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Abstract

This paper characterizes the revenue maximizing allocation mechanism in a two-
period model under non-commitment. A risk neutral seller has one object to sell and
faces a risk neutral buyer whose valuation is private information. The seller has all the
bargaining power; she designs an institution to sell the object at t=0 but cannot commit
to not change the institution at t=1 if trade does not occur at t=0. We show that the op-
timal mechanism is to post a price in each period. A methodological contribution of the
paper is to develop a procedure to characterize the optimal dynamic incentive schemes
under non-commitment in asymmetric information environments where the agent’s type
is drawn from a continuum. Keywords: mechanism design, optimal auctions, sequential
rationality. JEL Classification Codes: C72, D44, D82.
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1 Introduction

The bargaining under incomplete information literature! acknowledges that, if it is common
knowledge that gains of trade exist, parties cannot credibly commit to stop negotiating at a
point where no agreement is reached. It examines possible outcomes of negotiations between
individuals under the assumption that players make deterministic offers. Often the right to
make offers is assigned to one of the negotiating parties. Suppose that the uninformed one
makes the offers. Would it be beneficial for her instead of making a take-it-or-leave-it offer
at each period, to employ more sophisticated bargaining procedures? Would that possibility
allow her to learn the other party’s private information faster? What is the optimal from the
uninformed party’s point of view, negotiating process? In the optimal auction literature, (see
Myerson (1981) and Riley and Samuelson (1981)), the seller is free to employ any institution
to sell the object but commits never to propose a different mechanism in case no trade
takes place. This excludes the possibility of employing a mechanism in the future that may
perform better. In other words, the optimal auction is characterized under the restriction
that the seller may behave in a non-credible way. This assumption of commitment is often
far-fetched.? In this paper we relax this assumption and derive the optimal mechanism.

To illustrate the situation let us look at the following scenario. A risk neutral seller faces
a risk neutral buyer whose valuation is private information. At ¢ = 0 the seller proposes the
ex-ante revenue maximizing mechanism under commitment. This consists of posting a price.
The buyer announces his valuation to the seller and if it is above the seller’s posted price,
he obtains the object and pays the price. Suppose that the buyer announces a valuation
below the price. No trade takes place. This procedure is optimal given that the seller can
commit to not try to sell the item using a different institution in a subsequent period. But
if the object remains unsold, it is not sequentially rational for the seller to tie her hands. At
date 1 the seller knows that there exist gains from trade but they were not realized because
the price she posted was above the buyer’s valuation. If the seller behaves sequentially
rationally she will try to sell the item at ¢t = 1 using a different mechanism that maximizes
revenue from that point on, which clearly changes the buyer’s strategic considerations at
t = 0. The buyer at t = 0 may try to convince the seller that he has a low valuation. What
does the revenue maximizing mechanism look like in this case? Does the seller offer a set of
lotteries at period ¢t = 0 or does she simply post a price? Does the seller use a mechanism
in the first period that allows her to infer with precision the type of the buyer, hoping that
she can use her sharper estimate to extract the buyer’s surplus in the second period? Or is
it too costly in terms of expected revenue to do so?

In this paper we look at a seller who faces a buyer whose valuation is private information
and is drawn from a continuum. There are 2 periods. At the beginning of each period the

'See, for instance, Sobel and Takahashi (1983) and Fudenberg, Levine and Tirole (1985).
?Real world examples about the inability of the sellers to commit can be found in McAfee and Vincent
(1997).



seller proposes an institution to sell the object. If the object is sold in the first period
the game ends, otherwise the seller returns the next period and offers a new mechanism.
The game ends after 2 periods even if the object remains unsold. We allow the seller to
employ any institution she wishes, and show that posting a price in each period is optimal.
This is our main result. It is the first complete characterization of the optimal mechanism
under non-commitment in an asymmetric information environment, where the agent’s type
is drawn from a continuum. Another contribution of this work is to provide a method to
characterize the optimal dynamic incentive schemes in such environments.

The early papers on dynamic mechanism design, (Freixas, Guesnerie and Tirole (1985),
FGT, Laffont and Tirole (1988)), LT, establish that under non-commitment the principal
cannot appeal to the standard revelation principal in order to characterize the optimal
mechanism. This makes the characterization of the optimal contract very difficult.> For
this reason FGT (1985) consider the optimal incentive schemes among the class of linear
incentive schemes. LT (1988) consider arbitrary schemes but examine only special classes
of equilibria, namely pooling and partition equilibria. A remarkable result is derived in the
recent paper by Bester and Strausz (2001), BS. They show that when the principal faces
one agent whose type space is finite, she can, without loss of generality, restrict attention
to mechanisms where the message space has the same cardinality as the type space. As
BS illustrate, in order to find the optimal mechanism one has to check which incentive
compatibility constraints are binding. In an environment with limited commitment, con-
straints may be binding ‘upwards’ and ‘downwards’. Even if one could obtain an analog of
the BS result for the continuum type case, it does not seem straightforward to generalize
the procedure of checking which IC' are binding. In this paper we provide a method for
solving for the optimal dynamic scheme under non-commitment for the case that the type
space is a continuum. The case of a continuum of types raises difficulties that do not arise
in the finite type case. For instance, the support of the principal’s posterior beliefs can be
arbitrarily complicated, (whereas in the case where one starts with a finite type space, the
type space at the beginning of a subsequent period is again finite). A by-product of our
analysis is the characterization of the optimal mechanism for the case that the agent’s type
is arbitrary. To my knowledge this problem has not been addressed before in the literature.

We now provide a brief description of how we obtained our result. The procedure
used in this paper in order to characterize the optimal allocation mechanism under non-
commitment does not rely on any version of the revelation principle. It can be summarized
as follows. Given a belief system pu, a strategy of the seller, og, and a strategy of the
buyer, op, implement an allocation rule p(co, u)(v), abbreviated to p, and a payment rule
x(o, p)(v), abbreviated to z. A solution concept imposes restrictions on (o, u), which in
turn translate to restrictions on p and x. We start by looking at the restrictions imposed
on the allocation rule p by requiring (o, 1) to be a Bayes-Nash Equilibrium, BNE, of the

#See the discussion in Laffont and Tirole (1993), Ch. 9, and Salanie (1998), Ch.6.



game. We show that if op is a best response to og, then p is increasing in v, and we
can write the seller’s expected revenue solely as a linear function of p. Subsequently we
impose the further requirement that (o, ) be sequentially rational, and provide necessary
conditions that an allocation rule p satisfies if it is implemented at a Perfect Bayesian
Equilibrium, PBE. In order to do so, we study the seller’s problem at the beginning of
the final period of the game. Since the game ends after that period, the seller’s problem
at the beginning of the final period of the game is isomorphic to a static problem under
commitment. The difference is that the support of the seller’s posterior beliefs can be very
complicated. We present a method to solve static mechanism design problems when the type
space is arbitrarily complicated. Given this result, we provide necessary conditions that an
allocation rule satisfies if it is implemented at a PBFE. Our objective is to find the optimal
allocation rule p* among all PBFE—implementable ones. We show that the allocation rule
that maximizes the seller’s expected discounted revenue among all PBFE—implementable
ones, can be implemented by a PBE of the game where the seller posts a price in each
period. It follows that if the seller behaves sequentially rationally, then the institution that
maximizes expected revenue is a sequence of posted prices. The method used in order to
derive this result was inspired by Riley and Zeckhauser (1983). From our analysis it follows
that working with mechanisms with arbitrary message spaces can be as simple as working
with direct revelation mechanisms.

Hart and Tirole (1988), HT, analyze a similar model in a finite-horizon framework
under non-commitment and commitment and renegotiation. In the non-commitment case
the seller’s strategy consists of a sequence of prices. Our model differs from the one in
HT in that we consider a continuum of types and in that we allow the seller to employ
arbitrary mechanisms. McAfee and Vincent (1997) examine sequentially optimal auctions
under the assumption that the seller’s strategy is a sequence of reservation prices, and the
buyers follow a stationary strategy.

The model studied in this paper also captures the situation of a monopolist who faces a
continuum of buyers whose valuation is known. This is the standard framework considered in
the durable-good-monopolist literature, (Bulow (1982), Stokey (1981), Gul-Sonnenschein-
Wilson (1986)). In those papers the seller posts a price in each period. The possibility
of using other institutions is not investigated. The durable-good monopolist literature
examines the equilibrium price dynamics when the monopolist cannot sign binding contracts
with consumers about the future level of prices. We show that this is optimal, even though
the seller may use any other institution she wishes. In other words, our results verify that
allowing the seller to simply post a price in each period does not entail any loss in terms
of expected revenue. Previous work has assumed that the monopolist’s - or the uninformed
party’s- strategy is to post a price and the problem is to find what price to post. We
provide a justification for posted prices; even though arbitrarily complicated procedures
may be used, posted price selling is the optimal strategy in the sense that it maximizes the
seller’s revenue.



Summarizing, the literature either studies the mechanism design problem under the
assumption of commitment or, acknowledges the impossibility of commitment for a fixed
institution, (a price in the durable goods monopoly literature and a reserve price in the
sequentially optimal auctions literature), and searches for the optimal price (reserve price)
path under the assumption that the seller behaves sequentially rationally. In this paper we
study the sale model of a good under non-commitment and we characterize the optimal
mechanism. The analysis resembles the one of a bargaining model with incomplete infor-
mation, in which the uninformed party makes the offers. In our model the seller instead of
making deterministic offers in each period, she “offers” a game form.

We now provide an outline of the paper. The environment under consideration is de-
scribed in Section 2. Section 3 outlines our method for characterizing the optimal mechanism
under non-commitment. The main analysis and results of this work can be found in Section
4, which is the core of the paper. Section 5 contains some observations regarding rev-
enue comparisons relative to the commitment case and an illustrative example. Concluding
remarks are in Section 6.

2 The Environment

A seller owns one object. Her valuation for the object is normalized to zero. She faces one
buyer whose valuation v is private information. We use V to denote the set of all possible
valuations of the buyer. It is taken to be V' = [a, ] for 0 < a < b < co. Time is discrete and
the game lasts two periods, t = 0, 1. Let f : [a,b] — R4, continuous denote the probability
density function of the buyer’s valuation. All elements of the game except the realization
of the buyer’s valuation are common knowledge. Both the seller and the buyer are risk
neutral. We use ¢ to denote the common discount factor. The seller’s goal is to maximize
expected discounted revenue. The buyer aims to maximize expected surplus.

Definition 1 A mechanism M = (S, g) consists of a set of actions S available to the buyer
and an outcome function g : S — [0,1] x Ry.

Suppose that the seller proposes M = (S, g). When the buyer accepts M and chooses
an s € S, the outcome specified via g is a probability that he obtains the good, r, and
an expected payment z. A point (r,z) € [0,1] x Ry will be called a contract. Rejecting a
mechanism leads to the legal status quo, which is the contract (0,0). We assume that the
action “reject” is always available.

Remark 1 For our purposes two mechanisms that lead to the same set of contracts are
equivalent. Sometimes we will describe a mechanism by the set of contracts that it leads to.

