square statistic is 0.1138, with a probability value that is virtually
one. As to the average absolute contribution of the correlated play effect, the mean
absolute value is 0.0279, with a Chi-square statistic of 22.3481 and a probability
value of 0.3219. Under conventional standards, this p-value is clearly high, so we
may not conclude that correlated play is the dominant determinant of the difference
between observed row-player winning percentages and the Minimax predicted value.
However, it does suggest the possibility that for some college students this might be
a relevant effect. At least, relative to professional soccer players (Chi-square: 3.2344,
p-value: 0.9999), this p-value allow us to suspect that several subjects may deviate
from independence play.

Overall, we take the excessively high amount of rejections we find in these tests
as indicating substantial deviations from equilibrium play. Next we turn to testing
the Minimax predictions more closely.

i. Winning Rates and the Distribution of Play

In Table B4 we test whether the distribution of play we observe is equal to the
equilibrium distribution using the success rates of each action for each player.

[Table B4 here]

Using the absolute frequencies corresponding to each action-outcome combination,
a Chi-square test shows that the Minimax multinomial model is rejected for 9 players
at the five percent significance level and 13 players at the ten percent level. These
rejections vastly exceed the expected number of rejections under the hypothesis of
Minimax play, 2 and 4 respectively. Thus, at the individual level the hypothesis
that scoring probabilities are identical across strategies and equal to the equilibrium
strategies can be rejected for an excessively high number of players at conventional
significance levels.
With regard to aggregate behavior, the sum of the individual test statistics of

each type of player under the null hypothesis is distributed as a χ2 with 60 degrees
of freedom. For the row players the joint test statistic is 108.652 and for the column
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players 113.102, with associated p-values close to zero in both cases. Hence, the null
hypothesis that the data for all players were generated by equilibrium play is strongly
rejected at conventional and non-conventional significance levels.
These results, therefore, are far from equilibrium behavior and highly different

from those obtained with professional soccer players.

ii. The Serial Independence Hypothesis

The second testable implication is that a player should randomize by means of
the same probability distribution at each stage of the game. We implement the same
two tests of serial independence implemented for professional players.

A. First, the results of the runs tests of serial independence shown in Table B5
confirm earlier suspicions.

[Table B5 here]

The null hypothesis of serial independence is rejected for 7 players at the 5 percent
significance level, more than three times the number of expected rejections, and for
13 players at the 10 percent when we would only expect 4 rejections. These findings
indicate that college subjects are not able to generate random sequences. Hence, they
are consistent with an extensive experimental evidence in the literature and drastically
different from the behavior of professional soccer players observed earlier.24 Also
consistent with past evidence is the fact that in most cases the reason is an excessive
number of alternations.

B. The results of the logit equation for each player for the choice of R are shown
in Table B6.

[Table B6 here]

The main finding is that the null hypothesis that college students follow a sta-
tionary binomial choice process in this experiment is rejected for an excessive number
of subjects: 12 players at the 5 percent level and 14 players at the 10 percent level.
Other hypotheses of interest are also frequently rejected. For instance, hypothesis
#2, which tests whether or not one’s past choices contribute to determining current
choices, is rejected for 6 players at the 5 percent level and 8 players at the 10 percent
level. This suggest that a failure to play independently of one’s past choices is an

24As in the case of professionals, we also implemented a KS goodness-of-fit test by constructing a
random draw di from the uniform distribution U

£
F
¡
ri − 1; si¢ , F ¡ri; si¢¤ for each player i, which

under the null hypothesis of serial independence is distributed as a U [0, 1]. After performing ten
thousand trials with such random draws for each player, the average p-value of the KS test statistic is
0.0002 with a standard deviation of 0.0116. Hence, the hypothesis that each of the forty experiments
is serially independent can be rejected.
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important reason behind many subjects’ inability to generate a stationary choice pro-
cess. Consistent with the runs tests, in most of these cases the reason is a significant
preference for alternation (β2 < 0). With regard to the reinforcement hypothesis #3
and #4, we find that reinforcement contributes to the non-stationary choice process
in some but not a very large number of cases as well, while the results for hypothesis
#5 support the idea that 8 players at the 10 percent level do not consider that his
opponent is using a stationary choice rule. The evidence from these four hypothesis,
therefore, shows that for almost half of the sample (19 players) at least one of these
hypothesis is rejected at the 10 percent level. Lastly, hypothesis #6 shows a signifi-
cant effect of contemporaneous opponent’s choice on one’s current choice in precisely
five pairs of players at the 10 percent level.

These results are consistent with the runs tests of serial independence: the choices
of many players are related to their own previous choices, outcomes, and those of the
opponent in various ways, which contribute to generating non-stationary choice pro-
cesses. Consequently, the results of the tests of serial independence decisively indicate
that individuals display statistically significant serial dependence. Together with the
results in the tests of equality of winning probabilities, we can then conclude that the
Minimax model cannot be supported for college students.

3.2 O’Neill Experiment

The differences between professional soccer players and college students are substan-
tial in the penalty kick experiment. Professionals behave consistent with the equi-
librium of the game while college students far from it. In this section we examine a
different zero-sum game in an attempt to study whether the experience that profes-
sional players have accumulated in the field is useful in laboratory situations that do
not resemble any previously encountered situation. We implement the same tests as
in the penalty kick experiment.

3.2.1 Professional Players

Table C1 presents aggregate statistics describing observed relative frequencies for
each pair of moves and each card. Minimax relative frequencies are in parenthesis,
and their standard deviations under the Minimax hypothesis are in brackets. The
bottom panel reports the observed win frequencies for the row player.

[Table C1 here]

These aggregate data seem to conform remarkably well to the equilibrium predic-
tions. In fact, there is a striking consistency of the observed relative frequencies with
those implied by the Minimax model. Relative frequencies for pairs of plays involv-
ing non-jokers are in the neighborhood of 0.04, while relative frequencies for pairs
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involving one joker and for the pair involving the two jokers are in the neighborhood
of 0.08 and 0.16 respectively. The aggregate row player win frequency (0.3945) is less
than one standard deviation away from the expected value (0.40). Also, a Chi-square
test for the conformity with Minimax play based on Pearson goodness of fit indicates
that the Minimax model cannot be rejected at conventional significance levels. It
yields a statistic of 7.873 whose p-value is above ninety percent. As to the marginal
frequencies of actions for the row and column players, they are extremely close to the
Minimax predictions. In every case, they are less than one standard deviation away.

This evidence, however, while highly suggestive, does not mean that Minimax
play can conclusively be supported by the data. Indeed, Brown and Rosenthal (1990)
already found a substantial degree of conformity in O’Neill’s (1987) experiment in the
aggregate data only to find in subsequent tests that the Minimax hypothesis could
not possibly be supported.

Table C2 reports the marginal choice frequencies observed in the data for each
player, and the results of the tests of the Minimax model at the individual player,
pair, and card-player levels for these frequencies.

[Table C2 here]

Minimax play indicates that the multinomial model for all cards chosen by row
players, column players, and for both players should be rejected for 1 pair at the 5
percent level and for 2 pairs at the 10 percent level in each of these three models.
The Minimax binomial model for a given card indicates that we should expect 8 and
16 rejections at these significance levels respectively. As in the penalty experiment,
it is remarkable that in virtually every case these are the precise number of rejections
that are found. Furthermore, this evidence is strikingly dissimilar from Brown and
Rosenthal’s (1990) analysis of O’Neill’s data with college students.

As indicated in the penalty experiment, however, the fact that the marginal fre-
quencies with which players choose each card seem to correspond to the equilibrium
strategies lends only partial support to the model. The reason is that in principle
the same marginal frequencies may be obtained as a result of a correlated strat-
egy. To check for contemporaneous correlation we perform Brown and Rosenthal’s
decomposition of row players’ winning rates into a mixture and a correlated effect.

[Table C3 here]

The results in Table C3 show that the average absolute contribution of both the
mixture and the correlated play effects are extremely small. The Chi-square statistics
for the joint significance of each of these effects are minuscule, with probability values
close to one. These results suggest that professional soccer players do not show
contemporaneous correlation in their choices.

We turn next to a closer examination of the implications of the equilibrium of the
game.
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i. Winning Rates and the Distribution of Play

Table C4 tests the null hypothesis that the success probabilities for both players
are identical across strategies and equal to the equilibrium probabilities. As in Walker
and Wooders (2001) analysis of O’Neill’s data, we aggregate actions 1, 2, and 3 into a
single non-Joker action. We then implement the corresponding χ2 test of conformity
with Minimax play. The tests have three degrees of freedom given that the game being
played is known. In other words, as the success probabilities and choice frequencies
in equilibrium are known, there is no need to estimate any parameter.25 The table
also indicates the rejections that are obtained when the test is implemented for the
individual choices of cards, that is when 1, 2, 3, and J are treated on an individual
basis.

[Table C4 here]

The results show that for the choice of Joker and non-Joker the null hypothesis
is rejected for 3 players at the 5 percent significance level and for 6 players at the 10
percent significance level. The number of rejections when the test is implemented for
the individual cards is 3 and 4 at these levels respectively, which are almost precisely
the number of rejections to be expected according to the null hypothesis.
With respect to whether behavior at the aggregate level can be considered to be

generated from equilibrium play, the test statistic for the Pearson joint test for all
row players is 53.351 with an associated p-value of 0.715, and for all column players
55.122 with an associated p-value of 0.654. Hence, the null hypothesis that the data
for all players were generated by equilibrium play cannot be rejected at conventional
significance levels.

ii. The Serial Independence Hypothesis

Another testable implication is that players’ choices are serially independent. We
implement two tests:
A. Runs Tests. As in Walker and Wooders (2001) this test is implemented for

the choice of Joker and non-Joker cards. Table C5 shows that the null hypothesis of
serial independence is rejected for 2 and 4 players at the 5 and 10 percent significance
levels. According to the theory, this is precisely the number of rejections that we
should expect at these levels.

[Table C5 here]

25In field data as in soccer penalty kicks or in tennis serves, and contrary to laboratory experi-
ments, the underlying game is not known. Hence, the success probabilities for each player must be
estimated by maximum likelihood. Walker and Wooders (2001) test for the equality of two distri-
butions in O’Neills experimental data also using the maximum likelihood estimate for the success
probabilities for each player, rather than the equilibrium rate. Using the equilibrium rates in their
data, however, yields similar results to the ones they report.
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These findings, therefore, also support the hypothesis that professional soccer
players are able to generate random sequences in the laboratory.26

B. Logit equation for each player. To study whether or not past choices
have a role in determining current choices, we estimate the logit equation for each
player suggested by Brown and Rosenthal (1990). The dependent variable is a di-
chotomous indicator of the choice J . The independent variables are first and second
lagged indicators for both players’ past choices, first and second lags for the product
of their choices, and an indicator for the opponent’s current choices. The results are
shown in Table C6.

[Table C6 here]

The main finding is that the null hypothesis that all the explanatory variables
are jointly statistically insignificant (hypothesis #1) can be rejected for relatively
few players at both the 5 and 10 percent levels. The results for hypotheses #2 to
#5 indicate that they are rejected for no more than 3 players at the 5 percent level,
typically row players #2 and #11 and column player #2. At the 10 percent level,
hypothesis #2 is the only one that shows a slightly greater number of rejections,
while the reinforcement of successful actions (hypotheses #3 and #4) is significant
at this level for very few players. Lastly, there is no evidence of correlation with
opponent’s past actions (hypothesis #5) or with opponent’s contemporaneous actions
(hypothesis #6) for any player except for three row players. These results indicate
that the choices of most players are unrelated to their own previous choices and
outcomes, and to opponents’ previous choices and outcomes.

We take the results of these three tests of randomness as consistent with the
hypothesis that the strategies followed by professional soccer players are serially in-
dependent. As such, this class of subjects continues to display statistically significant
serial independence in their choices within a laboratory setting. As indicated in
the penalty kick experiment, this behavior is sharply different from the overwhelm-
ing experimental evidence reported in the psychological and experimental literature
on randomization, which consistently finds that subjects, typically college students,
generate sequences that exhibit negative autocorrelation. The interesting additional
aspect is that, in this case, professionals are involved in a zero-sum game that is en-
tirely different in terms of number of strategies and payoff structure from the penalty
kick experiment or other situation they may have found in the field.

26The KS goodness-of-fit test constructed by performing ten thousand random draws di from the
uniform distribution U

£
F
¡
ri − 1; si¢ , F ¡ri; si¢¤ for each player i, yields an average value of the

p-value of the test statistic that compares the cumulative distribution of the realized values di with
the uniform distribution of 0.420 with a standard deviation of 0.117. Hence, the hypothesis that
each of the forty experiments is serially independent cannot be rejected.
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3.2.2 College Students

In principle, it is conceivable that it is the greater stage payoffs that we offer and the
greater number of repetitions that we undertake in the experiment relative to previous
implementations of the experiment in the literature, and not the field experience of
the subjects, that are causing the consistency with the Minimax hypothesis. Thus,
we turn next to the study of college students under identical circumstances to those
faced by professionals.

The results are presented in Tables D1 to D6 in a way that parallels the pre-
sentation of the empirical evidence for the professional soccer players. They can be
summarized as follows.
We find that the general results in Brown and Rosenthal (1991), Walker and

Wooders (2001) and Shachat (2002) with O’Neill’s experiment are replicated here.
Even though aggregate frequency data does not seem too far from equilibrium behav-
ior, the Minimax hypothesis is decisively rejected in virtually every test we implement.
Observed aggregate row player win percentage is more than one standard deviation
away from the predicted value (Table D1). Observed card, player, and card-player
choices reject the different Minimax multinomial models for all cards, as well as the
Minimax binomial model for a given card, in an excessively large number of cases
(Table D2), and correlated play effect cannot be argued to be the dominant effect at
conventional significance levels (Table D3). Individual Pearson tests for the equality
of winning rates to the equilibrium one are also rejected for a very high number of
subjects; at the aggregate level the joint hypothesis is decisively rejected for all row
players and all column players as well, both when cards are treated as NJ and J,
and when they are treated on an individual basis (Table D4). There is strong evi-
dence that too many players relative to the Minimax predictions exhibit statistically
significant serial dependence in the runs tests (Table D5), in fact about three times
the number of rejections observed for professional players. Finally, the logit equa-
tion for individual players reveals that for 13 players in the sample the hypothesis of
stationary binomial choice process can be rejected at the 10 percent level (Table D6).

As in the penalty kick experiment, these findings are in sharp contrast with those
obtained for professional soccer players. These results also testify to the robustness
of previous findings in the literature. Although we use much greater monetary in-
centives and more repetitions than in O’Neill’s original experiment, and we do find
improvements in the behavior of college students from the perspective of equilibrium
(see Table F in the next section for a comparison), the Minimax model continues to
be rejected decisively. Given that the circumstances of the experiment are identical
for college students and professional players, and that professionals behave consis-
tent with the equilibrium of the game, the results indicate that field experience is
important and does transfer to this zero-sum game as well.
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4 Additional Evidence

The findings that professional soccer players play according to equilibrium both in the
penalty kick and in O’Neill experiments, while college students are far from equilib-
rium behavior in both experiments, contributes to dissecting the possibly fundamental
characteristics of laboratory experiments as a source of predictions for the real world
in the class of strategic games we study. None of the potential drawbacks and lim-
itations associated with the controlled and artificial environment that represents a
laboratory seem to induce professional players to play any differently from the way
they play in the field (in the penalty kick experiment) and from the equilibrium (in
both games).

Additional evidence has been obtained to study various aspects further:

1. We have first studied the robustness of some of the results with smaller samples
of subjects. For instance, in the penalty kick experiment we have used payoffs that are
entirely different from the scoring probabilities occurring in the field. We have also
studied the behavior of professional players where kickers in the soccer field play the
role of goalkeepers in the laboratory and vice versa. Although care should be exercised
here since our sample sizes are smaller, we find that none of these modifications
of the experimental procedures seem to cause any significant changes in the basic
results obtained earlier: professional soccer players continue playing consistent with
the equilibrium predictions while college students do not.27 In some sense these results
may not be surprising. Professional players are involved in several situations in the
soccer field where they must randomize. Yet, few of them are the “designated penalty-
kick taker” for their team, and our sample includes few of those. Sure enough, our
kickers and goalkeepers have been involved in hundreds of penalty kicks throughout
their lives. But it seems likely that it is their general experience randomizing rather
than their specific experience in penalty kick situations what helps them reach the
equilibrium in the laboratory. This is also consistent with the evidence we obtained
for professionals in O’Neill’s experiment as they have never been exposed to that
precise situation.

2. We have also implemented two other tests of time independence:
(i) First, we have considered the test suggested in Shachat (2002), where the

independent variable is the joint realization of a pair of strategies using one and two
lags. Not surprisingly, we find that there is still substantial serial correlation among
standard college students but not among professional and amateur soccer players.
(ii) Second, we have pooled all 40 subjects for each experiment and class of play-

ers and estimated a binary choice dynamic panel data model with predetermined
endogenous variables and unobserved individual heterogeneity. As is known, in fixed-
effect models parameter estimates can be biased and inconsistent when the explana-
tory variables are predetermined as opposed to strictly exogenous (see Arellano and

27These results are available upon request.
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Honoré (2002) for a review).28 Recently, however, Arellano and Carrasco (2003) have
developed a consistent random effects estimator where: (a) explanatory variables are
predetermined but not strictly exogenous, and where (b) individual effects may be
correlated with explanatory variables. Thus, in order to control for the potential effect
of state dependence caused by past choices and outcomes appropriately in our set-
ting, we estimated this semi-parametric, dynamic random-effects panel data model.
The results confirm previous findings. No lagged endogenous variables (past own
and opponent’s choices and outcomes alone or interacted) are significant for profes-
sional and amateur players, while negative autocorrelation and positive reinforcement
significantly characterize the behavior of college students.

3. The important differences among subject pools open up various avenues for
further research. For instance, it may be of interest to study the extent to which field
experience at the professional level is necessary to reach the predicted equilibrium.
As indicated earlier, we have pursued this question by recruiting subjects drawn from
the same pool of college students as the students recruited previously, except that
they were required to be currently playing in one of the official amateur senior regional
leagues, including Tercera Division, described in Section 2.29 Playing in these leagues
is still quite competitive. Amateur teams practice as often as professionals and have
exactly the same 9-month playing schedule. Players in these leagues began playing
soccer as early as those that became professional. Hence, conditional on age, they
have roughly the same years of field experience. They simply are not as skilled as
professional players in the many different aspects of the game.
We implement both the penalty kick experiment and O’Neill’s experiment for

these subjects. In order to conserve space, rather than showing the corresponding
tables, we make them available in an appendix (Palacios-Huerta and Volij, 2006),
and just report the main results of each of the tests. Table E shows the results
for the penalty kick experiment and Table F for O’Neill’s experiment. To facilitate
the comparison of the results, we also include the results obtained with professional
players and college students with no soccer experience presented earlier. In Table F,
in addition, we include the results of Pearson’s tests of equality of winning rates when,
rather than using the equilibrium value, we use its maximum likelihood estimate,30

and the original results of O’Neill’s experiment reported in Brown and Rosenthal
(1990) and Walker and Wooders (2001).