The assumption of non-commitment, asserts that the seller and the buyer at ¢ can-
not commit to anything about their interaction at ¢ + 1. We now argue that under non-
commitment, the mechanisms under consideration are without loss of generality. In each



period the seller and the buyer play a game. This game results, using our terminology, to a
set of possible contracts which is a subset of [0, 1] x R;. Since there is no commitment, the
seller and the buyer cannot make any agreement in period ¢ regarding the terms of their fu-
ture transactions. Their t—period interaction results in a set of probability-payment pairs.
Suppose that we allowed the seller, apart from proposing M, to send herself messages while
M was being played. This game would again lead to a set of possible probability-payment
pairs. The buyer’s strategy within the t—period game would specify for each v which actions
the buyer would choose given various messages of the seller and so forth. This situation can
be replicated by some mechanism among the class that we are considering. Of course, one
could analyze the problem under different assumptions regarding the commitment power
of the seller; for instance, one can examine the optimal renegotiation-proof mechanisms.
Under those different assumptions, the mechanisms considered here may not be without
loss of generality.

Timing.

e At the beginning of period ¢ = 0 nature determines the valuation of the buyer. Sub-
sequently the seller designs a mechanism My = (Sp, go). The buyer observes My and
decides whether to participate in this mechanism. If the buyer rejects My he does not
get the object and he pays zero. Otherwise the buyer picks s € Sy and the outcome is
go(s). If the item is transferred, then the game ends, else we move on to period ¢ = 1.

e At period t = 1 the seller designs a new mechanism M; = (S, g1). The buyer observes
M. If the buyer rejects My he does not get the object and he pays zero; otherwise
the outcome is determined by g;. The game terminates at the end of period t = 1.

Let h% = 0 be the history after chance’s move; we denote by Ag(h%) the set of the
seller’s possible period-0 actions and by A B(hOB) the buyer’s possible period-0 actions. More
generally, we use A;(h!) to denote the set of player i's possible actions, where h! represents
the history of moves before player i’s move in period ¢, excluding chance’s move. The action
of the buyer at t is denoted by s;.

The information sets of the buyer consist of simply one node since the buyer observes
the move of nature and the moves of the seller. On the other hand, since the seller does not
observe the realization of the buyer’s valuation, her information set in period ¢ is identified
with an element of Hf, where HY is the set of all feasible histories at date ¢.

Let M denote the set of all possible mechanisms. A strategy for the seller, og, is a
sequence of maps from HY to M. A strategy, op, for the buyer is a sequence of maps from
[a,b] x HY to Ag(hly). A strategy profile o = (0;)i=s,B, specifies a strategy for each player.
A belief system, u, maps Hg to the set of probability distributions over [a, b].

Our aim is to characterize the maximum expected revenue that the seller can guarantee
at a PBE. As usual we require that strategies yield a BN E, not only for the whole game,



but also for the continuation game that starts at ¢ after each history where trade has not
occurred up to t. Let f(v|h%) denote the seller’s beliefs about the buyer’s valuation when
the history is h&, t = 0,1. For t = 0 f(v|h%) = f(v), that is, the seller has correct prior
beliefs.

A Perfect Bayesian Equilibrium, (PBE), is a strategy profile, o, and a belief system, p,
that satisfy:

1. For all v € [a, b], s; maximizes the buyer’s payoff at ¢t = 1.

2. Given f(.|h}) and the buyer’s strategy, M maximizes expected revenue for the seller.
3. For all v € [a, b], sp maximizes the buyer’s payoff given ¢t = 1 actions.

4. My maximizes the seller’s expected revenue given subsequent actions.

5. f(.|nk) is derived from f given h} using Bayes’ rule whenever possible.

We sometimes simplify the notation by setting f(v|h}) = fi(v) in what follows. As
usual, condition 2 requires that the seller choose at ¢ = 1 an optimal mechanism relative to
her posterior beliefs even off the equilibrium path.

3 The Methodology

In this section we provide an outline of the method we use to characterize the optimal
mechanism. First recall that in dynamic settings under non-commitment the seller cannot
appeal to the standard the revelation principal in order to characterize the optimal mecha-
nism at t = 0. To see why, suppose that at period zero the seller employs a direct revelation
mechanism, the buyer has claimed to have valuation v, and according to this mechanism no
trade takes place. If the seller behaves sequentially rationally, she will try to sell the object
at t = 1 using a different mechanism. And in the case that the buyer has revealed his true
valuation at t = 0, the seller has complete information at ¢ = 1. She can therefore use this
information to extract all the surplus from the buyer. In this situation the buyer will have
an incentive to manipulate the seller’s beliefs. One would expect that he will not always
reveal his valuation truthfully at the beginning of the relationship. The seller, since she
does not have commitment power, cannot play the role of the “machine” that exogenously
specifies the direct revelation game that implements an equilibrium of some general game.

Suppose that the seller could appeal to the revelation principle in order to choose Mj.
Then, because according to the revelation principle truth telling is an equilibrium, for each
v € [a,b] the buyer’s strategy specifies a different action? at + = 0 (separation). One can
prove a result similar to that in Proposition 1 in Laffont and Tirole (1988), which states that

*When the seller offers a DRM, the buyer’s action is a claim about his type.



there exists no PBE where separation occurs at ¢ = 0. This result provides a justification
for why the seller cannot employ the standard revelation principle in the environment under
consideration in order to choose M.

Allocation Rules and Payment Rules

Our method of characterizing the PBE that is associated with the highest revenue for
the seller, relies on the observation that an arbitrary assessment, (o, ), implements an
allocation rule p and a payment rule z. We first provide a couple of examples to illustrate
this.

Example 1 Take V = [0,1]. Suppose that the seller posts a price of 0.5 at t = 0 and if
no trade takes place at t = 0, (which happens only when the buyer rejects My), she posts a
price of 0.4 at t = 1. More formally, at t=0 the seller proposes

My = {(0,0),(1,0.5)}.

If the buyer chooses (0,0) trade will not take place at t = 0. At this history the seller at
t =1 proposes
M, = {(07 0), (1, 04)} :

The buyer’s strateqy, (specified only up to the path actions), is as follows: for v € [0,0.4]
reject My at t =0 and reject My at t = 1; for v € [0.4,0] reject My at t =0 and pay 0.4 at
t =1; and for v € (v,1] pay 0.5 at t = 0. From the ex-ante point of view, given the strategy
profile under consideration, the expected discounted probability that the buyer obtains the
object and the expected discounted payment are

p(v) =0; z(v) =0 forv € |0,0,4]
p(v) = 6; x(v) =046 forv € (0.4,7]
p(v) =1; z(v) = 0.5 forv e (v,1].

Example 2 Suppose now that the seller’s strategy is as in the previous example, with the
difference that (1,0.5) in My is replaced by (0.8,0.5). Now the seller’s strategy must also
specify what mechanism the seller will employ at t = 1 in the event that the buyer chooses
(0.8,0.5) at t =0 but he does not obtain the object; this mechanism is given by

M; = {(0,0),(0.3,0.1)}.

The buyer’s strategy, (specified up to the path actions), is as follows: for v € [0,0.4] reject
My at t = 0and My at t = 1; for v € (0.4,01] reject My at t = 0 and pay 0.4 at t = 1;
for v € (Ty, 2] choose (0.8,0.5) at t = 0 and reject My at t = 1 and finally for v € (7o, 1]



choose (0.8,0.5) at t = 0 and (0.3,0.1) at t = 1. The expected discounted probability and
the expected discounted payment implemented by this strategy profile are given by

p(v) =0; z(v) =0 forve|0,0,4]

p(v) = 6; x(v) =0.48 forv e (0.4,7]

p(v) =0.8; z(v) = 0.5 for v € (v1,02)

p(v) =08+ (1-0.8)-0.3-6; z(v) =05+ (1-0.8)-6-0.2 forv € (v2,1].

As illustrated in the above examples, an assessment® (o, 1) leads to a set of compounded
lotteries: [p(o, 1) (v), z(o, 1) (v)]. This is the set of expected discounted outcomes of the game
given (o, u). The rule p(o, 1)(v), sometimes abbreviated as p(v), maps the type space to
probabilities and denotes the expected, discounted probability that a v—type buyer will
obtain the object given (o, ). We will call this function as allocation rule. It is formally
defined as

plo,p)(v) = E

1
t
Z 6 1{buyer obtains the object at ¢} | (U, N)a U] .
t=0

Allocation rules will play a central role in our analysis. It is possible that different strategy
profiles lead to the same allocation rule.

The rule z(o, 1)(v), sometimes abbreviated as xz(v), maps the type space into Ry and
we will call it payment rule. It is formally defined as

z(o, p)(v) = E

1
Z 6t1{buyer obtains the object at ¢t} {payment at t} |(U7 :u’)’ U] :
t=0

Probabilities and transfers are in expectation and discounted.

A solution concept imposes restrictions on (o, ) which, in turn, translate to restrictions
on the allocation and on the payment rule. We start by exploring restrictions imposed
on the allocation rule and on the payment ruleby requiring (o, u) to be a Bayes-Nash
Equilibrium of the game. We show that if the buyer’s strategy is a best response to the
seller’s strategy, p is increasing in v. Given this result we use standard techniques and write
the seller’s expected revenue solely as a linear function of p. In the next step we derive
necessary conditions that an allocation rule satisfies, if it is implemented by an assessment
that consists a PBFE of the game. Finally we characterize the allocation rule p* that is the
optimal among all PBFE—implementable ones.

Let us now compare our method with the approach that relies on the standard rev-
elation principle. The revelation principle states that all allocation and payment rules
implemented by an assessment that is a BN FE of a game, can be implemented by a direct
revelation mechanism where truth telling is an equilibrium. One usually derives necessary

>We need to include the belief system in the arguments of p and = because it is part of the equilibrium
concepts we will examine.



and sufficient conditions satisfied by p and z at a truthful equilibrium. In this paper we
are interested in PBFE—implementable payment and allocation rules. We allow the seller
to propose mechanisms with arbitrary message spaces and focus on the outcomes of the
game. We start by arbitrary assessments (o, 1) and examine how equilibrium restrictions
translate into properties of the allocation rules. We derive only necessary conditions that
allocation rules satisfy if they are implemented at a PBE of the game, but this turns out
to be enough for the characterization of the PBE that is associated with maximal revenue
for the seller.

This paper demonstrates that mechanism design under non-commitment is not an in-
tractable problem, even if one works with mechanisms with arbitrary message spaces. As
long as one cares for the players’ payoff from the ex-ante point of view this approach seems
as straightforward as working with direct revelation mechanisms.

4 The Optimal Mechanism Under Non-Commitment

4.1 Necessary Conditions at a BNE

Our goal is to investigate the properties of allocation rules that are implementable by
assessments that consist a Perfect Bayesian Equilibrium. We first have to look at the
restrictions imposed on p by requiring (o, 1) to be a BNE of the game. At a BNE the
buyer’s strategy is a best response to the seller’s strategy. The following Lemma establishes
that if this is the case, then p is increasing in the buyer’s valuation.

Lemma 1 If op is a best response to og, then p(o, n)(v) is increasing in v.