28While in linear models with additive effects the standard response is to consider instrumental-
variables estimates that exploit the lack of correlation between lagged values of the variables and
future errors in first differences, in non-linear models very few results are available. A difficulty is
that the regularity conditions for conditional maximum likelihood estimation of a fixed effects logit
model are not satisfied in the presence of a lagged dependent variable when the error term at t is
not independent of explanatory variables at t− 1.
29There are no statistical differences in the distributions of demographic characteristics such as

age and years of education between these two different pools of college students.
30This is the procedure that Walker and Wooders (2001) follow in their reanalysis of O’Neill’s

data. It implies that the tests at the player level have 1 degree of freedom instead of 3.
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[Tables E and F here]

We find that the behavior of these subjects adheres in many cases almost as closely
as the behavior of professionals to the equilibrium predictions, and sometimes even
slightly better. As such they differ greatly from the way the standard pool of college
students behave.

These results indicate that years of field experience playing soccer, a game that
offers several opportunities to behave strategically in zero-sum situations, are a critical
determinant of behavior in the laboratory.

5 Concluding Remarks

This paper has taken advantage of three distinct features: (i) there is a precisely
defined strategic situation played in the soccer field whose formal structure can be
reproduced in the laboratory, (ii) this situation involves mixed-strategy interaction
between subjects and has a unique individually rational payoff vector, (iii) professional
subjects play in a real life setting according to the equilibrium of this game. These
characteristics are helpful to design a first artefactual field experiment in mixed-
strategy interactions that helps us to isolate the role of “laboratory context” and
that allows us to compare field and laboratory behavior.

We find that field experience transfers from the familiar soccer field to the highly
unfamiliar laboratory when subjects play a game that is formally identical to a game
situation that they find in natural circumstances. Field experience is also valuable
to reach the equilibrium in a zero-sum game previously studied in the literature that
subjects have never faced before.

These results may have theoretical, methodological and cognitive implications:

In terms of the theory, as subjects reach a predicted equilibrium in the laboratory,
the theoretical concept of equilibrium of the game may have greater predictive power
than previously considered, even in artificial settings such as a laboratory.

From a methodological perspective the results are relevant to the extent that
the data that are typically used to inform game theory, and increasingly theoretical
developments in other areas in economics and social sciences as well, often comes
from laboratory environments. In this sense, the insights obtained in the laboratory
with the pool of subjects that we would be interested in studying empirically in the
field are perfectly applicable for predicting field behavior.

Lastly, from a cognitive perspective our findings are consistent with the idea that
skills have been learned unconsciously and are active in the solution of the games
we have studied. In this sense, “the demonstrated capacity of motivated subjects
to find equilibrium outcomes by repeated interaction in market experiments without
cognitive awareness of this capacity” emphasized in Smith (2005) and other authors
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is supported, for the first time to our knowledge, in situations requiring use of mixed
strategies. From this perspective, Camerer, Loewenstein and Prelec (2005) discuss
neurological evidence showing how as subjects gain experience with certain games
(Haier et al, 1992) and situations (Lo and Repin, 2002) “the brain becomes more
streamlined, concentrating in regions that are specialized in processing relevant to
the task ... gradually shifting processing toward regions and specialized systems that
can solve problems automatically and efficiently.” We cannot disregard the idea that
years of field experience in different zero-sum strategic situations, not only in penalty
kicks, have had these effects in professional soccer players. An alternative we cannot
discard either is that those players that became professional were born with greater
aptitude for playing strategic zero-sum games than other subjects.
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Table A1 
 

Relative Frequencies of Choices and Win Percentages 
in Penalty Kick’s Experiment for Professional Players 

 
 
 
 
A. Frequencies 

        

        Column Player   
          Choice    Marginal 
     Frequencies for 
  L R  Row Player: 

 L 0.152 0.182  0.333 
   (0.165) (0.198)  (0.364) 

Row   [0.0068] [0.0073]  [0.0088] 
Player       
Choice R 0.310 0.356  0.667 

   (0.289) (0.347)  (0.636) 
   [0.0083] [0.0087]  [0.0088] 
         

      Marginal 0.462 0.538   
Frequencies for (0.455) (0.545)   
Column Player: [0.009] [0.009]   

 
 
B. Win Percentages  
    

Observed Row Player Win Percentage: 0.7947
Minimax Row Player Win Percentage: 0.7909
Minimax Row Player Win Std. Deviation: 0.0074

 
 
_________________________________________________________ 
Notes: In Panel A numbers in parentheses represent Minimax predicted relative  
frequencies. Numbers in brackets represent standard deviations for observed relative 
frequencies under the Minimax hypothesis. In Panel B, Minimax Row Player Win  
Percentage and Std. Deviation are the mean and the std. deviation of the observed row  
player mean percentage win under the Minimax hypothesis. 

 
 
 



Table A2 

Marginal Frequencies and Action Pair Frequencies in Penalty Kick’s Experiment for Professional Players 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively of the Minimax binomial model for the marginal frequencies  
of the row and column players. In the last column they denote rejections of the joint hypothesis that both players in a pair choose actions  
with the equilibrium frequency. 

 
Marginal 

Frequencies 
 

                       Pair Frequencies  
 

Pair # 
Row 

L 
Column 

L LL LR RL RR χ2  p-value 
1 0.320 0.453 0.140 0.180 0.313 0.367 0.729 
2 0.360   0.380* 0.127 0.233 0.253 0.387 0.305 
3 0.307 0.427 0.127 0.180 0.300 0.393 0.459 
4 0.327 0.460 0.153 0.173 0.307 0.367 0.819 
5 0.327 0.493 0.153 0.173 0.340 0.333 0.568 
6 0.340 0.480 0.140 0.200 0.340 0.320 0.525 
7    0.287** 0.427 0.133 0.153 0.293 0.420 0.190 
8 0.320 0.460 0.100 0.220 0.360 0.320  0.068* 
9 0.307 0.467 0.133 0.173 0.333 0.360 0.479 
10 0.313 0.480 0.167 0.147 0.313 0.373 0.454 
11 0.353 0.480 0.180 0.173 0.300 0.347 0.866 
12   0.427* 0.480 0.193 0.233 0.287 0.287 0.359 
13 0.367 0.473 0.167 0.200 0.307 0.327 0.952 
14 0.327 0.447 0.153 0.173 0.293 0.380 0.782 
15 0.340    0.553** 0.173 0.167 0.380 0.280   0.071* 
16 0.320 0.473 0.160 0.160 0.313 0.367 0.659 
17 0.347 0.467 0.200 0.147 0.267 0.387 0.256 
18 0.327 0.440 0.140 0.187 0.300 0.373 0.791 
19 0.327 0.440 0.140 0.187 0.300 0.373 0.791 
20 0.327 0.460 0.153 0.173 0.307 0.367 0.819 



 
 

Table A3 
 

Observed and Expected Win Percentages under the Independence Hypothesis 
for Professional Players 

 
 

  Observed  Expected Mixture Correlated 
Pair #  Row Win % Row Win % Effect Play Effect 

1 0.8000 0.7909 0.0000 0.0091 
2 0.8000 0.7908 -0.0001 0.0092 
3 0.7867 0.7900 -0.0009 -0.0034 
4 0.7867 0.7910 0.0001 -0.0044 
5 0.8000 0.7917 0.0008 0.0083 
6 0.7933 0.7912 0.0003 0.0021 
7 0.8067 0.7897 -0.0012 0.0169 
8 0.7800 0.7910 0.0001 -0.0110 
9 0.7933 0.7913 0.0004 0.0020 
10 0.8067 0.7916 0.0007 0.0151 
11 0.7733 0.7911 0.0001 -0.0177 
12 0.8200 0.7900 -0.0009 0.0300 
13 0.7667 0.7909 0.0000 -0.0242 
14 0.8000 0.7907 -0.0002 0.0093 
15 0.7933 0.7922 0.0013 0.0011 
16 0.8067 0.7914 0.0005 0.0153 
17 0.7933 0.7910 0.0001 0.0023 
18 0.7867 0.7906 -0.0003 -0.0039 
19 0.7867 0.7906 -0.0003 -0.0039 
20 0.8133 0.7910 0.0001 0.0223 

Mean Absolute Value: 0.0004 0.0106 
Chi-Square Statistic:   0.0059 3.2344 
Chi-Square Probability Value:   0.9999 0.9999 

 
Notes: Expected winning percentages assume independent play with mixtures observed over all 150 
games for each pair. Mixture effects are defined as the difference between the values in column 2 and 
0.7909. Correlation effects are defined as the difference between columns 1 and 2. 
 
 
 
 



Table A4 - Testing that Professional Players Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
      
  L R Pearson  

Pair # Player Success Fail Success Fail statistic p-value 
1 Row 0.260 0.060 0.540 0.140 1.360 0.715 
  Column 0.080 0.373 0.120 0.427 0.491 0.921 
2 Row 0.300 0.060 0.500 0.140 0.645 0.886 
 Column 0.047 0.333 0.153 0.467 6.441  0.092* 
3 Row 0.233 0.073 0.553 0.140 2.351 0.503 
  Column 0.100 0.327 0.113 0.460 0.774 0.856 
4 Row 0.247 0.080 0.540 0.133 1.306 0.728 
 Column 0.107 0.353 0.107 0.433 0.302 0.960 
5 Row 0.280 0.047 0.520 0.153 2.278 0.517 
 Column 0.100 0.393 0.100 0.407 0.989 0.804 
6 Row 0.280 0.060 0.513 0.147 0.776 0.855 
 Column 0.080 0.400 0.127 0.393 1.755 0.625 
7 Row 0.207 0.080 0.600 0.113 6.673  0.083* 
 Column 0.093 0.333 0.100 0.473 1.161 0.762 
8 Row 0.273 0.047 0.507 0.173 3.640 0.303 
 Column 0.113 0.347 0.107 0.433 0.670 0.880 
9 Row 0.233 0.073 0.560 0.133 2.508 0.474 
 Column 0.113 0.353 0.093 0.440 1.134 0.769 

10 Row 0.247 0.067 0.560 0.127 2.051 0.562 
 Column 0.093 0.387 0.100 0.420 0.617 0.892 

11 Row 0.260 0.093 0.513 0.133 1.018 0.797 
 Column 0.107 0.373 0.120 0.400 0.683 0.877 

12 Row 0.327 0.100 0.493 0.080 5.132 0.162 
 Column 0.073 0.407 0.107 0.413 1.857 0.603 

13 Row 0.287 0.080 0.480 0.153 0.657 0.883 
 Column 0.100 0.373 0.133 0.393 1.112 0.774 

14 Row 0.247 0.080 0.553 0.120 1.843 0.606 
 Column 0.080 0.367 0.120 0.433 0.426 0.935 

15 Row 0.260 0.080 0.533 0.127 0.743 0.863 
 Column 0.093 0.460 0.113 0.333 7.563  0.056* 

16 Row 0.253 0.067 0.553 0.127 1.578 0.664 
 Column 0.073 0.400 0.120 0.407 1.687 0.640 

17 Row 0.253 0.093 0.540 0.113 2.043 0.564 
 Column 0.120 0.347 0.087 0.447 2.119 0.548 

18 Row 0.253 0.073 0.533 0.140 0.950 0.813 
 Column 0.087 0.353 0.127 0.433 0.337 0.953 

19 Row 0.260 0.067 0.527 0.147 0.942 0.815 
 Column 0.073 0.367 0.140 0.420 1.696 0.638 

20 Row 0.260 0.067 0.553 0.120 1.509 0.680 
 Column 0.093 0.367 0.093 0.447 0.671 0.880 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively. 



 
Table A5 

Runs Tests in Penalty Kick’s Experiment 
for Professional Players 

 
   Choices Runs     

Pair Player R L ri F(ri-1) F(ri) 
1 Row 102 48 72 0.840 0.877 
  Column 82 68 69 0.129 0.167 
2 Row 96 54 74 0.727 0.779 
 Column 93 57 72 0.488 0.554 

3 Row 104 46 64 0.404 0.469 
  Column 86 64 82 0.884 0.913 
4 Row 101 49 69 0.604 0.682 
 Column 81 69 75 0.433 0.499 

5 Row 101 49 79   0.985** 0.992 
  Column 76 74 80 0.717 0.770 
6 Row 99 51 74 0.830 0.869 
 Column 78 72 89   0.981** 0.987 

7 Row 107 43 53 0.025  0.041* 
  Column 86 64 72 0.315 0.375 
8 Row 102 48 69 0.655 0.730 
 Column 81 69 69 0.124 0.160 

9 Row 104 46 63 0.323 0.404 
  Column 80 70 67 0.066 0.089 

10 Row 103 47 58 0.065 0.089 
 Column 78 72 85 0.922 0.943 

11 Row 97 53 66 0.235 0.289 
  Column 78 72 69 0.113 0.147 

12 Row 86 64 68 0.125 0.162 
 Column 78 72 77 0.541 0.605 

13 Row 95 55 71 0.484 0.559 
  Column 79 71 80 0.729 0.781 

14 Row 101 49 72 0.802 0.845 
 Column 83 67 63 0.018  0.027* 

15 Row 99 51 68 0.441 0.507 
  Column 67 83 68 0.103 0.135 

16 Row 102 48 67 0.509 0.592 
 Column 79 71 74 0.353 0.416 

17 Row 98 52 71 0.605 0.679 
  Column 80 70 72 0.246 0.301 

18 Row 101 49 62 0.156 0.199 
 Column 84 66 71 0.231 0.285 

19 Row 101 49 68 0.539 0.604 
  Column 84 66 78 0.666 0.724 

20 Row 101 49 75 0.918 0.947 
  Column 81 69 71 0.204 0.254 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table A6 
 

Results of Significance Tests from Logit Equations for the Choice of Choice of Right (R) 
for Professional Players 

 
Estimating Equation:  R  =  G [β1 + β2 lag(R) + β3 lag(R) lag(W) + β4 lag(L) lag(W) + β5 lag(R*) + β6 R*] 

 
 
       

Null Hypothesis                      Player Pairs Whose Behavior Allows Rejection of the Null Hypothesis at the:         
 
            5 percent level        10 percent level   
 

(1).  β2 = β3 = β4 = β5 = β6 = 0  Row:    -  11    
       Column:   3,8  3,6,8     
      

(2).  β2 = 0    Row:    5  5,7   
       Column:   5  3,5,11 
  

(3).  β3 = 0    Row:    -  - 
       Column:   -  5 
 

(4).  β4 = 0    Row:    11  11 
       Column:   3  3,9 
 

(5).  β5 = 0    Row:    17  17 
       Column:   8,17  8,6,17 
 

(6).  β6 = 0    Row:    8  8 
       Column:   -  - 
 
Notes: The symbols R and R* denote the choice of “right” by a player and by his opponent respectively. The symbol W denotes “win” by a player. The 
term “lag” refers to the previous choice or outcome in the ordered sequence. The function G[x] denotes the function exp(x)/[1+exp(x)]. Rejections are 
based on likelihood-ratio tests. 



Table B1 
 

Relative Frequencies of Choices and Win Percentages 
in Penalty Kick’s Experiment for College Students 

 
 
A. Frequencies 

 
        

        Column Player   
          Choice    Marginal 
     Frequencies for 
  L R  Row Player: 

 L 0.168 0.233   0.401 
   (0.165) (0.198)   (0.364) 

Row   [0.0068] [0.0073]   [0.0088] 
Player        
Choice R 0.228 0.370   0.599 

   (0.289) (0.347)   (0.636) 
   [0.0083] [0.0087]   [0.0088] 
        

      Marginal 0.397 0.603   
Frequencies for (0.455) (0.545)   
Column Player: [0.009] [0.009]   

 
 
B. Win Percentages  
    

Observed Row Player Win Percentage: 0.7877
Minimax Row Player Win Percentage: 0.7909
Minimax Row Player Win Std. Deviation: 0.0074

 
 
 
_________________________________________________________ 
Notes: Numbers in parentheses represent Minimax predicted relative frequencies.  
Numbers in brackets represent standard deviations for observed relative frequencies  
under the Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage  
and Std. Deviation are the mean and the std. deviation of the observed row player  
mean percentage win under the Minimax hypothesis. 
 

 
 
 



 
Table B2 

Marginal Frequencies and Action Pair Frequencies in Penalty Kick’s Experiment for College Students 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes:  ** and * denote rejections at the 5 and 10 percent levels respectively of the Minimax binomial model for the marginal frequencies  
of the row and column players. In the last column they denote rejections of the joint hypothesis that both players in a pair choose actions  
with the equilibrium frequency.

 
Marginal 

Frequencies 
 

                       Pair Frequencies  
 

Pair # 
Row 

L 
Column 

L LL LR RL RR χ2  p-value 
1 0.360   0.387* 0.147 0.213 0.240 0.400 0.399 
2  0.427*   0.387* 0.160 0.267 0.227 0.347 0.134 
3  0.427*   0.387* 0.160 0.267 0.227 0.347 0.134 
4  0.427*  0.433 0.173 0.253 0.260 0.313 0.350 
5 0.413   0.387* 0.167 0.247 0.220 0.367 0.220 
6 0.413   0.387* 0.147 0.267 0.240 0.347 0.164 
7   0.427*  0.407 0.207 0.220 0.200 0.373   0.096* 
8 0.407   0.387* 0.140 0.267 0.247 0.347 0.168 
9   0.427* 0.393 0.187 0.240 0.207 0.367 0.143 
10 0.380    0.367** 0.133 0.247 0.233 0.387 0.172 
11   0.427*  0.480 0.167 0.260 0.313 0.260   0.091* 
12 0.420  0.400 0.213 0.207 0.187 0.393    0.036** 
13   0.427*  0.393 0.233 0.193 0.160 0.413    0.002** 
14    0.287**  0.460 0.140 0.147 0.320 0.393 0.260 
15    0.220**  0.440 0.100 0.120 0.340 0.440    0.004** 
16    0.460**     0.300** 0.120 0.340 0.180 0.360    0.000** 
17   0.427*     0.367** 0.160 0.267 0.207 0.367  0.064* 
18 0.407    0.387* 0.153 0.253 0.233 0.360 0.250 
19   0.427*  0.393 0.233 0.193 0.160 0.413    0.002** 
20 0.420  0.393 0.227 0.193 0.167 0.413    0.004** 



 
 
 

Table B3 

Observed and Expected Win Percentages under the Independence Hypothesis 
for College Students 

 
  Observed  Expected Mixture Correlated 

Pair #  Row Win % Row Win % Effect Play Effect 
1 0.8333 0.7908 -0.0001 0.0426 
2 0.7867 0.7933 0.0024 -0.0066 
3 0.7867 0.7933 0.0024 -0.0066 
4 0.7867 0.7916 0.0007 -0.0050 
5 0.7333 0.7928 0.0019 -0.0594 
6 0.8200 0.7928 0.0019 0.0272 
7 0.7733 0.7926 0.0017 -0.0192 
8 0.7933 0.7925 0.0016 0.0008 
9 0.7733 0.7930 0.0021 -0.0197 
10 0.8000 0.7917 0.0008 0.0083 
11 0.8467 0.7900 -0.0009 0.0566 
12 0.7267 0.7926 0.0017 -0.0659 
13 0.7267 0.7930 0.0021 -0.0664 
14 0.8067 0.7911 0.0002 0.0155 
15 0.8133 0.7898 -0.0011 0.0236 
16 0.8200 0.7991 0.0082 0.0209 
17 0.7733 0.7940 0.0030 -0.0206 
18 0.8267 0.7925 0.0016 0.0342 
19 0.7867 0.7930 0.0021 -0.0064 
20 0.7400 0.7928 0.0019 -0.0528 

Mean Absolute Value: 0.0019 0.0279 
Chi-Square Statistic:   0.1139 22.3481 
Chi-Square Probability Value:   0.9999 0.3219 

 
Notes: Expected winning percentages assume independent play with mixtures observed over all 150 
games for each pair. Mixture effects are defined as the difference between the values in column 2 and 
0.7909. Correlation effects are defined as the difference between columns 1 and 2. 