Proof. To see this consider an assessment (o, ) where the strategy of the seller og is a best
response to the strategy of the buyer op. Let U, ,(0p(v),v) denote the buyer’s expected
discounted payoff when his valuation is v given (o, u). It is given by

Usu(oB(v),v) =p(v)v — 2(v). (1)

The buyer’s payoff from adopting actions op(v') when his reservation value is v can be
expressed as

UJ,M(UB (U,)a U) = p(vl)v - l‘(vl)a (2)
where o (v') describes the actions specified by op for the case that the buyer’s valuation
is v'. Analogously we can write U, ,(op(v'),v") = p(v')v" — z(v') and U, ,(op(v),v") =
p(v)v" — z(v). Since op is a best response to og we have that

Usu(05(v),v) = Us,u(op(v),v)
Usuloa(v'), ) = Usu(op(v),v)

VIV
@
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From (3) we get that

[Usu(0B(0),0) = Usu(op(v'),v)] + [Us u(op(v),v) = Us u(05(v), v')]
= (p() —p()) (v —v) > 0.

Hence if the buyer’s strategy, op, is a best response to g, the allocation rule, p, will be
increasing in v.

From standard arguments, (see for instance Myerson (1981)), it follows that U, ,(0p(v), t)
is increasing in t and hence differentiable almost everywhere. The fact that the buyer can
always reject a mechanism offered by the seller, implies that the payoff of the buyer must
be non-negative, that is

Usu(op(v),v) = p(v)v — 2(v) > 0.

Expected discounted revenue given an assessment (o, ) that implements an allocation rule
p can be written as

(v)
We will later establish that at a PBE we have U, ,(0B(a),a) = 0.
From the above analysis it follows that if the buyer’s strategy is a best response to og,

R— / " o) [U - W} F@)dv = Uy u(o5(a), a). ()

p is an increasing function of v and expected discounted revenue for the seller given (o, i)
is determined solely by p and the payoff that accrues to the buyer when his valuation is
equal to the lowest possible.

We now proceed to investigate the structure that sequential rationality imposes on p.
In order to do so, we need to study the seller’s behavior at the beginning of the final period
of the game.

4.2 The Seller’s Problem at the Beginning of the Final Period of the
Game

In a PBFE the mechanism employed at ¢t = 1, M7, must be an equilibrium of the continuation
game that starts after a history hg, where trade did not occur at ¢ = 0. That is, at t =1
M7 must maximize expected revenue given posterior beliefs. In the case that the buyer’s
valuation is fully revealed after some history hk, the seller’s problem at ¢t = 1 is trivial. She
names a price equal to the buyer’s valuation and extracts all his surplus. In what follows we
analyze the case where the seller is uncertain about the buyer’s valuation at the beginning
of period ¢ = 1. Since t = 1 is the final period of the game the seller can, without loss of
generality, choose M; among the class of direct revelation mechanisms, (DRM), that are
incentive compatible, (IC), and individually rational, (IR). Consider a PBE (o, 1) and a
history along the equilibrium path hg, where the buyer did not obtain the object at ¢t = 0.

11



The set of possible types at ¢t = 1, given a history h}, is denoted by Y ,(h}). We will
assume that it is measurable and that it has strictly positive measure. This is without loss
for our analysis, since histories where Y, ,(h}) has measure zero do not matter from the
ex-ante point of view. We will often write Y instead of Y, ,(hk). The PDF of v given Y is

flv)
fl('U) — { [y f(s)ds foeYy ‘ (5)

0 otherwise

The type space at t = 1, Y, is endogenous, since it depends on the history of the game.
It may not be a closed and convex subset of the real line as it is usually assumed in the
mechanism design literature under commitment.

A DRM consists of two mappings r : Y — [0,1] and z : Y — R, where r(v) specifies
the probability of obtaining the object, if the buyer claims that his valuation is v, and z(v)
specifies the corresponding expected payment.

Consider a history h}g where trade has not taken place up to ¢ = 1. For every such
history the mechanism that the seller will employ according to her equilibrium strategy,
denoted by M;(h}), must solve

d
e z(v) f(v)dv, (R1)
subject to
r(v)v — z(v) > r()v — 2(¥) for all v,v' € Y (IC)
and
r(v)v — z(v) >0, for allv € Y. (IR)

We will refer to the above maximization problem as Program 1.

Program 1 differs from a standard static problem in that the type space is not necessarily
an interval. In what follows we show that requiring the mechanism to be feasible on the
convex hull of the closure of Y is without any loss. We do that in steps. First we show
that requiring /C and IR to hold for all types in the closure of Y, denoted by [Y], does not
change the solution of Program 1. In the second step we show that the same holds even if
require the mechanism to satisfy IC' and IR on the convex hull of Y, which we denote by
Y.

First consider a version of Program 1, where the mechanism that the seller employs,
must satisfy /C and IR on [Y]. We will call this problem Program 1b, and it given by

max /m z(v) f1(v)dv

r,ze€DRM

subject to
r(v)v — z(v) > r()v — 2z(V') for all v,0v’ € [Y] (ICy)
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and
r(v)v — z(v) > 0, for all v € [Y], (IRy)

where r: [Y] — [0,1] and z : [Y] — R

Since fi(v) = 0 for v € [Y]\Y the objective function in Program 1b is the same as in
Program 1.

Let Ri(M;) denote the seller’s expected revenue at the continuation game that starts
at ¢ = 1, when the seller employs M,

Ry(My) = / (0) 1 (v)do.
Y
All proofs that are not included in the main text can be found in the appendix.

Lemma 2 Let M; denote the solution of Program 1 and M, denote the solution of Program
1b. Then
Ry (M) = Ry (My).

Given this result it follows that it is without loss to assume that the type space at t = 1
is a closed subset of the real line.

Second, consider a version of Program 1, where the mechanism that the seller employs,
must satisfy /C and IR on the convex hull of Y.

Program 2:

TE,zr;lgl})(RM ?ZE(U)fl(U)dU
subject to
re(v)v — zp(v) > rg()v — zg(V) for all v,0' € Y (ICEg)
and
rg(v)v — zp(v) >0, forallv e Y, (IRg)

where 75 : Y — [0,1] and 25 : Y — R,
We will take Y to be closed. From Lemma 2 it follows that this is without loss of
generality.

Proposition 1 SAssume that Y is closed and let M¥ denote the solution of Program 2.
Then
Ri(My) = Ri(MY).

5The conjecture that such a result may be available arose from discussions with Kim-Sau Chung.
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We now solve Program 2, and demonstrate that after any history, the seller will maximize
revenue at the continuation game that starts at ¢ = 1 by posting a price. In the analysis that
follows we take the convex hull of the closure of Y to be [a,b], but it can be any interval
[v, 7], for some v,v € [a,b], with v < ©. Following Myerson (1981), the seller’s expected
revenue at the beginning of ¢ = 1 can be written as,

b
/ r(©) [0f(v) — [1— Fi ()] dv — ua (a), (6)

where u; denotes the buyer’s payoff at the continuation game that starts at period ¢t = 1.
Note that (6) can be equivalently written as fab r(v) [v — %] fi(v)dv. In the problem
at hand, f1 is not necessarily strictly positive so this expression is not always well defined
whereas the one given by (6) is.

Recall from the analysis in Myerson (1981), that the optimal mechanism should set
ui(a) = 0. Let

¢1(v) = vfi(v) = [1 = Fi(v)],

then, (6) can be rewritten as

b
max/ r(v)gy(v)dv, (7)

res

where

&

(8)

increasing

B { r: [a,b] — [0,1] such that r is }

The requirement that r be increasing follows from incentive compatibility, /C', and together
with setting uj(a) = 0 ensures IR. ”

In the Proposition that follows, we characterize the optimal mechanism at the beginning
of the final period of the game. Our objective is to choose a function r € & such that (7)
is maximized. Ideally we would like to set r equal to 0 at the points where ¢, is negative
and equal to 1 at the points where ¢, is positive. The constraint that » be monotonic does
not allow this. In order to understand the nature of the solution given the constraint let
us first examine the case that ¢, is strictly increasing ® in v. In this case the constraint of
monotonicity is not binding. The optimal r is a step function that jumps from zero to one
at the point where ¢, starts to take positive value, that is at the solution of ¢;(v) = 0. In
the case where ¢ is not monotonic the constraint is binding. Nonetheless, because (7) is
linear in r it follows that the maximizer will be a step function that jumps from zero to one.
The point where the optimal r jumps from zero to one is equal to the smallest v with the
property that the area under ¢, from v to any point greater of v is positive. This sketch is
formalized in the proof of the Proposition that follows.

"For more details see Myerson (1981).
8This corresponds to the regular case in Myerson (1981).
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Proposition 2 ° The mechanism given by

r(v)=1ifv>2z and zv) =z ifv>2z
=0ifv<z =0ifv<z

9)

where

@
z1 = inf {v € [a,b] such that / ¢1(s)ds >0, for all 0 € [v, b]} , (10)
v
maximizes the seller’s expected revenue in the continuation game that starts att = 1.

Proposition 2 shows that the maximizer is one of the extreme points of &, and describes
a way to find it. It states that the seller at ¢ = 1 will maximize expected revenue from that
point on by posting a price equal to z; given by (10). This price will depend of course on
the history h}g. Since t = 1 is the last period of the game, the seller’s problem is the same
as in the case of commitment. We look at the one buyer case and assume that his type
belongs in a measurable set. The approach developed in this section can be useful in many
other asymmetric information environments where the agent’s type space is complicated.

Our next result states a few properties of the price that the seller will post at ¢t = 1. Let

Wity ey
21(Y) denote the solution of (10) when fy(v) = { [y [(s)ds nY
0 otherwise

Lemma 3 (i) If Y C Y then z(Y) < z(Y). (i) Let ®(v) = vf(v) — [l — F(v)]. IF

1];((1;7)) if v € [a, 7]

0 otherwise

21 (17)

Y CY C [ab], then f31(Y) O(s)ds < 0. (u3) If fi(v) = for some

0 € [a,b], then 2z is continuous and increasing in 0.

This is an auxiliary result that will be used in the characterization of the revenue max-
imizing mechanism.

4.3 Necessary Conditions at a PBE

In this section we provide necessary conditions that an allocation rule satisfies if it is im-
plemented by an assessment that is a PBE of the game. In the analysis that follows we
assume that the buyer employs pure strategies. This is not an important restriction since
there is a continuum of types. We provide only necessary conditions that an allocation
satisfies if it is PBFE—implementable.

Consider an assessment (o, p) and let (7, z) denote the contract chosen at ¢ = 0 by the
buyer when his valuation is equal to its lowest possible value, which is a. Moreover, let
Y, denote the set of types of the buyer that choose the same contract at ¢ = 0 as type a.
Suppose that v is the largest type on the closure of Y,. Then Y, is a subset of [a,7]. When

T thank Phil Reny for suggesting parts of the proof of Proposition 2.
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the buyer chooses (r, z) the seller’s belief is given by the conditional distribution of v given

& f c Y
Ya that is fl(’U) = { fYa f(S)ds 1Iv a

0 otherwise

fPPBE

Proposition 3 If an allocation rule is implemented at a PBE then it belongs in , where

)

p:la,b] — [0,1], increasing such that
p(v) =71 forv € [a,2z1(Ya)),
DPBE _ p(v) =7+ (1L —71)é forv € [21(Ya),)
o r+(1—r)6 <pv) <1 forve v,
for some Y, CV; r €[0,1] and z1(Ys) given
\ by (10)

We proceed to show that at a PBFE expected discounted payoff of the buyer when his
valuation is equal to its lowest possible value, is zero.