Table B4 - Testing that College Students Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
      
  L R Pearson  

Pair # Player Success Fail Success Fail statistic p-value 
1 Row 0.313 0.047 0.520 0.120 2.322 0.508 
  Column 0.053 0.333 0.113 0.500 4.668 0.198 
2 Row 0.360 0.067 0.427 0.147 4.866 0.182 
 Column 0.107 0.280 0.107 0.507 4.892 0.180 

3 Row 0.353 0.073 0.433 0.140 3.781 0.286 
  Column 0.060 0.327 0.153 0.460 4.702 0.195 
4 Row 0.360 0.067 0.427 0.147 4.866 0.182 
 Column 0.093 0.340 0.120 0.447 0.291 0.962 

5 Row 0.293 0.120 0.440 0.147 5.234 0.155 
 Column 0.120 0.267 0.147 0.467 6.411  0.093* 

6 Row 0.367 0.047 0.453 0.133 5.706 0.127 
 Column 0.067 0.320 0.113 0.500 3.559 0.313 

7 Row 0.327 0.100 0.447 0.127 2.931 0.402 
 Column 0.107 0.300 0.120 0.473 2.348 0.503 

8 Row 0.347 0.060 0.447 0.147 3.491 0.322 
 Column 0.053 0.333 0.153 0.460 5.345 0.148 

9 Row 0.340 0.087 0.433 0.140 3.168 0.366 
 Column 0.120 0.273 0.107 0.500 5.789 0.122 

10 Row 0.307 0.073 0.493 0.127 0.280 0.964 
 Column 0.053 0.313 0.147 0.487 6.096 0.107 

11 Row 0.387 0.040 0.460 0.113 8.677     0.034** 
 Column 0.060 0.420 0.093 0.427 4.037 0.257 

12 Row 0.300 0.120 0.427 0.153 6.108 0.106 
 Column 0.140 0.260 0.133 0.467 8.243    0.041** 

13 Row 0.293 0.133 0.433 0.140 8.008    0.046** 
 Column 0.147 0.247 0.127 0.480       10.549    0.014** 

14 Row 0.207 0.080 0.600 0.113 6.673   0.083* 
 Column 0.093 0.367 0.100 0.440 0.311  0.958 

15 Row 0.173 0.047 0.640 0.140       14.135     0.003** 
 Column 0.047 0.393 0.140 0.420 5.102  0.164 

16 Row 0.373 0.087 0.447 0.093 6.791   0.079* 
 Column 0.060 0.240 0.120 0.580       15.620    0.001** 

17 Row 0.320 0.107 0.453 0.120 3.335 0.343 
 Column 0.120 0.247 0.107 0.527 9.523    0.023** 

18 Row 0.367 0.040 0.460 0.133 6.381  0.094* 
 Column 0.060 0.327 0.113 0.500 4.025 0.259 

19 Row 0.347 0.080 0.440 0.133 3.045 0.385 
 Column 0.093 0.300 0.120 0.487 2.590 0.459 

20 Row 0.280 0.140 0.460 0.120 8.854    0.031** 
 Column 0.140 0.253 0.120 0.487 9.002    0.029** 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively. 



 
Table B5 

Runs Tests in Penalty Kick’s Experiment 
for College Students 

 
   Choices Runs     

Pair Player R L ri F(ri-1) F(ri) 
1 Row 96 54 69 0.383 0.457 
  Column 92 58 61 0.022 0.033* 
2 Row 86 64 90   0.995** 0.997 
 Column 92 58 70 0.324 0.386 

3 Row 86 64 65 0.049 0.069 
  Column 92 58 91   0.999** 1.000 
4 Row 86 64 77 0.637 0.699 
 Column 85 65 82 0.873 0.904 

5 Row 88 62 78 0.737 0.788 
  Column 92 58 78 0.823 0.863 
6 Row 88 62 72 0.352 0.415 
 Column 92 58 71 0.386 0.456 

7 Row 86 64 65 0.049 0.069 
  Column 89 61 66 0.091 0.121 
8 Row 89 61 84  0.958* 0.971 
 Column 92 58 58 0.006   0.009** 

9 Row 86 64 79 0.754 0.804 
  Column 91 59 80 0.883 0.913 

10 Row 93 57 82  0.958* 0.970 
 Column 95 55 66 0.182 0.229 

11 Row 86 64 76 0.574 0.637 
  Column 78 72 69 0.113 0.147 

12 Row 87 63 63 0.026  0.038* 
 Column 90 60 85    0.976** 0.984 

13 Row 86 64 68 0.125 0.162 
  Column 91 59 88    0.995** 0.997 

14 Row 107 43 82   0.999** 0.999 
 Column 81 69 66 0.049 0.068 

15 Row 117 33 67   0.999** 0.999 
  Column 84 66 82 0.863 0.896 

16 Row 81 69 73 0.309 0.369 
 Column 105 45 70 0.863 0.896 

17 Row 86 64 74 0.441 0.507 
  Column 95 55 69 0.348 0.419 

18 Row 89 61 84  0.958* 0.971 
 Column 92 58 83  0.963* 0.976 

19 Row 86 64 76 0.574 0.637 
  Column 91 59 76 0.692 0.747 

20 Row 87 63 72 0.332 0.394 
  Column 91 59 81 0.913 0.938 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table B6 
 

Results of Significance Tests from Logit Equations for the Choice of Choice of Right (R) 
for College Students 

 
Estimating Equation:  R  =  G [β1 + β2 lag(R) + β3 lag(R) lag(W) + β4 lag(L) lag(W) + β5 lag(R*) + β6 R*] 

 
 
       
Null Hypothesis                  Player Pairs Whose Behavior Allows Rejection of the Null Hypothesis at the:             
 
              5 percent level          10 percent level  

(1).  β2 = β3 = β4 = β5 = β6 = 0 Row:   11,12,13,14,15,19,20   2,11,12,13,14,15,19,20 
    Column:  3,9,12,13,20    3,9,12,13,19,20 
     
(2).  β2 = 0   Row:   2,3,10,14,15    2,3,7,10,14,15 
    Column:  13     13,20 
  
(3).  β3 = 0   Row:   12     12 
    Column:  -     - 
 
(4).  β4 = 0   Row:   -     6 
    Column:  9,13     4,9,13,20    
 
(5).  β5 = 0   Row:   11,13     1,9,11,13 
    Column:  17     11,17,18 
 
(6).  β6 = 0   Row:   12,13,19,20    7,11,12,13,19,20 
    Column:  12,13     7,11,12,13,19,20 
 
Notes: The symbols R and R* denote the choice of “right” by a player and by his opponent respectively. The symbol W denotes “win.” The term “lag” 
refers to the previous choice or outcome in the ordered sequence. The function G[x] denotes the function exp(x)/[1+exp(x)]. Rejections are based on 
likelihood-ratio tests. 



Table C1 
 

Relative Frequencies of Card Choices in O’Neill’s Experiment 
Professional Players 

 
 
 
A. Frequencies  

 
Column Player Choice           Marginal Frequencies 

       for 
  1 2 3 J  Row Player: 

 1 0.037 0.042 0.039 0.083  0.201 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 2 0.042 0.038 0.044 0.079  0.203 
Row  (0.040) (0.040) (0.040) (0.080)  (0.200) 
Player  [0.003] [0.003] [0.003] [0.004]  [0.006] 
Choice         
 3 0.038 0.037 0.040 0.083  0.198 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 J 0.084 0.082 0.081 0.153  0.398 
  (0.080) (0.080) (0.080) (0.160)  (0.400) 
  [0.004] [0.004] [0.004]  [0.006]  [0.008] 
Marginal 
Frequencies 0.200 0.198 0.204 0.398   
For Column (0.200) (0.200) (0.200) (0.400)   
Player:  [0.006] [0.006] [0.006] [0.008]   
        

 
B. Win Percentages  
   Observed Row Player Win Percentage: 0.3945 
   Minimax Row Player Win Percentage: 0.4000 
   Minimax Row Player Win Std. Deviation: 0.0077 
 
____________________________________________________________________ 
Notes: In Panel A, numbers in parentheses represent Minimax predicted relative frequencies, and 
numbers in brackets represent standard deviations for observed relative frequencies under the 
Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage and Std. Deviation are the 
mean and the std. deviation of the observed row player mean percentage win under the Minimax 
hypothesis. 



Table C2 

Relative Frequencies of Card Choices in O’Neill’s Experiment by Player Pair 
Professional Players 

 
Notes: The pairs of capital letters denote rejection of the Minimax binomial model for a given card (1,2,3,J) for a player (R,C). 
a denotes rejection of Minimax multinomial model for all cards chosen by the row player based on Pearson statistic and χ2(3). 
b denotes rejection of Minimax multinomial model for all cards chosen by the column player based on Pearson statistic and χ2(3). 
c denotes rejection of Minimax multinomial model for all cards chosen by both players based on Pearson statistic and χ2(6). 

 

Row Player (R) Choice  Column Player (C) Choice 
 Rejection of      

Minimax models 
Pair # 1 2 3 J 1 2 3 J at 5%:  at 10%: 

1 0.190 0.225 0.290 0.295 0.195 0.185 0.210 0.410 a,c,R3,RJ a,c,R3,RJ 
2 0.205 0.215 0.245 0.335 0.200 0.205 0.250 0.345 RJ R3,RJ,C3,CJ 
3 0.210 0.195 0.200 0.395 0.195 0.175 0.205 0.425    
4 0.215 0.205 0.180 0.400 0.145 0.185 0.225 0.445 C1 C1 
5 0.180 0.195 0.205 0.420 0.200 0.195 0.210 0.395    
6 0.210 0.205 0.185 0.400 0.205 0.185 0.205 0.405    
7 0.215 0.215 0.130 0.440 0.205 0.190 0.205 0.400 R3 R3 
8 0.195 0.215 0.195 0.395 0.225 0.150 0.205 0.420  C2 
9 0.185 0.195 0.215 0.405 0.205 0.180 0.205 0.410    
10 0.175 0.180 0.170 0.475 0.195 0.195 0.215 0.395 RJ RJ 
11 0.205 0.190 0.170 0.435 0.250 0.200 0.205 0.345  C1,CJ 
12 0.200 0.200 0.195 0.405 0.195 0.200 0.205 0.400    
13 0.215 0.185 0.195 0.405 0.195 0.215 0.190 0.400    
14 0.185 0.185 0.205 0.425 0.205 0.290 0.195 0.310 b,c,C2,CJ b,c,C2,CJ 
15 0.215 0.200 0.170 0.415 0.210 0.185 0.200 0.405    
16 0.205 0.195 0.195 0.405 0.195 0.165 0.175 0.465  CJ 
17 0.205 0.230 0.190 0.375 0.225 0.215 0.205 0.355    
18 0.210 0.195 0.180 0.415 0.205 0.245 0.210 0.340  C2,CJ 
19 0.205 0.220 0.235 0.340 0.170 0.205 0.175 0.450  RJ 
20 0.195 0.210 0.200 0.395 0.185 0.205 0.180 0.430     



 
 
 

Table C3 
 

Observed and Expected Win Percentages under the Independence Hypothesis 
 
 

  Observed  Expected Mixture Correlated 
Pair #  Row Win % Row Win % Effect Play Effect 

1 0.3400 0.3973 -0.0027 -0.0573 
2 0.3450 0.4048 0.0048 -0.0598 
3 0.3950 0.3997 -0.0003 -0.0047 
4 0.4150 0.4014 0.0014 0.0136 
5 0.4000 0.3997 -0.0003 0.0003 
6 0.4000 0.4001 0.0001 -0.0001 
7 0.4000 0.4004 0.0004 -0.0004 
8 0.4050 0.4007 0.0007 0.0043 
9 0.4000 0.4000 0.0000 0.0000 
10 0.3900 0.3995 -0.0005 -0.0095 
11 0.4100 0.3961 -0.0040 0.0140 
12 0.4050 0.4000 0.0000 0.0050 
13 0.4000 0.4003 0.0003 -0.0003 
14 0.4200 0.3970 -0.0031 0.0231 
15 0.3900 0.4000 0.0000 -0.0100 
16 0.3950 0.4004 0.0004 -0.0054 
17 0.3900 0.4017 0.0017 -0.0117 
18 0.4050 0.3986 -0.0014 0.0064 
19 0.3950 0.3949 -0.0051 0.0001 
20 0.3900 0.3996 -0.0004 -0.0096 

Mean Absolute Value: 0.0014 0.0118 
Chi-Square Statistic:    0.0747 6.9422 
Chi-Square Probability Value:    0.9999 0.9969 

 
Notes: Expected winning percentages assume independent play with mixtures observed over all 200 
games for each pair. Mixture effects are defined as the difference between the values in column 2 and 
0.40. Correlation effects are defined as the difference between columns 1 and 2. 
 
 
 



Table C4 - Testing that Professional Players Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
  Mixtures Win Rates   

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-value 
1 R 0.295 0.705 0.407 0.312 14.535       0.002** ‡
  C 0.410 0.590 0.707 0.627 4.472 0.215 
2 R 0.335 0.665 0.403 0.316 7.878      0.049** ‡
 C 0.345 0.655 0.609 0.679 6.295  0.098*  

3 R 0.395 0.605 0.367 0.413 0.462 0.927 
  C 0.425 0.575 0.659 0.565 2.378 0.498 
4 R 0.400 0.600 0.388 0.433 0.608 0.895 
 C 0.445 0.555 0.652 0.532 4.795       0.187    †

5 R 0.420 0.580 0.429 0.379 0.833 0.841 
 C 0.395 0.605 0.544 0.636 1.701 0.637 

6 R 0.400 0.600 0.388 0.408 0.087 0.993 
 C 0.405 0.595 0.617 0.588 0.191 0.979 

7 R 0.440 0.560 0.352 0.438 2.865 0.413 
 C 0.400 0.600 0.613 0.592 0.087 0.993 

8 R 0.395 0.605 0.456 0.372 1.431 0.698 
 C 0.420 0.580 0.571 0.612 0.701 0.873 

9 R 0.405 0.595 0.358 0.429 1.024 0.795 
 C 0.410 0.590 0.646 0.568 1.337 0.720 

10 R 0.475 0.525 0.358 0.419 5.660 0.129 
 C 0.395 0.605 0.570 0.636 0.993 0.803 

11 R 0.435 0.565 0.368 0.442 2.229 0.526 
 C 0.345 0.655 0.536 0.618 3.729 0.292 

12 R 0.405 0.595 0.383 0.420 0.323 0.956 
 C 0.400 0.600 0.613 0.583 0.191 0.979 

13 R 0.405 0.595 0.420 0.387 0.243 0.970 
 C 0.400 0.600 0.575 0.617 0.347 0.951 

14 R 0.425 0.575 0.353 0.470 3.576 0.311 
 C 0.310 0.690 0.516 0.609 8.208       0.042** ‡

15 R 0.415 0.585 0.373 0.402 0.441 0.932 
 C 0.405 0.595 0.617 0.605 0.135 0.987 

16 R 0.405 0.595 0.420 0.378 0.389 0.943 
 C 0.465 0.535 0.634 0.579 4.222 0.238 

17 R 0.375 0.625 0.387 0.392 0.608 0.895 
 C 0.355 0.645 0.592 0.620 1.941 0.585 

18 R 0.415 0.585 0.301 0.479 6.628  0.085* 
 C 0.340 0.660 0.632 0.576 3.608 0.307 

19 R 0.340 0.660 0.412 0.386 3.146 0.370 
 C 0.450 0.550 0.689 0.536 7.118  0.068* 

20 R 0.395 0.605 0.367 0.405 0.385 0.943 
 C 0.430 0.570 0.663 0.570 2.670 0.445 

 
Notes:    ** and * denote rejections at the 5 and 10 percent levels respectively.  ‡ and † denote the 
players for whom rejections at the 5 and 10 percent levels of the tests of equality of winning proba-
bilities to the equilibrium rate are also found when the four cards are treated individually.



 
Table C5  

Runs Tests in O’Neill’s Experiment 
Professional Players 

 
   Choices Runs     

Pair Player Joker Non-Joker ri F(ri-1) F(ri) 
1 R 59 141 90 0.821 0.856 
  C 82 118 88 0.067 0.087 
2 R 67 133 94 0.707 0.754 
 C 69 131 92 0.508 0.564 

3 R 79 121 90 0.147 0.182 
  C 85 115 100 0.543 0.599 
4 R 80 120 98 0.530 0.586 
 C 89 111 115   0.983** 0.988 

5 R 84 116 94 0.236 0.283 
  C 79 121 96 0.436 0.493 
6 R 80 120 110  0.968* 0.977 
 C 81 119 95 0.334 0.391 

7 R 88 112 89 0.056 0.074 
  C 80 120 100 0.644 0.696 
8 R 79 121 94 0.324 0.377 
 C 84 116 102 0.672 0.722 

9 R 81 119 103 0.773 0.816 
  C 82 118 91 0.143 0.180 

10 R 95 105 98 0.322 0.375 
 C 79 121 98 0.554 0.610 

11 R 87 113 107 0.850 0.882 
  C 69 131 97 0.786 0.833 

12 R 81 119 91 0.155 0.194 
 C 80 120 100 0.644 0.696 

13 R 81 119 93 0.235 0.284 
  C 80 120 93 0.252 0.303 

14 R 85 115 89 0.068 0.090 
 C 62 138 87 0.488 0.563 

15 R 83 117 101 0.635 0.690 
  C 81 119 99 0.563 0.622 

16 R 81 119 114    0.992** 0.994 
 C 93 107 108 0.840 0.873 

17 R 75 125 97 0.601 0.662 
  C 71 129 101 0.889 0.918 

18 R 83 117 98 0.465 0.521 
 C 68 132 78 0.019  0.027* 

19 R 68 132 90 0.422 0.478 
  C 90 110 96 0.260 0.308 

20 R 79 121 96 0.436 0.493 
  C 86 114 90 0.084 0.108 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table C6 
 

Results of Significance Tests from Logit Equations for the Choice of a Joker Card 
Professional Players 

 
Estimating Equation:  J  =  G[a0 + a1lag(J) + a2lag2(J) + b0J* + b1lag(J*) + b2lag2(J*) + c1lag (J)lag(J*) + c2lag2(J*)lag2(J)] 

 
 
       

Null Hypothesis                              Player Pairs Whose Behavior Allows Rejection of the Null Hypothesis at:         
 
                  5 percent level            10 percent level  

(1).  a1 = a2 = b0 = b1 = b2 = c1= c2 = 0 Row:   2,5,10,14  2,5,10,11,14 
       Column:  2,16   2,16 
       

(2).  a1 = a2 = 0    Row:   1,2,5   1,2,3,5,8,14,17 
       Column:  2,9,16   2,9,16 
  

(3).  b1 = b2 = c1= c2 = 0   Row:   2,11,17   2,10,11,17 
       Column:  2   2,13,18 
 

(4).  c1= c2 = 0    Row:   2,11   2,11,18 
       Column:  2   2,13 
 

(5).  b1 = b2 =  0    Row:   2,11,13   2,11,13 
       Column:  -   - 
 

(6).  b0 = 0    Row:   -   - 
       Column:  -   - 
 
 
Notes: The symbols J and J* denote the choice of a joker card by a player and by his opponent respectively. The terms “lag” and “lag2” refer to the 
strategies previously followed in the ordered sequence. The function G[x] denotes the function exp(x)/[1+exp(x)]. Rejections are based on likelihood-
ratio tests. 