Corollary 1 At a PBE it holds that Uy ,(0B(a),a) = 0.

4.4 The Revenue Maximizing PBFE

We are looking for the maximum expected revenue that the seller can achieve at a PBE.
In other words, we are searching for an allocation rule such that

p € arg pergz]%E R(p), where

. —] F(v)dv. (11)

A Benchmark: The Commitment Case
As a by-product of our analysis we derive the allocation rule that maximizes (11) among
all increasing allocation rules.!? It is given by

1if v > 2¢
C
= 12
P (v) {Oifuﬁzo (12)
where 2Cis given by

2¢ = inf {v € [a, b] such that / ®(s)ds > 0, for all v € [v, b]} , (13)

and
®(v) =vf(v) = (1= F(v)).

10This result is isomorphic to the one described in Proposition 2
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There is a strategy profile that is a BNE of the game and it implements p®. The seller
posts a price zCat t = 0 and at ¢t = 1; the buyer pays zCat t = 0 if v > 2°; otherwise
he rejects the seller’s offer. Given the strategy of the seller, the buyer’s strategy is a best
response. This is the BN F that yields the highest possible revenue for the seller.

Returning to our original problem, note first that p©, the allocation rule that maxi-
mizes expected revenue among all BN E—implementable ones, is not feasible under non-
commitment since p© ¢ PFBE,

We search among functions p that are elements of PPBE. For our purposes all assess-
ments that lead to the same p will be considered as equivalent, since they raise the same
expected revenue for the seller. We start by looking at the subset of PPBF that contains the
allocation rules implemented by strategy profiles where the closure of Y, is convex. This set
of allocation rules is denoted by P. We demonstrate that for every element in PYB¥ there
exists an element of P that generates the same revenue. For this reason we focus on P.

Suppose that [Y,] is convex, say it is [a, U] for some v € (a,b]. Then we have that

f(w) if _
filv) =¢ F® e ‘[a,v] , (for some v € (a, b)). (14)
0 otherwise

When we discuss allocation rules implemented by PBE's where [Y,] is convex, we will write
z1 as a function of ©. The set that contains these allocation rules is defined by

( 3

p:[a,b] — [0,1], increasing such that
p(v) =7 forv € [0, 21(0)),

p(v) =71+ (1—7)6 forv e [z(v),0)
r+(1—7r)6 <pv) <1 forvevl]
for some v € [a,b]; r € [0,1], and z1 given

( by (10)

Definition 2 P =

We now show that it is without any loss to consider only the allocation rules in P. We
establish this by showing that for each p € PFBE there exists p € P such that R(p) > R(p).

Proposition 4 For each p € PPBE there exists p € P such that R(p) > R(p).

Now we consider a subset of P, denoted by P*. Any allocation rule in P* can be im-
plemented by an assessment with the following two characteristics. First, My contains two
contracts; one that assigns the object with probability less than one, and a contract that
assigns it with probability 1. Second, the buyer’s action at ¢ = 0 separates types into two
groups, namely for some v € [a, ], types in [a,?), (“low” types), choose the low probability
contract, and types in [7,0], (“high” types), choose the one that assigns the object with
probability 1.
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Definition 3

( )

p:la,b] — [0,1], increasing such that
p(v) =71 forv € [a, z1()),
p(v) =71+ (1 —7r)d forv e [z1(v), D)
p(v) =1 forv € [0,0]
for some v € [a,b]; 7 €[0,1]; 21(v) given
L by (10); and © > v. J

73*

Note that P* C P. This can be seen by taking ¥ in the definition of P* to equal 2.
We proceed to show that the maximum of R over P is equal to the maximum of R over
P*. This result tells us that the seller can do no better than employing a mechanism in
t = 0 that separates types in to two broad groups, high and low ones. Moreover, this
mechanism should assign the object with probability 1 to high types. Maximizing over this
set of allocation rules is a straightforward task since its elements can be implemented by
assessments where My contains 2 contracts. Because P* may contain allocation rules that
are implemented by assessments that are not PBE'’s, we need to verify that the maximizer
is indeed implemented by an assessment that is a PBE. In the final step we show that the
optimal one can be implemented by a PBE of the game where the seller posts a price in
each period.

We start by verifying that the maximum of R over P* and P indeed exists.

Lemma 4 The mazimum of R over P and over P* exists.

Now we turn to establish an important relationship of the set P and P*. Namely,
we show that every element of P can be approximated arbitrarily closely by a convex
combination of elements of P*; P is in the convex hull of P*.

Lemma 5 FEvery element of P can be approximated arbitrarily closely, in the usual metric,
by a convex combination of elements of P*.

Lemma 5 establishes that the allocation rules in P* are extreme points of the set P.
Since the seller’s expected revenue can be expressed as a linear function of p, the optimal
allocation rule will be an extreme point of P. This intuition is formalized in the following
result.

Proposition 5 Consider a linear function R : P —R. Suppose that there exists a set
P* C P, such that every element of P can be approrimated by a convex combination of
elements of P*. Furthermore, suppose that the maximum value of R over P and P* exists.
Then

R(p) = max R(p).
max (p) max (p)
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A consequence of Proposition 5 is that we can focus on the problem of maximizing
expected discounted revenue over the set P*. We proceed to show that the maximizer of
this problem can be implemented by an assessment that is a PBFE of the game where the
seller posts a price in each period.

Any allocation rule in P*can be implemented by an assessment with the following
two characteristics. First, the seller proposes at t = 0 My = {(r,2),(1,20)}, for some
(r,z) € [0,1] x Ry and zp € Ry and at ¢t = 1 proposes M7 = {(0,0), (1,21)}, for z; < 21(0),
where z1(0) is given by (10) and v = %%. Second, given M; and M as above,
the buyer’s strategy, along the path, is a best response at each node. Type © is indifferent
between choosing (1, z9) at ¢ = 0 and choosing (r,z) at t =0 and (1, 21) at t = 1.

In the final step we establish that the revenue maximizing rule among the elements of
P* can be implemented by a PBE of the game that the seller posts a price in each period.
We do so in two steps. First, we show that for each allocation rule in p € P*, implemented
by an assessment where z; < 21(0), there exists an allocation rule p € P* where z; = 21(0),
(that is where the seller behaves optimally at ¢ = 1), and it generates higher revenue for the
seller. Second, we show that the optimal My contains the exit option (0,0) and a contract
that assigns the object with probability 1. These claims are established in the proof of the
following Lemma.

Lemma 6 Let p* denote the solution of max,cp+ R(p). Then p* can be implemented by a
PBE of the game where the seller posts a price in each period.

Now we are ready to state and prove the main result of the paper.

Theorem 1 Under non-commitment the seller maximizes expected revenue by posting a
price in each period.

Proof. In Lemma 4, we verified that the seller’s maximization problem is well defined.
From Lemma 5 we know that an element of P can be written as a convex combination of
elements of P*. The result follows from Proposition 5 and Lemma 6. H

5 Commitment and Non-Commitment: Revenue Compar-
isons

In this section we compare the expected revenue for the seller when she employs a revenue
maximizing mechanism under commitment and under non-commitment. Given commit-
ment the revenue maximizing institution is to post a price equal to 2, (given by (13)), in
each period. We have shown that when the seller behaves sequentially rationally the revenue
maximizing mechanism is to post a price in each period. Let zy denote the price posted
at t = 0 and z; the price posted at ¢ = 1. This sequence of prices has to be sequentially
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rational. The seller can replicate the situation under non-commitment in the commitment
case by posting zo at t = 0 and 2z, at t = 1, instead of posting 2 in each period. From this
observation it follows that in general

Rc > Rne(9),

where Rc denotes the highest revenue that the seller can achieve under commitment and
Rnc the highest revenue under non-commitment.

When the buyer and the seller are very patient, (in this model the buyer and the seller
have the same discount factor), the seller will find it beneficial to move all trade in the last
period of the game. In the last period of the game she has commitment power. If 6 = 1 by
shifting all trade at t=1 she obtains expected revenue equal to R, which is the best she
can hope for. It follows that when 6 = 1 expected revenue under commitment and under
non-commitment coincide.

On the other hand, for § very small the value of the object at t=1 is almost zero to
the buyer no matter what his valuation is, so there is not much surplus for the seller to
extract. When the seller and the buyer are very impatient the situation is almost equivalent
to the full commitment case. The seller posts at t=0 the revenue maximizing price as in
the environment with commitment; therefore we get that Ryc(0) = Rc.

From the above observations it follows that for extreme values of the discount fac-
tor the seller can achieve the same expected revenue under commitment and under non-
commitment. For intermediate values of the discount factor it holds that Ryc < Re. To
get some idea about the magnitude of the difference we present an example.

Example 3 Assume that the buyer’s valuation is uniformly distributed on the interval [0,1].
First note that the optimal mechanism under commitment is to post a price z¢ = 0.5 in
each period. The corresponding expected revenue is Ro = 0.25. Now let us look at the
non-commitment case. Let ¥ denote the valuation of the buyer who is indifferent between
accepting zo at t = 0 and accepting z1 at t = 1. It is given by v = %. For the assumed
prior we have that, if the buyer rejects the price offer at t = 0, then Fi(t) = % The price
posted at t=1 is given by z1 = % Substituting this expression of z1 into ¥ we get that
20 =0 (1 —0.58). Given the above relationship between z1, v and zy the seller will pick

20 € argmax{é/v z1f(s)ds + /1 zof(s)ds}

1

where 5 = —=2— and 21 = ——0
T 1-056 YT (1 - 050)
The mazximizer is given by
~ (1-0.56)2
ST

The following table gives the solution for different values of the discount factor.
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Discount Factor § Price at t=0, zg Price at t=1,2z1 V=% Rnc

0.0001 0.49999 0.25001 0.50002  0.24999
0.3 0.46612 0.27419 0.54839  0.23306
0.4 0.45714 0.28571 0.57143  0.22857
0.45 0.45330 0.29245 0.58491  0.22665
0.5 0.45 0.3 0.6 0.225
0.7 0.44474 0.34211 0.68422  0.22237
0.9 0.46538 0.42308 0.84615  0.23269

0.9999 0.49995 0.4999 0.9998  0.24998

1 0.5 0.5 1 0.25

6 Concluding Remarks

This paper establishes that the revenue maximizing allocation mechanism in a two-period
model under non-commitment is to post a price in each period. It also develops a proce-
dure to derive the optimal mechanism under non-commitment in asymmetric information
environments. This method does not rely on the revelation principle.

Previous work has assumed that the seller’s strategy is to post a price and the problem
of the seller is to find what price to post. We provide a reason for the seller’s choice to
post a price, even though she can use infinitely many other possible institutions: posted
price selling is the optimal strategy in the sense that it maximizes the seller’s revenue.
We hope that the methodology developed in this paper will prove useful in deriving the
optimal dynamic incentive schemes under non-commitment in other asymmetric information
environments.

In the future we plan to study the problem in an infinite-horizon framework, which may
be a more appropriate model to study mechanism design under non-commitment. This
problem is involved with issues which require careful analysis beyond the scope of this

paper.

7 Appendix

Proof of Lemma 2
The solution of Program 1 has to satisfy IC and IR for v € Y, whereas the solution of
Program 1b has to satisfy these constraints for all v € [Y]. From this observation it follows
that
Ry (M) > Ry(My).

We will now establish that
Ri(My) < Ry(My).

21



We will argue by contradiction. Suppose not, then
Ry(My) > Ry(My). (15)

In what follows we extend M7 on the closure of Y appropriately and show that this extension
satisfies IC,; and IR.

First notice that by the definition of closure for each v € [Y]\Y there exists a sequence
{vn}nenin Y such that v, — vasn — oo. There may exist more than one sequence {vy, }nen
that converges to v. Each one of these sequence determines a corresponding sequence r(vy,)

11 The value of the mechanism is defined to

and z(v,) which may have different limits.
be equal to the smallest of these limiting values. These limits are well defined since M is
feasible, which implies that 7 and z are increasing in v. The extension of M on [Y], denoted

by M¢, is defined by

ra(v) = { ming, .3 [n;(:ij :(fn;]/ ifoeV\Y (16)
calv) = { ' z(v) ifveY ' .
ming, ., [lim, 0 2(vp)] if v € [Y\Y
Since for all v € [Y]\Y fi(v) =0 and rq(v) = r(v) for all v € Y, it holds that
Ry(M{') = Ry(My). (17)
From (15) and (17) we obtain that
Ry(M{") > Ry(My). (18)
We proceed to demonstrate that M- fl satisfies IC, and IR.
Step 1: We first show that it satisfies incentive compatibility, that is
ra(V)v — 2 (V) > ra (v )v — 24(V') for all v,v" € [Y]. (19)

By the definition of M{! (19) is satisfied for v € Y and v/ € Y. Now take v € Y and
consider v' € [Y]\Y. Since v/ € [Y]\Y, there exists at least one sequence of elements of YV
that converges to v'. Consider the one used to define the extension of M; on the closure of
Y in (16) and denote it {v], }nen. Because M satisfies IC on Y, then by the definition of
M¢!, we have that

ra(V)v — 2z (V) > ra(v))v — 24 (v)) for all v/, € Y (20)
Taking the limit of (20) we obtain

Tcl(v)’U - ch(l)) > Tcl(vl)v — Zcl (U/)7 (21)

" These limits exist because these are bounded sequences.
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hence v € Y does not have incentive to report v’ € [Y]\Y.

We now show that (19) is satisfied for v € [Y]\Y. Since v € [Y]\Y, there exists at
least one sequence of elements of Y that converges to v. Consider the one used to define
the extension of M; on the closure of Y in (16) and denote it {vp}nen. So far we have
established that

et (Vn)vn — 2 (Vn) > 1o (v)vn, — 2q(v) for all v € [Y] and v, € Y.
Using the definition of M{! and by taking the limit as n — oo, we obtain
T (V)v — 2 (V) > ra(v")v — 24(V) for all v’ € [Y].

Step 2: Now we demonstrate that M{! is individually rational. Since M¢ is incentive
compatible it suffices to demonstrate that IR holds for the smallest element of [Y] call if
v. To see this, suppose that Mfl satisfies individual rationality for v, that is

ra(v)v — za(v) > 0. (22)

But (22) implies
ra(v)v — zg(v) >0, for v € Y such that v > v

which combined with the fact that M is IC leads to
re(V)v — zg(v) > re(v)v — 24(v) > 0, for v € Y such that v > .

Hence given that Mfl satisfies IC,; it suffices to demonstrate IR, for v.

If ve Y then IR, follows from the fact that M; is individually rational. Now let’s
consider the case where v¢ Y. Since ve [Y]\Y, there exists at least one sequence of elements
of Y that converges to v. Consider the one used to define the extension of M; on the closure
of Y in (16) and denote it {v, }nen. Since M satisfies I R, we have that for all n € N

(v, v, — 2(v,) > 0. (23)
By the definition of M{! (23) implies that
Tet(Un )2y — 2a(2,) > 0.
Taking the limit as n — oo we obtain
ra(L)e — za(v) > 0. (24)

From the above observations it follows that Mfl satisfies IC. and IR,. Moreover as
demonstrated in (18) it raises higher revenue than M. Contradiction. B

The following Lemma will be used in the proof of Proposition 1 and in the proof of
Proposition 3.
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Lemma A1l. Suppose that there exist v1,v2 on the boundary of Y such that v ¢ Y for
all v € (v1,v2). Then at a PBE equilibrium it must hold that

r(ve)ve — z(v2) = r(v1)ve — 2(v1). (25)

Proof. 2Consider a PBE (o, ). Let Y denote the type space at the beginning of ¢ = 1

after a history hf . Also, let M7 denote the mechanism the seller employs at t = 1 given hf

at the PBFE under consideration. From Lemma 2 it follows that it is without loss to require

M; to be feasible for all types on the closure of Y (instead of being feasible only on Y).
Because M;j is incentive compatible it must hold that

r(vg)ve — z(ve) > 7(v1)vy — 2(v1).
We now demonstrate that at a PBFE the above inequality must hold with equality, that is
r(vg)ve — z(ve) = 1(v1)vy — 2(v1). (26)
To see this, we argue by contradiction. Suppose that
r(ve)va — 2(v2) > r(vi)va — 2(v1)

and modify M; as follows. For all types v > v9, v € Y, increase the payment by the constant
Az, where Az is such that

r(ve)ve — z(ve) — Az = r(vy)ve — 2(v1). (27)

We now show that the resulting DRM, call it Ml, satisfies IC and IR.
Step 1: Ml is incentive compatible.
Take v € Y, such that v < v;. Since M; is IC we have

r(v)v — z(v) > r(¥ v — z(v'), for allv’ €Y,
which by the definition of N implies
F(v)v — 2(v) > 7(v")v — 2(v), for all v/ € Y such that v’ < v;.
Since Az > 0, it holds that
r(v)v — z(v) > r(v v — z(v') — Az, forallv’ € Y
which, using the definition of M can be rewritten as

F(v)v — 2(v) > 7(v")v — 2(v), for all v/ € Y such that v’ > vs.

12The proof of this Lemma is quite simple. It is included for completeness.
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So far we have shown that if the buyer’s type v is less or equal to v1, he does not have an
incentive to misreport.

We now show that if v > v9, type-v buyer does not find profitable to report v’ # v. We
consider v = v9. Since M is incentive compatible we have that

r(va)vg — 2(ve) > r(v)vg — 2(v') for all v/ € Y. (28)
Subtracting Az from both sides of (28) and using the definition of M; we obtain that
P(vg)ve — 2(vg) > #(v')vg — 2(v') for all v/ € Y such that v > vs. (29)

So far we have shown that type vy does not have incentive to report v/ > vs.
Now we will demonstrate that vo does not have incentive to report v’ < vy. Since M; is
incentive compatible we have that

r(vi)vy — z(v1) > r(v)vy — 2(v) for all o' € Y. (30)

For v' € Y such that v; > v’ we have that r(v;) > r(v"). This follows from the fact that
M is IC. Because ve > v1, this observation together with (30) imply that

r(v1)ve — z(v1) > r(v)vg — 2(¢)) for all v/ €Y, vy > 0. (31)
Combining (31) with (27) we obtain that
r(ve)ve — 2(vy) — Az > r(v)vg — 2(v) for all v/ € Y, vy >0/,
which using the definition of M; can be rewritten as
P(v2)ve — 2(v2) > 7(v')vg — 2(¢') for all v/ € Y such that v; > v'. (32)

From (29) and (32) it follows that v does not have incentive to misreport. Therefore IC' is
satisfied for ve. It is straightforward to show it is also satisfied for v > v2. We have therefore
demonstrated that M, satisfies IC.

Step 2 : We show that M, satisfies IR.

For v < vy IR of M follows from IR of Mj. For v > vs it suffices to check IR for vy
(for a justification see Step 2 in the Proof of Lemma 2).

Since M; satisfies IR we have that

r(vy)vy — z(v1) > 0.
It follows that since vy > v

r(v1)ve — z(v1) > r(vy)vy — 2(v1) >0,
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which together with (27) and the definition of M, imply
7(ve)(ve) — 2(v2) = r(ve)(v2) — d2(vy) — 6Az >0

Hence the direct revelation mechanism M; is IC and IR. Moreover, it raises strictly higher
revenue than M. The seller has a profitable deviation at t = 1 contradicting the fact that
we are considering a PBE. Hence (26) indeed holds. W

Proof of Proposition 1

Because the solution of Program 1 has to satisfy IC and IR for v € Y, whereas the
solution of Program 2 has to satisfy these constraints for all v € Y, it follows that

Rl(Ml) > Rl(MlE).

We will now establish that
Ry (M) < Ry(MPE). (33)

by contradiction. Suppose not, then
Ry (M) > Ry(ME). (34)

Now consider the extension of  and zon Y, denoted by 7g and Zg. We will call this direct
revelation mechanism MF. It is defined as follows

. _ r(v)ifveY N B z(v)ifveY
Folv) = {M@ﬁveYW”@wy_{dmﬁveYW" (35)
where © = sup{v/ € Y : v <wv}.

Since fi(v) =0 for all v € Y\Y and 7g(v) = r(v) for all v € Y we have

Ry (M{) = Ry(M). (36)
From (34) and (36) we obtain that

Ry(MF) > Ry(MF).

We proceed to demonstrate that M{” is feasible.
Step 1: Here we establish that M{ satisfies incentive compatibility.
Consider a v € Y, since M is feasible we have

r(v)v — z(v) > r@)v — 2(v) for all v/ € Y. (37)
By the definition of M it follows that for v € Y, #g(v) = r(v) and Zg(v) = 2(v); for
v €Y, fp(v) =r() and Zg(v') = 2(v'); and for ' € Y\Y 7g(v') = r(d) and Zg(v') = 2(d)

(where ¥ defined in (35)). So from (37) we obtain that

Fp(v)v — Zp(v) > Fp(v)v — Zg(v) for all v/ € Y.
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It follows that types in Y do not have incentive to misreport when the seller employs M{E .
Now consider a v € Y'\Y. Since Y is closed, there exists an open interval around v that

has an empty intersection with Y. Consider the largest such interval; call it (v1,v2). From

13

the fact that M is a solution to Program 1 and since'® vy, v2 € Y, but no element of (v, v2)

is in Y, we know from Lemma Al that
r(va)ve — z(ve) = r(v1)vy — 2z(v1). (38)

Consider a v € Y\Y and, in particular, a v € (v, va).
We first show that v does not have incentive to report v' € (v1,v2). Notice that by the
definition of the extension of M; we have that

7r(v) =7r(v1) and Zg(v) = z(vy) for all v € (v1,v2).
Trivially
r(vi)v — z(v1) > r(vi)v — z(v1),
which implies that
Te(v)v — Zg(v) > Tp(v)v — Zg(v'), for all v' € (vq,vs). (39)

Second, we show that v does not have incentive to report v’ < v;. Since M is feasible we
have that
r(v)vr — z(v1) > r(v)vy — 2(v'), forall v’ € Y

which can be rewritten as
[7(v1) = r(v")] v1 = 2(v1) — 2(v), for all v €Y. (40)

From the fact that My is IC, we have that for v; > ¢/, it holds that r(v;) > r(v'). Since
v € (v1,v2), (and hence v > vy1), (40) implies that

r(v1)v — z(v1) > r(v')v — 2(v'), for all v € Y such that v’ < vy,
which gives
Fe(v)v — Zp(v) > Fp(v)v — Zg(v)), for all v’ € Y such that v/ < vy. (41)

The fact that (41) holds for types v’ € Y, (and not just types v’ € Y), follows from the fact
that MF for v € Y\Y is equal to M; at some & < ¢’ in Y.