Table D1 
 

Relative Frequencies of Card Choices in O’Neill’s Experiment 
College Students 

 
 
 
A. Frequencies  

Column Player Choice                Marginal Frequencies 
       for 
  1 2 3 J  Row Player: 

 1 0.045 0.042 0.040 0.079   0.205 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 2 0.044 0.046 0.038 0.080   0.207 
Row  (0.040) (0.040) (0.040) (0.080)  (0.200) 
Player  [0.003] [0.003] [0.003] [0.004]  [0.006] 
Choice         
 3 0.042 0.034 0.046 0.075   0.196 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 J 0.076 0.084 0.078 0.154   0.392 
  (0.080) (0.080) (0.080) (0.160)  (0.400) 
  [0.004] [0.004] [0.004] [0.006]  [0.008] 
Marginal 
Frequencies 0.206 0.205 0.202 0.387    
For Column (0.200) (0.200) (0.200) (0.400)   
Player:  [0.006] 0.006 [0.006] [0.008]   
        

 
 
B. Win Percentages  
   Observed Row Player Win Percentage: 0.3915 
   Minimax Row Player Win Percentage: 0.4000 
   Minimax Row Player Win Std. Deviation: 0.0077 

 
____________________________________________________________________ 
Notes: In Panel A, numbers in parentheses represent Minimax predicted relative frequencies, and 
numbers in brackets represent standard deviations for observed relative frequencies under the 
Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage and Std. Deviation are the 
mean and the std. deviation of the observed row player mean percentage win under the Minimax 
hypothesis. 
 
 
 



Table D2 

Relative Frequencies of Card Choices in O’Neill’s Experiment by Player Pair 
College Students 

 

 
Notes: The pairs of capital letters denote rejection of the Minimax binomial model for a given card (1,2,3,J) for a player (R,C). 
a denotes rejection of Minimax multinomial model for all cards chosen by the row player based on Pearson statistic and χ2(3). 
b denotes rejection of Minimax multinomial model for all cards chosen by the column player based on Pearson statistic and χ2(3). 
c denotes rejection of Minimax multinomial model for all cards chosen by both players based on Pearson statistic and χ2(6). 

 

Row Player (R) Choice  Column Player (C) Choice 
 Rejection of      

Minimax models 
Pair # 1 2 3 J 1 2 3 J at 5%:  at 10%: 

1 0.225 0.270 0.195 0.310 0.140 0.205 0.260 0.395 a,c,R2,RJ,C1,C3 a,b,c,R2,RJ,C1,C3 
2 0.205 0.180 0.160 0.455 0.185 0.205 0.210 0.400  RJ 
3 0.200 0.205 0.215 0.380 0.230 0.190 0.225 0.355    
4 0.145 0.215 0.155 0.485 0.175 0.180 0.225 0.420 a,R1,RJ a,c,R1,R3,RJ 
5 0.135 0.190 0.235 0.440 0.195 0.175 0.195 0.435 R1 a,R1 
6 0.185 0.215 0.235 0.365 0.215 0.230 0.230 0.325 CJ CJ 
7 0.230 0.185 0.215 0.370 0.200 0.150 0.165 0.485 CJ b,C2,CJ 
8 0.195 0.225 0.165 0.415 0.185 0.225 0.185 0.405    
9 0.150 0.215 0.200 0.435 0.200 0.215 0.195 0.390  R1 
10 0.280 0.260 0.200 0.260 0.250 0.185 0.210 0.355 a,c,R1,R2,RJ a,c,R1,R2,RJ,C1 
11 0.195 0.175 0.180 0.450 0.225 0.260 0.205 0.310 b,C2,CJ b,C2,CJ 
12 0.280 0.210 0.180 0.330 0.215 0.220 0.175 0.390 a,R1,RJ a,c,R1,RJ 
13 0.175 0.195 0.195 0.435 0.200 0.200 0.210 0.390    
14 0.170 0.230 0.260 0.340 0.195 0.195 0.205 0.405 R3 a,R3,RJ 
15 0.140 0.210 0.200 0.450 0.195 0.205 0.200 0.400 R1 R1 
16 0.245 0.195 0.190 0.370 0.225 0.215 0.160 0.400  R1 
17 0.195 0.160 0.200 0.445 0.210 0.205 0.200 0.385    
18 0.265 0.210 0.185 0.340 0.215 0.205 0.180 0.400 R1 a,R1,RJ 
19 0.300 0.185 0.190 0.325 0.255 0.240 0.195 0.310 a,b,c,R1,RJ,C1,CJ a,b,c,R1,RJ,C1,CJ 
20 0.195 0.205 0.165 0.435 0.215 0.195 0.205 0.385     



 
 
 
 

Table D3 
 

Observed and Expected Win Percentages under the Independence Hypothesis 
 

  Observed  Expected Mixture Correlated 
Pair #  Row Win % Row Win % Effect Play Effect 

1 0.3600 0.4024 0.0024 -0.0424 
2 0.3750 0.4006 0.0006 -0.0256 
3 0.3750 0.4015 0.0015 -0.0265 
4 0.3900 0.4035 0.0034 -0.0135 
5 0.4250 0.4024 0.0024 0.0226 
6 0.4150 0.4040 0.0040 0.0110 
7 0.4000 0.3947 -0.0053 0.0053 
8 0.4400 0.3989 -0.0011 0.0411 
9 0.3700 0.3991 -0.0009 -0.0291 
10 0.3850 0.4095 0.0095 -0.0245 
11 0.4000 0.3927 -0.0073 0.0073 
12 0.4000 0.3995 -0.0005 0.0005 
13 0.4000 0.3994 -0.0007 0.0007 
14 0.3900 0.3991 -0.0009 -0.0091 
15 0.3500 0.3997 -0.0003 -0.0497 
16 0.4000 0.3986 -0.0015 0.0015 
17 0.3650 0.3989 -0.0011 -0.0339 
18 0.3400 0.3987 -0.0013 -0.0587 
19 0.4900 0.4086 0.0085 0.0815 
20 0.3600 0.3992 -0.0008 -0.0392 

Mean Absolute Value: 0.0027 0.0262 
Chi-Square Statistic:   0.2462 18.7426 
Chi-Square Probability Value:   0.9999 0.5386 

 
Notes: Expected winning percentages assume independent play with mixtures observed over all 200 
games for each pair. Mixture effects are defined as the difference between the values in column 2 and 
0.40. Correlation effects are defined as the difference between columns 1 and 2. 
 
 
 
 
 
 



Table D4 – Testing that College Students Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
  Mixtures Win Rates   

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-value 
1 R 0.310 0.690 0.371 0.355 8.253      0.041** ‡
  C 0.395 0.605 0.709 0.595 3.885      0.274   †
2 R 0.455 0.545 0.352 0.394 3.542 0.315 
 C 0.400 0.600 0.600 0.642 0.868 0.833 

3 R 0.380 0.620 0.382 0.371 0.885 0.829 
  C 0.355 0.645 0.592 0.643 2.795 0.424 
4 R 0.485 0.515 0.351 0.427 7.493  0.058* 
 C 0.420 0.580 0.595 0.621 0.542 0.910 

5 R 0.440 0.560 0.375 0.464 3.385 0.336 
 C 0.435 0.565 0.621 0.540 2.795 0.424 

6 R 0.365 0.635 0.438 0.402 1.431 0.698 
 C 0.325 0.675 0.508 0.622 6.875  0.076* 

7 R 0.370 0.630 0.432 0.381 1.250 0.741 
 C 0.485 0.515 0.670 0.534 10.035   0.018** 

8 R 0.415 0.585 0.349 0.504 6.274  0.099* 
 C 0.405 0.595 0.642 0.504 5.135 0.162 

9 R 0.435 0.565 0.425 0.327 3.608 0.307 
 C 0.390 0.610 0.526 0.697 6.670  0.083* 

10 R 0.260 0.740 0.558 0.324           24.195       0.000** ‡
 C 0.355 0.645 0.592 0.628 2.156 0.541 

11 R 0.450 0.550 0.311 0.473 7.639      0.054*  †
 C 0.310 0.690 0.548 0.623 7.639  0.054* 

12 R 0.330 0.670 0.515 0.343 9.097      0.028*  †
 C 0.390 0.610 0.564 0.623 0.764 0.858 

13 R 0.435 0.565 0.391 0.407 1.076 0.783 
 C 0.390 0.610 0.564 0.623 0.764 0.858 

14 R 0.340 0.660 0.324 0.424 4.764 0.190 
 C 0.405 0.595 0.728 0.529 8.104   0.044* 

15 R 0.450 0.550 0.389 0.318 4.948 0.176 
 C 0.400 0.600 0.563 0.708 6.337   0.096* 

16 R 0.370 0.630 0.473 0.357 3.281 0.350 
 C 0.400 0.600 0.563 0.625 0.781 0.854 

17 R 0.445 0.555 0.371 0.360 2.712 0.438 
 C 0.385 0.615 0.571 0.675 3.378 0.337 

18 R 0.340 0.660 0.368 0.326 6.587      0.086*  ‡
 C 0.400 0.600 0.688 0.642 3.420 0.331 

19 R 0.325 0.675 0.400 0.533           15.937      0.001** ‡
 C 0.310 0.690 0.581 0.478           16.626      0.001** ‡

20 R 0.435 0.565 0.368 0.354 2.368 0.500 
 C 0.385 0.615 0.584 0.675 3.201 0.362 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.  ‡ and † denote the 
players for whom rejections at the 5 and 10 percent levels of the tests of equality of winning proba-
bilities to the equilibrium rate are also found when the four cards are treated individually.