Finally we demonstrate that v does not have incentive to report v/ > vy. From the
feasibility of M7 we obtain that

r(vo)vy — 2(ve) > r(v vy — 2(v'), for all v’ € Y

13Because Y is closed.
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which can be rewritten as
[r(v2) — r(v')] v2 > 2(v2) — 2(v'), for all ' €Y.

Because M is IC it follows that for v' > vg we have that r(vy) < r(v'). Since v < vy we
obtain that

r(v2)v — z(ve) > r(v')v — 2(v'), for all v € Y such that v/ > vs. (42)
Now from (38), the fact that r(ve) > r(v1) and the fact that ve > v we obtain that
r(vi)v — z(v1) > r(v2)v — z(va),
which combined with (42) gives us that
r(v1)v — z(v1) > r(v)v — 2(v') for all v’ € Y such that v > vs.
From the definition of M{” we obtain that
Fe(v)v — Zp(v) > Fp(v)v — Zg(v), for all v’ € Y such that v' > vs. (43)

From (39), (41) and (43) we see that MF satisfies ICy for v € (v, vs). Similarly one can
check that ICg is satisfied for all v € Y\Y.
It remains to check M{ satisfies IRg.
Step 2: In this step we show that MlE is individually rational.
First observe that if the ICg constraints are satisfied then /Rg constraints are equiv-
alent to'?
FE(v)v — Zp(v) = 0, (44)

where v is the smallest type in Y.
Since Y is the convex hull of Y and v is the smallest element of Y, it is also the smallest
element of Y. Because Ml is feasible we have that

r(v)v — z(v) > 0. (45)

It follows by the definition of M that (45) implies (44). From the above arguments it
follows that MF is feasible. Moreover it raises strictly higher revenue for the seller than
ME. Contradiction, therefore
Ry(M;) = Ry(MF).
|
Proof of Proposition 2

Step 1 We start by proving existence of the solution of the seller’s problem at the be-
ginning of ¢t = 1. Recall that R;(M;) denotes the seller’s expected revenue at the beginning

11Qee the Proof of Lemma 2 for more details.
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of t = 1. From Proposition 1 it follows that it is without loss of generality to replace the
type space with the convex hull of its closure. When the type space is convex, we can write
R, as a function of r, that is

b
Ru(r) = / F(0)y (0)dv,

where ¢1(v) = vfi(v) — [1 — F1(v)].
The seller seeks to solve

res

max /ab r(v)gy(v)dv,

where & = {r: [a,b] — [0,1] , increasing} .
Step la. (Sequential Compactness) In order to show sequential compactness of &
we will refer to the following results.

Theorem (Al). A sequence r, of functions from X to W converges to a function r in
the topology of pointwise convergence!® if and only if for each s € X (= [a,b] in our
problem), the sequence 7, (s) of points of W (= [0, 1] in our problem) converges to the
point 7(s). (For a proof see Munkres “Topology: A first Course” page 281.)

Let {r,} be a sequence of elements of . Then, from Helly’s Selection Principle, (see
Kolmogorov and Fomin p. 372), it follows that there exists r € & and a subsequence of
{rn} that converges pointwise to 7. From Theorem A1 it also follows that there exists r € <
and a subsequence of {r,} that converges to r. Hence every sequence in & has a convergent
subsequence. It follows that S is sequentially compact.'©

Step 1b. (Continuity) We want to show that the objective function is continuous
on & in the topology of pointwise convergence. In order to accomplish this we will use

Lebesque’s Dominated Convergence Theorem.

15

Definition 4 (Topology of pointwise convergence.) Given a point x of [0,1] and an open set U of space [0,1]
let

S@,U) ={p | pe[0,1]"" and p(z) € U}

The sets S(z,U) are a subbasis for a topology on [0, 1][0’1] which is called the topology of pointwise convergence.
The typical basis element about a function p consists of all functions g that are close to p at finitely many
points.

16

Definition 5 (Sequential Compactness). A topological space X is said to be sequentially compact if every
infinite sequence from X has a convergent subsequence.
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Theorem (Lebesque’s Dominated Convergence Theorem). Let g be a measurable function
over a measurable set E, and suppose that {h,} is a sequence of measurable functions
on E such that

|hin(8)] < g(s)
and for almost all s € E we have hy,(s) — h(s). Then

/hzlim/ .
E E

(For a proof see Royden (1962) p.76.)

Take E = [a,b] which is a measurable set, and g is given by g(s) = g V s € [a, b], where

g = sup r(s)[sfi(s) — (1 — Fi(s))]
s€[a,b]
Note that ¢ is measurable, since it is a constant function, and is an upper bound for every
function

h(s) = r(s) [sfi(s) — (1 = Fi(s))].

Because f is strictly positive and continuous on [a, 8] it is bounded, and so is f; and hence
g < 00.17 Observe that h is a measurable function. Take hy,(s) = 7,(s) [sf1(s) — (1 — F1(s))]
and apply Lebesque’s Dominated Convergence Theorem with g defined as above.

Step 1lc. We now demonstrate that a bounded and continuous function over a se-
quentially compact set has a maximum. First note that Rj(r) is bounded by 1. Let
Ry = sup,.cg R1(r) and let 7, be a sequence in  such that

_ 1
Rl(Tn) > R — E’ n € N.

Since < is sequentially compact, every sequence has a convergent subsequence, therefore
{rn}nen, has a convergent subsequence, {ry, }n,en, that converges to 7. Since Ry is con-
tinuous at 7, we have that R (7) = limn(l)HQO Ry (rn(l)) = 1. Hence the maximum exists. H

Step 2. So far we have established that the maximization problem given by (7) has a
maximum we will now proceed to show that the maximizer is of the form

lifs> =z
P - - 4
r=(s) {Oifs<z. (46)

The objective function is linear in the choice variable so the maximizer will be an extreme
point of the set of & The set of extreme points of & is

K = Uze [a,b]T=

'"Recall that fi is given by (5) for some Y € [a, b].

30



where r, is defined in (46).
Every increasing, non-negative function G with G(1) = 1 can be written as a convex
combination of functions as defined in (46)

1
G(s) = /O ro(8)dG (v).

Let 7* be a maximizer of the problem defined in (7). Let R} denote the maximum value of
the objective function. Then using the above representation and Fubini’s theorem we have

/abr*(5)¢1(8)d5 _ /ab {/01 Tz(s)dr*(z)}qbl(s)ds:
B /01 {/ab Tz(8)¢1(3)d8} dr*(2) = RL.

This is a convex combination of functions of the form given in (46). Hence one of these
functions is a maximizer. Bl
Step 3. Now we turn to show that the mechanism given by

=1ifv> — 2 ifv >
rlv)=1ifv> 2z and zv)=z1ifv> 2

47
=0ifv<nzy =0ifv<z (47)

where ~
z1 = inf {v € [a, b] such that / ¢1(s)ds >0, for all v € [v, b]} , (48)

maximizes the seller’s expected revenue in the continuation game that starts at ¢ = 1.
First note that z; is well-defined because the set

{v € [a,b] such that / ¢1(s)ds >0, for all v € [v, b]}

is non-empty since it contains b. Suppose that z; does not characterize the optimal mecha-
nism at ¢ = 1. We some abuse of notation, let R;(z;1) denote the seller’s revenue at the be-
ginning of t = 1 given z;. If z; is not optimal then there exists Z; such that Ry(21) > Ri(z1)

First, suppose that Z; < z1. Then by the definition of 2, there exists a v' € [21, 21]'®
such that

Y

[ " 61(s)ds < 0. (49)

In this case expected revenue at the continuation game that starts at t = 1 is given by

mn = [ on(eas+ [ o+ [ onisras

'8 Actually, from the definition of z; it follows that there exists v’ € [1, b] such that f;l ¢(t)dt. A moment’s
thought will reveal that we can take v’ < z; without any loss.
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From (49) it follows that
Z1 v’ z1 b
Ri(z) < / 04 (s)ds + / 04 (s)ds + / 61(5)ds + / 61 (s)ds
= R(zl)a

contradiction.
Now suppose that z; > z;. Then,

21 Z1 b
Rl(él):/ 0¢1(s)ds+/ 0¢1(s)ds + [ ¢1(s)ds

1

From the definition of z; it follows that f o ¢1(s)ds > 0, hence

Z1 zZ1 b
Ri(51) < / 06, (s)ds + / 61 (s)ds + / 61(s)ds = Ry(z1),
a Z1 Z1
contradiction. Il

Proof of Lemma 3
(1) Let v denote the smallest type in Y and © the largest one. Recall that we designate

by 21 the price posted at t=1 which is given by
21 = inf {v € [v, 7] such that / (sfi(s) = [1 = Fi(s)])ds >0, for all v € [v,v]} ,

where f1(s) = T L f( t)) —- Note that f is continuous since f is. Define

¥(s,Y) = sf(s / f(t) (50)

and observe that

z1 = inf {v [v, 9] such that / f ds >0, for all v € [v, v]}
Y

Because Y has positive measure we have that fy t)dt > 0. Hence z; can be equivalently
defined as

z1 = inf {’U € [v, ] such that / ¥(s,Y)ds >0, for all v € [v,v]} : (51)

/Y F(t)dt < /Y F(t)dt. (52)
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We want to show that z;(Y) < z1(Y). We argue by contradiction. Suppose that z;(Y) >
z1(Y). By (50) and (52) it follows that for all v € Y it holds that 1, (v,Y) < %, (v,Y). This
implies that if

/ A ¥,(s,Y)ds >0, for all v e [zl(f/),@} (53)
z1(Y)

then

(v, Y)ds > 0 for all v € [21(17),17} : (54)
z21(Y)

By the definition of 2z1(Y) (53) holds; hence (54) also holds. But (54) together with the

supposition that z1(Y) < z1(Y), contradict the definition of z1(Y’). Hence it must hold that

z1 (Y) 2 Zl(Y).
When Y is of the form [a,?] for some ¥ € [a,b], then we can consider z; and ¢ as
functions of . The above result implies that z; is an increasing function of .