 
 

Table D5 

Runs Tests in O’Neill’s Experiment 
College Students 

 
   Choices Runs     

Pair Player Joker Non-Joker ri F(ri-1) F(ri) 
1 R 62 138 102   0.995** 0.996 
  C 79 121 92 0.226 0.271 
2 R 91 109 95 0.208 0.251 
 C 80 120 92 0.209 0.252 

3 R 76 124 92 0.287 0.338 
  C 71 129 107    0.985** 0.990 
4 R 97 103 99 0.366 0.421 
 C 84 116 111   0.961* 0.972 

5 R 88 112 103 0.663 0.715 
  C 87 113 131    0.999** 1.000 
6 R 73 127 99 0.766 0.813 
 C 65 135 99 0.942 0.961 

7 R 74 126 112    0.996** 0.997 
  C 97 103 94 0.146 0.182 
8 R 83 117 107 0.889 0.915 
 C 81 119 90 0.123 0.155 

9 R 87 113 102 0.624 0.677 
  C 78 122 96 0.461 0.518 

10 R 52 148 82 0.747 0.790 
 C 71 129 103 0.937 0.956 

11 R 90 110 105 0.740 0.785 
  C 62 138 92 0.796 0.834 

12 R 66 134 114    0.999** 1.000 
 C 78 122 88 0.099 0.126 

13 R 87 113 94 0.201 0.244 
  C 78 122 89 0.126 0.161 

14 R 68 132 72 0.001    0.002** 
 C 81 119 84 0.021  0.029* 

15 R 90 110 93 0.141 0.176 
  C 80 120 112    0.984** 0.989 

16 R 74 126 83 0.037 0.052 
 C 80 120 101 0.696 0.747 

17 R 89 111 112  0.954* 0.966 
  C 77 123 109  0.973* 0.981 

18 R 68 132 104    0.980** 0.986 
 C 80 120 89 0.104 0.135 

19 R 65 135 91 0.605 0.673 
  C 62 138 91 0.737 0.796 

20 R 87 113 107 0.850 0.882 
  C 77 123 98 0.606 0.660 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table D6 
 

Results of Significance Tests from Logit Equations for the Choice of a Joker Card 
College Students 

 
Estimating Equation:  J  =  G[a0 + a1lag(J) + a2lag2(J) + b0J* + b1lag(J*) + b2lag2(J*) + c1lag (J)lag(J*) + c2lag2(J)lag2(J*)] 

 
 
       
Null Hypothesis                                      Player Pairs Whose Behavior Allows Rejection of the Null Hypothesis at          
 
        5 percent level   10 percent level  

(1).  a1 = a2 = b0 = b1 = b2 = c1= c2 = 0 Row:   5,10,12    5,7,9,10,12,14,20 
     Column:  5,10,12    4,5,6,10,12,14 
      
 (2).  a1 = a2 = 0    Row:   9,12,15    9,10,12,14,15 
     Column:  5,14,20    4,5,14,20 
  
(3).  b1 = b2 = c1= c2 = 0   Row:   -    - 
     Column:  -    10,12 
 
(4).  c1= c2 = 0    Row:   -    8,9,15,20 
     Column:  -    12 
 
(5).  b1 = b2 =  0    Row:   15    15 
     Column:  12    10,12 
 
(6).  b0 = 0    Row:   10,12,14   4,10,12,14,16 
     Column:  6,10,14    4,6,10,14,16 
 
 
Notes: The symbols J and J* denote the choice of a joker card by a player and by his opponent respectively. The terms “lag” and “lag2” refer to the 
strategies previously followed in the ordered sequence. The function G[x] denotes the function exp(x)/[1+exp(x)]. Rejections are based on likelihood-
ratio tests. 



 
Table E - Summary Statistics in Penalty Kick’s Experiment 

 
 

       Professional      College Students with 
          Soccer  Soccer        No Soccer  

              Equilibrium       Players         Experience    Experience 
I. Aggregate Data  
   Row Player frequencies  L 0.363  0.333  0.392  0.401 

      R 0.636  0.667  0.608  0.599  

   Column Player frequencies L 0.454  0.462  0.419  0.397 
      R 0.545  0.538  0.581  0.603 
      

   Row Player Win   percentage  0.7909  0.7947  0.7927  0.7877 
           (std. deviation)          (0.0074) 

 
 

II. Number of Individual Rejections of Minimax Model at 5 (10) percent  
    Binomial Model for Marginal Frequencies 
      All Players     2 (4)   2 (4)    2 (3)    6 (22) 
 
    Multinomial Model for Pair Frequencies  
      All Players      1 (2)   0 (2)    2 (2)    6 (9) 
 
III. Mixture and Correlated Effects  

     Mean Mixture effect Chi-statistic   ---  0.0059  0.0272   0.1139 
p-value     ---  0.9999  0.9999   0.9999 

     Mean Correlated effect Chi-statistic   ---  3.2343  3.8093            22.3481 
p-value    ---  0.9999  0.9999   0.3219 

 
IV. Equality of Success Rates Across Strategies and to the Equilibrium Rate  
     Rejections at 5 (10) percent   2 (4)    0 (3)     2 (2)    9 (13) 
     Aggregate Pearson tests 
 All Row players statistic    ---   40.002   43.294  108.652 

         p-value    ---   0.9781   0.9487  0.000123 
 All Column players statistic   ---   32.486   56.537  113.102 

         p-value    ---   0.9985   0.6030  0.000041 
 

V. Runs tests for 40 players 
   Rejections at 5 (10) percent  2 (4)  2 (4)  3 (5)  7 (13) 

 
VI. Logit Equations at the Player Level for 40 players  
   Rejections of stationary binomial process  

at 5 (10) percent    ---  2 (4)  4 (7)  12 (14)   
 
 

________________ 
Note: The rejections of the stationary binomial process in Panel VI refer to the joint test that all coefficients other  
than the constant term are equal to zero in the equations specified in section 3.  



Table F - Summary Statistics in O’Neill’s Experiment 
 

            Professional     College Students with 
             Soccer          Soccer          No Soccer  

                   Equilibrium         Players        Experience    Experience       O’Neill (1) 
    I. Aggregate Data  
            Row Player frequencies  1 0.200  0.201  0.203  0.206  0.221 
      2 0.200  0.203  0.197  0.206   0.215 
     3 0.200  0.198  0.197  0.196  0.203 
     J 0.400  0.398  0.403  0.392  0.362  

            Column Player frequencies  1 0.200  0.200  0.199  0.206  0.226 
      2 0.200  0.198  0.198  0.205  0.179 
     3 0.200  0.204  0.203  0.201  0.169 
     J 0.400  0.398  0.400  0.387  0.426   

             Row Player Win percentage  0.400  0.394  0.403  0.391  0.410 
                  (std. deviation)             (0.007)                 

 
    II. Number of Individual Rejections of Minimax Model at 5 (10) percent  

   Row Player (All Cards)   1  (2)   1  (1)    2  (2)    5  (8)    6 (na) 
   Column Player (All Cards)   1  (2)   1  (1)    2  (2)    2  (4)    9 (na) 
   Both Players (All Cards)   1  (2)   2  (2)    1  (2)    3  (5)    9 (na) 
   All Cards     8 (16)   8 (18)  11 (18)  23 (31)  35 (na) 
 
III. Mixture and Correlated Effects  

     Mean Mixture effect p-value     ---  0.999  0.999  0.999  0.999 
     Mean Correlated effect p-value   ---  0.996  0.999  0.538  0.026 
     

IV. Equality of Success Rates Across Strategies and to the Equilibrium Rate using NJ and J (2) 
    A. Using equilibrium frequencies and success probabilities (3 degrees of freedom at individual level)  

    Rejections at 5 (10) percent   2 (4)     3 (6)     3 (6)   5 (15)   22 (25) 
    Aggregate Pearson tests 

All Row players p-value      ---   0.715  0.514  0.000009 6.78·10-17  
All Column players p-value   ---   0.654  0.959  0.0042   1.90·10-21  

 
    B. Using maximum likelihood estimates (1 degree of freedom at individual level)  

    Rejections at 5 (10) percent   2 (4)    2 (4)    3 (6)  8 (10)  10 (15) 
    Aggregate Pearson tests 

All Row players p-value      ---   0.404  0.221  0.005  4.93·10-8  
All Column players p-value   ---   0.298  0.387  0.002   1.45·10-8  

 
    V. Runs Tests  

      Rejections at 5 (10) percent    2 (4)    2 (4)   3 (5)  7 (12)  15 (19)      
 
VI. Logit Equations for Stationary Binomial Process (3)   
       Rejections at 5 (10) percent    ---    6 (7)   4 (9)  6 (13)  31 (na)  
______________________________ 
1. The results for O’Neill come from Brown and Rosenthal (1990) and Walker and Wooders (2001), where “na” means that the 
corresponding estimate was not reported by the authors and may not be computed from the data they report. O’Neill’s (1987) 
experiment involves 25 pairs, rather than 20 pairs, and 105 repetitions instead of 200. Hence, the number of expected rejections  
under Minimax at a given percentage level in the original O’Neill’s experiment is 1.25 greater than those reported in the first  
column, and the std. deviation for observed relative frequencies under Minimax play in Panel I is 0.009, rather than 0.007.  
2. In O’Neill’s original experiment there are two pairs that represent extreme outliers. When these are ignored, the p-values in  
panel A remain very low (1.2·10-9 and 1.7·10-12 , respectively). 
3. Rejections refer to the joint test that all coefficients except the constant term are zero in the equations specified in section 3.  