(ii) We would like to establish that if ¥ € ¥ C V then fzzll((;)) ®(s)ds < 0, where

®(v) =vf(v) — [1 = F(v)]. This will done be establishing the following claim.
Claim 1. Forallv € {;’1 (Y), zl(f/)} there exists 0 € {v,zl(f’)] such that fvﬁ O (s)ds < 0.
We will establish this by contradiction. Suppose that there exists
v E [zl(Y),zl(f/)] such that for all v € [v,zl (Y)} it holds that ff ®(s)ds > 0. First

observe that (s, V) = ®(s). Now because Y C ¥ C V then if
/ ®(s)ds > 0, for all v € [v, zl(f/)}

it holds that ~
/ W(s,Y)ds > 0, for all & € {v,zl(f’)] . (55)

Let © denote the largest element of Y. From the definition of 2 (Y) we know that

/ (s, Y)ds > 0 for all © € [zl(f/),f)} ,
z1(Y)
which together with (55) implies that

/ ¥(s,Y)ds > 0 for all © € [v, 7], (56)

~

which contradicts the definition of z;(Y). B
Now consider type z1(Y). From Claim 1 we know that there exists v; € [zl (Y), 21 (Y)}

such that fzvll(y) ®(s)ds < 0. If v; = 2z (V) we are done, otherwise by Claim 1 we know
that there exists vy € {vl,zl()})] such that fv”f ®(s)ds < 0. If vg = z,(Y) we are done;

otherwise by Claim 1 we know that there exists vz € [vg, zl(Y)] such that f;);’ d(s)ds <
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0. Consider the sequence {v,}nen constructed in the way suggested above. This is an

increasing sequence and it is straightforward to show that its limit is equal to z1(Y). It
21(Y)
follows that lel(y) d(s)ds < 0.
f) =
y =) Tm) if v € [a, 7]
0 otherwise
then z; is a continuous function of v. Take v, — ©v. We want to establish that z; (v,) — 2(0).

(iii) We now demonstrate that when fi(v , for some v € (a,b],

Now, for each n € N, z;(v,,) satisfies,
z1(vy) = inf {’U € [a, vy) such that / ¥(s,vy)ds >0, for all v € [v,vn]} ) (57)

where
Y(s,vn) = sf(s) + F(s) — F(vn)

Because f is continuous, so is F. From this observation it follows that when v, — o,
Y(s,vn) — ¥(s,v). Moreover ¢ is bounded since f is. By Lebesque’s’ Dominated Conver-
gence Theorem, (see Royden (1962 p. 76), we have fvﬁ@b(s,@)ds = lim, oo fvﬁ@b(s,vn)ds,
since 1 is bounded . Taking the limit as n — oo of (57) we have that

21(0) = inf {’U € [a, 0] such that / ¥(s,0)ds >0, for all v € [v,v]} )

|

Proof of Proposition 3

Consider a PBE assessment (o, 1) and let p denote the allocation rule implemented by
it. At a PBFE the buyer’s strategy is a best response to the seller’s strategy. From Lemma
1 it follows that if an allocation rule is implemented by an assessment that is a PBE of the
game, then p is increasing in v.

Moreover at a PBE the seller’s strategy must be a best response at the continuation
game that starts at t = 0. Let (r, z) denote the contract chosen by type a at ¢t = 0 and Y,
the set of types that choose the same contract as type a at t = 0 at the assessment under
consideration. The largest element of the closure of Y, is denoted by v; Y, is a subset of
[a,?]. We use z;1 to denote the price that is optimal after the history that the buyer chooses
(r,z) at t = 0 and trade does not take place at ¢t = 0. Since at a PBE the buyer’s strategy
is a best response at the continuation game that starts at ¢ = 1, we have that for v € Y}
such that v < z; the buyer will reject z; and for v € Y, such that v > z; the buyer will
accept z1. Let

v; = sup{v €Y, s.t. vrejects z; at t =1}
ve = inf{v €Y, s.t. v accepts z; at t = 1}.

From the ex-ante point of view it holds that p(v) = r for v € Y, such that v < v; and
p(v) =7+ (1 —1r)é for v € Y, such that v > ve. By the monotonicity of p it follows that

p(v) = rfor v €V such that v < v; and
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p(v) = 74 (1 —7r)d for v € V such that vo < v < 0.

Type vy is on the boundary of Y,. If vy is in Y, then p(v1) = r and x(v1) = z; if vy is not
in Y, then it must be indifferent between choosing (r, z) at ¢ = 0 and rejecting the seller’s
offer at t = 1, and his actions specified by og. Similar considerations hold for type vo hence

p(v1)vy —x(v1) = 7rv; — 2 and

p(va)va —x(v2) = 712 — 2+ (1 —71)6(v2 — 21). (58)

Note that all types in (v1,v2) do not belong in Y, but v; and vy are on the boundary of Yj,.

Let 7 : Y, — [0,1] and 2 : Y, — Ry denote the DRM that the seller will employ at
t = 1, after the history that the buyer chooses (r,z) at ¢ = 0 and he does not obtain the
object. From Lemma A1l we know that the DRM that the seller employs at t = 1 must be
such that 7(vy)ve — 2(v1) = 7(v2)va — £2(v2), which in the case under consideration it results
to

vy — 21 =0, or 21 = V. (59)
If v1 = vy then it follows that
p(v) = rforvé€ [a,z)
p(v) = r+(1—r)dforve (21,0] and

r+(1-r)d < p(v)<1forwve(v?.

Now let us look at the case where vy # va. Substituting (59) in (58) we obtain that
p(v2)vy — (V) = rvg — 2. (60)

We now demonstrate that p(v) = r for all v € (v1,v2). We will argue by contradiction.
Suppose that there exists v € (v1,v2) such that p(v) # r. Note that since we are looking at
a PBE it must be the case that

T — Z Oor

=
N
|
=
S =
\YARIY,

x(v) — z.

Since p is increasing we have that p(v) > r and because p(v) # r it holds that p(v) > 7.
From this observation and the fact that v > v, (recall that v € (v1,v2)), we have that

p(v) —rlva > x(v)—zor

p(v)vea —x(v) > rTve —2

or by (60)
p(v)ve — z(v) > p(ve)ve — z(va),
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which implies that vy can benefit by mimicking the behavior of v. Contradiction. Therefore
p(v) =7 for all v € (vy,v).

From the above observations it follows that if p is an allocation rule implemented by an
assessment that is a PBFE, it is an increasing mapping from V' to [0, 1] such that

p(v) = rforvé€Ea,z)
p(v) r+ (1 —r)6 for v € [21,0) and
r+(1-r)8 < pv)<1forwve[v,b.

[ |

Proof of Corollary 1

We argue by contradiction. Suppose that U, ,(0g(a),a) = p(a)a — x(a) > 0, then the
seller has a profitable deviation at ¢ = 0. Namely, she can increase the expected payments
of all contracts in My by Az such that p(a)a —z(a) — Az =0. B

Proof of Proposition 4

We want to show that for each p € PPBE there exists p € P such that R(p) > R(p). The

result will be established by showing that every allocation rule in PFBF

implemented by
an assessment where [Y,] is not convex, can be also implemented by an assessment where
[Y,] is convex.

Consider an allocation rule in p € PPBE

implemented by an assessment (o, ) where
[Ya] is not convex. Suppose that the convex hull of [Y,] is [a,?]. This allocation rule is
given by
p: [a,b] — [0,1], increasing such that
p(v) =71 for v € [a, z1(Ya)),
p(v) =7+ (1—7)é for v € [21(Ya),D)
r+(1—r)d <pv) <1forwve (v,

From Lemma 3 it follows that because Y, C [a, 7], then 2;1(Y,) < z1(?). Again from Lemma
() i _

3 (i) it follows that if fi(v) ={ F® e ‘[a,v]
0 otherwise

and continuous in ©. From this observation there must exist © € (a,v) with the property
that if [Y;] = [a, 0] the 21 given by 10 is such that z1(0) = 21(Ya).
Now consider an assessment where the set of types that choose the same contract as a

, for some v € (a,b], then z is increasing

is convex and that it implements the following allocation rule

p(v) = rforv € [a,z(0))
H(v) = r+(1—r)dfor ve [z(0),v)
—r)6 < pv) <1forwve[vb).

r+ (1

Such an assessment exists and it is indeed very similar to the one that implements p, call
it (o,p). We just need to change slightly the strategy of the buyer. The reason for this
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similarity is simple. Types that are in [a,?] but are not in Y, are indifferent between
choosing (7, z) at t = 0 and choosing some other contract specified by op. We consider 2
cases.

Case 1. 21(v) = z1(Ya).

In this case the strategy of the seller is as before and the strategy of the buyer changes
as follows. At ¢ = 0 types in [a, v) choose (r, z) from which at ¢ = 1types in [a, 21 (7)) reject
z1(v) whereas types in [21(?), 0] accept. (In the original assessment only types in Y, C [a, 0)
choose (7, z) at t = 0.) Types in [0, b] behave as before. Clearly this assessment implements
p(v) = p(v) for all v € [a,b] and moreover [Y] = [a, 7).

Case 2. 2z1(Ys) < z1(0).

If 21(Y,) < z1(v) it can be shown that there are types in (21(Y,),v) that do not belong
in Y,. Call this set of types —Y,. By the monotonicity of p we know that for v € —Y, it
must hold that p(v) =7+ (1 —r)d. Now consider the assessment where the strategy of the
seller is as before and the strategy of the buyer has been modified as follows. At t = 0
types in [a,?) choose (r,z) and at ¢t = 1 types in [a, 21(?)) reject the seller’s offer, whereas
types in [21(Y,), 0) accept. Types in (0,0) choose the actions chosen by the types in —Y,
in the assessment that implements p, and types in [0, b] behave as before. This assessment
implements p(v) = p(v) for all v € [a,b] and moreover [Y,] = [a, 8] for some © € [a, b)].

From the above analysis it follows that R(p) > R(p). B

Proof of Lemma 4

We will prove that the maximum of R over P exists. Using an identical procedure one
can show that the maximum of R over P* exists.

Continuity. Continuity of R follows from an identical argument as the one used in
Step 1b, in the proof of Proposition 2.

In order to prove that the maximum exists it remains to demonstrate that P is sequen-
tially compact in the topology of pointwise convergence.

Sequential Compactness. We will first show that every sequence p, € P, n € N has
a subsequence that converges pointwise to p € P. Recall that p,:[a,b] — [0, 1], increasing

and of the form
pn(v) =1 for v € [a, z1(0n)),
pn(v) =7+ (1 —1)d for v € [21(0n), Un)
r+(1—7)0 <pp(v) <1 forv e [vy,Db
Fﬂ(% v € [a,vp)
0 otherwise
Let w1, wy, .... denote the rational points of [a, b]. Since p,, is bounded, the sequence {p, }

for some vy, € [a,b] and z; given by (10) for fi(v) =

has a subsequence, {pg)} that converges at point w;. Since {p%l)} is also bounded, it has
a subsequence {pf)} converging at the point wo as well as the point w; {pg)} contains a
subsequence {pS')} that converges at point w3 as well as at point w; and wy and so on. The

(n)

“diagonal sequence” {h,} = {py '} will then converge to every rational point of [a,b]. The
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limit of this subsequence, p, is an increasing function from [a, b] to [0, 1]. Moreover p(s) =r
for all the rationals in [a, z1), and since 21 (.) is continuous, we have that p(s) =r+ (1 —7r)é
for all the rationals in [z1(), 7). We complete the definition of p at the remaining points of
[a, b] by setting!”

p(v) = lim p(w) if v is irrational.
v—owT

The resulting function p is then the limit of {h,} at every continuity point of p, (see Kol-
mogorov and Fomin page 373). Since p is increasing it has at most countably many discon-
tinuity points. Using the diagonal process we can find a subsequence of {h,} that converges
to all the discontinuity points p, which implies that it converges pointwise everywhere to p
on [a,b)].

From the above arguments it follows that {p,},en has a subsequence that converges
pointwise to p which is an increasing function, such that at z; its value jumps from r to
r+ (1 —r)d and at v its value is p(v) = r + (1 — r)d, in other words, p : [a,b] — [0,1] is
increasing and such that

p(v) =r for v € [a, z1(D)),
p(v) =71+ (1 —7r)b for v € [21(v),v) .
r+(1—7)6 <pv) <1forwve ]|,

Therefore p € P.

From Theorem A1, (stated in the proof of Proposition 2), it follows that {p, }nen has a
subsequence that converges to p. Hence every sequence in P has a convergent subsequence.
Therefore, P is sequentially compact. As seen in the proof of Proposition 2, Step 1c, a
bounded continuous function on a sequentially compact set has a maximum. ll

Proof of Lemma 5

We will use p and ¢ to denote generic elements of P and P* respectively.

Every measurable function can be approximated by a step function in the usual metric
generated by the norm (see for instance Royden 1962). An element of P, say p, can be
therefore approximated by a step function g. We now show that every step function that is
arbitrarily close to an element of P, can be written as a convex combination of elements of
P*.

Take a p € P,

p(v) =r for v € [a, z1 (D)),
p(v) =71+ (1 —7r)6 for v € [21(v),v) |,
r+(1—r)6 <p(v) <1forve v
and a step function g, such that |p — g| < e, ¢ > 0 arbitrarily small. Since the restriction

of p on [a,?) is a step function, we can take p(t) = g(t), for t € [a, ). Suppose that in the
interval [0,b], g has K steps. Then we can consider the division of [7, ], into K subintervals,

19The notation v — w™ means that v approaches w from below.
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I;, j =1,..., K. In each of these subintervals g takes a potentially different value g;, where
r+(1—-r)d<g; <b

We now show that we can write g as a linear combination of L functions ¢y, ..., q1, € P*,
that is to say

L
g= Zaiqi, YE o =1.
i=1

All ¢}s have the following characteristics

gi(v) = r, v€la,z(0)),
g(v) = r+1—=r)b, velzn(v),0),
gi(v) = 1l,v€[0,b],

where b > 0 > v.

The way to determine the coefficients «;, is as follows. Suppose that for v € I, g1 =
g(v) = r+(1—r)6+n;. Then for v € I1, T have g(v) = 2F ,a;q;+a1q1, where ¢; = r+(1—7)8
forall i # 1 and q1 = 1, ag = ?_"(11_7)6, and of course Eleai = 1. (Observe that
since ¢1 = 1 on I it must be ¢ = 1 for v € I, j = 2,..., K.) Obviously, EiLZZai =
1—qp = == m8om g for y € I, we can write g(v) =Bk saigi+aiqr = (r+ (1 —1)6)-

1—r—(1-7)é
(%) +1- <?—11(11—T)6) =71+ (1 —7r)6+n;. Now, suppose that for v € I5, we
have g2 = r+ (1 —7)8+n; +ny. Then for v € Iy we can write g(v) = EiL:?)aiqi +a1qg1 + asqa,

where ¢; =r+ (1 —r)d for all i # 1,2 and q1 = 1 = qo, alzﬂm, Oézzl_—r_n(le)&

and EiL:lai = 1. To verify this note that 25217#1720@ =1l—aj—ag = 17'”;9;?1121)7772. We

therefore obtain, that for v € Iy, g(v) = EiLzl i£12000 T a1q1 + 22q2

. 1—r—(1—r)6—n;— n1 n2 _

= (T—f‘(l—T)(S) . ( Tl—r—?l—rgtls 772) +1 . <m) +1 <m) =17+ (1 —
)6+ 0y + 1.

Continuing in a similar manner we can determine all the afs. It follows that any step

function that is arbitrarily close to an element of P, can be written as a convex combination
of elements of P*. Therefore for each p € P there exist a g, where g is a convex combination
of elements of P*, such that [p —g| < <. B

Proof of Proposition 5

First note that since P* C P, then

max R > max R.
P P+

It is given, that every element of P can be arbitrarily closely approximated by a convex
combination of elements of P*. We will use p and ¢ to denote generic elements of P and P*
respectively, and g to denote convex combinations of elements of P*. Suppose that p € P
is a maximizer of R, and consider a sequence {gn }nen such that g, — p. This implies that
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for all € > 0, there exists g,, such that |R(g,) — R(p)| < €, for n large enough. From this we
get that, for n large enough either R(g,) > R(p) — ¢ or R(p) > R(gn) — €.

Fix an n large enough. Since g, is a convex combination of elements of P*, we can
L

rewrite each element of this sequence as g, = XX a¢?, where ¢® € P* and X ol = 1.

Then, because R is linear, we can write
R(gn) = T{ 0] R(q}).-

Now suppose that R(¢?) < R(gy) for alli = 1,..., L. Then we have that R(g,) = =L o R(q?) <
R(gn), but this is impossible. Hence there must exist i such that R(q}') > R(gn). Now

max R(p) = R(q}') = R(gn),

where the first inequality follows from the fact that ¢ € P*. If R(p) > R(gn) then

max R(p) > R(q}') > R(gn) > R(p) — ¢, for all € > 0.
Taking the limit as € — 0, we get that

max R(p) = R(g) = max R(p).

If R(gn) > R(p), then from the fact that ¢ € P* and P* C P, we have
R(p) 2 max R(p) = R(¢") = R(gn) 2 R(D),
which again implies that all inequalities hold with equality. We therefore get

max R(p) = R(p) = max R(p).

|

Proof of Lemma 6

Our objective is to demonstrate that the solution to the problem maxy,cp+« R(p) can be
implemented by an assessment that is a PBE of the game where the seller posts a price in
each period.

Recall that any allocation rule in P* can be implemented by an assessment with the
following two characteristics.

z), (1, z0)}, for some (r,z) € [0,1] x Ry

C.1 First, the seller proposes at t =0 My = {(r,
1,21)}, for z; < 21(v), where 21(0) is given

and 29 € Ry; and at ¢t = 1 My = {(0,0), (
1) i 4 € [a, 7]

by (10) for f1(v) = { F (o)

0 otherwise

; and where

20—2z—(1—r)ozn

(115 (61

0=
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C.2 Second, given M; and My as above, the buyer’s strategy, along the path, is a best
response at each node. Type ¢ is indifferent between choosing (1, zp) at ¢ = 0 and
choosing (r,z) at t =0 and (1,21) at t = 1.

We now establish that the revenue maximizing rule among the elements of P* can be
implemented by a PBE of the game that the seller posts a price in each period. We do
so in two steps. First we show that for each allocation rule in p € P* implemented by an
assessment where z; < z1(0) there exists an allocation rule p € P* where 21 = z1(0), (that is
the seller behaves optimally at ¢ = 1), and it generates higher revenue for the seller. Second
we show that at the optimum the seller posts a price in each period.

Step 1. Consider an allocation rule p € P* implemented by an assessment with the
characteristics described in C 1 and C 2, where 21 < 21(0). The expected discounted revenue
for the seller is given by

b
Ro) = [ p(s)9()s (62)
21 0] b
- / rd(s)ds + / (r+ (1 — 1)8) B(s)ds + / B(s)ds.

1

Now consider an assessment with My = {(r, 2), (1, 20)}; M1 = {(0,0),(1, 21)}, where z; =
21(0) and 0 = %. Given My and M; for v € [a,Z;) the buyer chooses (1, z) at
t = 0 and rejects 21 at t = 1; for v € [Z1,0) the buyer chooses (7, z) at t = 0 and accepts 21
at t = 1; finally for v € [0, b] the buyer chooses (1, Zp) at ¢t = 0. This assessment implements

p € P*. The expected revenue for the seller is given by

Z1 0] b
R() = / rd(s)ds + / (r+ (1 — 1)6) B(s)ds + / B(s)ds. (63)

1
Now subtracting (62) from (63) we obtain
Z1
R(p) — R(p) = / (r+ (1 —1)6) ®(s)ds < 0.

1

This follows from Lemma 3 (ii) which gives us fjll ®(s)ds < 0.

Step 2. Now we will establish that at the optimum the seller posts a price in each
period. Recall that an allocation rule in P* can be implemented by an assessment that
satisfies the properties stated in C.1 and C.2. Given such an assessment the seller’s revenue
can be rewritten as

21 0] b
R(p) :/ zf(s)ds +/ (z+ (1 —7)dz1) f(s)ds +/ z0f(s)ds, (64)

1

where
f(q) if ~
21 is given by (10) for fi(v) = {4 FO) "Y€ [a, al
0 otherwise

and 0 by (61). (65)
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First from Corollary 1 it follows that it must hold that ra — z = 0 which implies that
z = ra. Note also that given z = ra, using (61), zpcan be written as a function of ¢ as
follows zg = (1 — r)(1 — 6)0 +ra+ (1 — r)621(0). Substituting (65) into R we get

R(r,0) = raF(z1(0)) + [ra+ (1 —71)621(0)] [F(0) — F(21(0)]
+[1=F@®)][1=r)(1=8d+ra+ (1—7)521(0)].

The choice of the optimal My has been reduced to the choice of the optimal r and 0.
The FOC with respect to r can be simplified to

%—Ij = a—6z1(0) [F(9) — F(21(9)]

—((L=6)0 +621(2)) (1 — F(9));

depending on the parameters this can be positive or negative. If % < 0 set r as small
as possible that is » = 0, which implies z = 0; if %—}f > 0, (which may be possible if a is
sufficiently large), set r as large as possible that is » = 1 which implies that z = a. When
at the optimum, r = 1 then the seller posts a price at ¢ = 0 equal to the lowest possible
valuation of the buyer, that is zyp = a. Trade takes place with probability 1 at £ = 0. When
r =0 at the optimum, M contains (0,0) and (1, z9) and M; contains (0,0) and (1, z1).

In both cases the seller maximizes revenue by posting a price in each period. In the case
that %—f < 0 she posts a price equal to zyp at t = 0 and equal to z; at ¢ = 1. The optimal
level of zp and z; is determined by the optimal ©, which depends on f. In the case that
%—f > 0 the seller posts a price equal to a at t =0. W
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